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Abstract. We study generalized permutohedra and supermodular functions. Specifically we an-

alyze decomposability and irreducibility for these objects and establish some asymptotic behavior.

We also study a related problem on irreducibility for multisets.

1. Introduction

A permutohedron in Rn is the (n− 1)-dimensional polytope obtain by taking the convex hull of

all n! points obtained by permuting the coordinates a point (x1, . . . , xn) ∈ Rn. In [8], Postnikov

introduced the generalized permutohedron, which is a deformation of a permutohedron obtained by

translating the hyperplanes bounding each face. Generalized permutohedra were also further stud-

ied in [9]. In [8], Postnikov derives a volume formula for generalized permutohedra as a polynomial

in the defining parameters. The proof of the formula requires a decomposition of some generalized

permutohedra into weighted Minkowski sums of coordinate simplices. However, not all generalized

permutohedra can be written in this form. Therefore, it is natural to ask whether all generalized

permutohedra can be written as a weighted Minkowski sum of a some fixed set of polytopes.

We define a generalized permutohedron to be irreducible if it cannot be written as a weighted

Minkowski sum of generalized permutohedra in a nontrivial way (any convex polytope is a Minkowski

sum of smaller copies of itself). Then all generalized permutohedra can be decomposed as a

Minkowski sum of irreducible generalized permutohedra.

In this paper we aim to understand the class of irreducible generalized permutohedra. We make

use of connections to related problems.

Generalized permutohedra in Rn are strongly related to supermodular functions on subsets of

[n], which are a discrete analog of convex functions. Supermodular functions are an important

object in optimization and other fields (see [2]).

There is a direct bijection between irreducible generalized permutohedra and irreducible super-

modular functions, which have been studied by several authors ([13, 10]). In [10], Promislow and

Young determined the irreducible supermodular functions for n ≤ 4 and conjectured a simple char-

acterizations for n > 4. However, this conjecture was shown to be false by Živný, Cohen, and
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Jeavons in [13], and we further show that this characterization is far from capturing all irreducible

supermodular functions.

To understand irreducible supermodular functions, we first study a related (and simpler) problem

involving irreducibility. Given a multiset M of subsets of [n], we say that M is balanced if each

element of [n] appears the same number of times inM. We denote the number of times each element

appears by the complexity m = m(M). The conditions for irreducibility generalized permutohedra

and supermodular functions can be formulated as a modification of that of irreducible balanced

multisets.

We derive bounds on the complexity of irreducible balanced multisets and enumerate the number

of irreducible balanced multisets up to lower order terms. Using similar ideas, we provide double-

exponential upper bounds for complexity and number of irreducible generalized permutohedra. We

also obtain double-exponential lower bounds by relating a subclass of supermodular functions to

matroids. The key asymptotic results are the following.

Theorem 1.1. The number of irreducible supermodular functions, up to equivalence, is bounded

above by 2O(n2n) and bounded below by 2Ω(2n/n3/2).

We also study a simple subclass of irreducible supermodular functions, which we enumerate

precisely.

The paper is structured as follows. In Section 2 we establish the preliminary definitions re-

lated to generalized permutohedra and supermodular functions. In Section 3 we establish some

conditions for a supermodular function to be irreducible. In Section 4 we explore the related prob-

lem of irreducible balanced multisets. In Section 5 we obtain upper bounds on the number and

complexity of irreducible supermodular functions. In Section 6 we obtain lower bounds on the

number of irreducible supermodular functions. In Section 7, we study supermodular functions with

supermodularities on only two layers.

2. Preliminaries

There are several equivalent ways to define a generalized permutohedron, and here we present

the one that is the most convenient for our purposes. For a subset I ⊆ [n], we let 1I denote the

vector whose i-th coordinate is 1 if i ∈ I and 0 otherwise.

Definition 2.1. A generalized permutohedron in Rn is a polytope of the form

{x ∈ Rn : x · 1I ≥ zI , x · 1[n] = z[n]}

for reals zI satisfying the supermodularity condition:

zI∩J + zI∪J ≥ zI + zJ



IRREDUCIBILITY OF GENERALIZED PERMUTOHEDRA 3

for all I, J ⊆ [n] (we set z∅ = 0).

This definition includes all ordinary permutohedra: for x1 ≤ x2 ≤ · · · ≤ xn, we can recover the

permutohedron with vertices that are permutations of (x1, . . . , xn) by taking zI = x1 + · · · + x|I|
for each I ⊆ [n].

The supermodularity conditions zI∩J + zI∪J ≥ zI + zJ guarantees that a generalized permutohe-

dron has the same face structure as a permutohedron, up to degeneracies that reduce the dimension

of faces. In particular, we still have that all edges are parallel to ei − ej for some i, j.

We define the Minkowski sum of two subsets P and Q of Rn to be the set P +Q = {x+ y : x ∈
P, y ∈ Q}. Note that the set of generalized permutohedra is closed under Minkowski sums, since

taking a Minkowski sum simply results in adding the corresponding zI parameters.

Definition 2.2. We say that a generalized permutohedron P is irreducible if whenever P is written

as a Minkowski sum Q1 +Q2 of generalized permutohedra, Q1 and Q2 are both copies of P up to

scaling and translation.

We can view the set of generalized permutohedra as a subset of R2n−1 by considering the vector

of corresponding zI parameters. This subset is a cone bounded by the hyperplanes corresponding

to the supermodularity conditions. Then the irreducible generalized permutohedra correspond

to the extreme rays of this cone. In particular, because we have finitely many conditions, there

are finitely many irreducible generalized permutohedra, up to scaling and translation. So every

generalized permutohedron can be written as a weighted Minkowski sum of irreducible generalized

permutohedra. For example, a permutohedron is a weighted Minkowski sum of
(
n
2

)
line segments

between the standard basis vectors in Rn.

Since the problem of determining the irreducible generalized permutohedra is equivalent to deter-

mining the extreme rays of a high-dimensional cone, we can apply standard algorithms to determine

the answer for small n. For n = 3 there are 5 irreducible supermodular functions. As generalized

permutohedra, two of these are equilateral triangles (with opposite orientations), and the other

three are are line segments.

For n = 4 there are 37 irreducible supermodular functions. Ignoring lower dimensional examples

and symmetries, we have 5 new irreducible generalized permutohedra, pictured below.



4 MILAN HAIMAN AND YUAN YAO

For n = 5 there are 117978 irreducible generalized permutohedra. Even accounting for lower

dimensional examples and symmetries, we have many new polytopes that do not follow a clear

pattern. Thus we aim to understand the number and complexity of irreducible generalized permu-

tohedra for general n instead of a precise characterization.

Definition 2.3. A function f : 2[n] → R is supermodular if f(I ∩ J) + f(I ∪ J) ≥ f(I) + f(J) for

all I, J ⊆ [n]. It is modular if f(I ∩ J) + f(I ∪ J) = f(I) + f(J) for all I, J ⊆ [n].

Given a generalized permutohedron, we immediately obtain a supermodular function by taking

f(I) = zI . In the other direction, any supermodular function f with f(∅) = 0 gives a generalized

permutohedron. Thus generalized permutohedra and supermodular functions are essentially the

same object. In particular, note that modular functions correspond to a single point as a generalized

permutohedron.

Definition 2.4. We say that two supermodular functions are equivalent if they differ by a modular

function. We say that a supermodular function f is irreducible if it is not modular and whenever

f = g1 + g2 for supermodular functions g1 and g2, g1 and g2 are each equivalent to a function of

the form cf for c ∈ R≥0.
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Note that each equivalence class of irreducible supermodular functions has a representative f

with the following properties:

• f(I) = 0 for |I| ≤ 1

• f takes nonnegative integer values with greatest common divisor 1.

As before, we see that the irreducible supermodular functions generate all supermodular functions

by taking nonnegative linear combinations. Additionally, irreducible generalized permutohedra

correspond to irreducible supermodular functions.

3. Analyzing Irreducible Supermodular Functions

As a motivating example, we first consider nondecreasing functions on subsets of [n], that is,

functions f : 2[n] → R where f(I) ≥ f(J) whenever I ⊇ J .

For a set S and i ∈ S, let ∂i be the discrete derivative operator mappings functions f : 2S → R to

functions ∂if : 2S\{i} → R, defined by (∂if)(I) = f(I∪{i})−f(I). It is clear that f is nondecreasing

if and only if (∂if)(I) ≥ 0 for every i ∈ [n] and I ⊆ [n]\{i}. We also have that f is supermodular if

and only if (∂i∂jf)(I) ≥ 0 for every pair of distinct i, j ∈ [n] and I ⊆ [n]\{i, j}. Thus we can think

of supermodular functions as having nonnegative second derivatives everywhere, which makes the

case of nondecreasing functions (nonnegative first derivatives) natural.

Motivated by this parallel, we can define equivalence and irreducibility for nondecreasing func-

tions.

Definition 3.1. We say two nondecreasing functions are equivalent if their difference is a constant

function. A nondecreasing function f is irreducible if it is not constant and not a nontrivial sum

of nondecreasing functions. That is, if f = g1 + g2 for nondecreasing functions g1 and g2, then g1

and g2 are each equivalent to a nonnegative multiple of f .

We can precisely characterize the irreducible nondecreasing functions. Given an nonempty an-

tichain A of subsets of [n], we define the up function of A to be uA(I) = 1 if I ⊇ J for some J ∈ A
and uA(I) = 0 otherwise.

Lemma 3.2. A nondecreasing function is irreducible if and only if it is equivalent to a function of

the form cuA for some nonempty antichain A of subsets of [n] and some c ∈ R≥0.

Proof. First we show the “if” direction. Let A be a nonempty antichain of subsets of [n]. We will

show that uA is irreducible. Let f1 and f2 be nondecreasing functions such that uA = f1 +f2. Now

consider sets I ⊆ J such that uA(I) = uA(J). We have that fi(I) ≤ fi(J) by nondecreasingity.

However

uA(I) = f1(I) + f2(I) ≤ f1(J) + f2(J) = uA(J).

Thus we must have equality, so f1(I) = f1(J) and f2(I) = f2(J).



6 MILAN HAIMAN AND YUAN YAO

This fact implies that fi(I) = fi([n]) whenever I ⊇ A for some A ∈ A, and fi(I) = fi(∅)
otherwise. Thus

fi(I) = fi(∅) + (fi([n])− fi(∅))uA.

This shows that uA is irreducible.

Now we show the converse. Suppose that f is a nondecreasing function not equivalent to a

multiple of uA for any antichain A. Consider the family F of subsets I ⊆ [n] for which f(I) > f(∅).
Since f is not constant, F is nonempty. Let A be the family of minimal sets in F . Note that uA

takes the value 1 on elements of F and 0 elsewhere. Now, for sufficiently small c > 0, we have

f(I) > c+ f(∅). Thus f − cuA is nondecreasing for some c > 0. But f is not equivalent to cuA. So

f is reducible. �

The number of antichains of subsets of [n] is at least 2( n
n/2) by choosing only subsets of size

(
n
n/2

)
.

In fact such antichains describe most possibilities [5, 7].

Given this understanding of nondecreasing functions, we can attempt to use it to understand

supermodular functions. If f is supermodular, then ∂if is nondecreasing. So we can construct

supermodular functions by taking n nondecreasing functions g1, . . . , gn with gi : 2[n]\{i} → R. How-

ever, we are restricted by the fact that

∂igj = ∂i∂jf = ∂j∂if = ∂jgi.

Therefore supermodular functions can be heuristically described as n weighted sums of antichains

with a compatibility condition between the sums.

Another way to understand supermodular functions is to consider the supermodularity condition

on certain pairs of I and J .

Definition 3.3. We say that an unordered pair of subsets {I, J} of [n] is close if |I| = |J | =

|I ∩ J |+ 1 = |I ∪ J | − 1. Let Pn be the set of all close pairs. Note that |Pn| =
(
n
2

)
2n−2.

Given a supermodular functions f , for each close pair {I, J}, let the supermodularity value of

this pair be

sI,J = f(I ∩ J) + f(I ∪ J)− f(I)− f(J).

Clearly, {I, J} is a close pair if and only if 1I , 1J , 1I∩J , 1I∪J are the vertices of a square face in

the boolean hypercube, so we will treat square faces and close pairs interchangeably.

It is sufficient to define sI,J only when {I, J} is a close pair because of the following lemma. Let

T : R2[n] → RPn denote the linear map sending f to s.

Lemma 3.4. Let f : 2[n] → R and let s = Tf . Then f is supermodular if and only if sI,J ≥ 0 for

each close pair {I, J}.

Proof. The “only if” direction is clear.
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For the “if” direction, let f : 2[n] → R and supppose s = Tf satisfies sI,J ≥ 0 for each close pair

{I, J}. We will show that

f(I ∩ J) + f(I ∪ J)− f(I)− f(J) ≥ 0

for all I, J ⊆ [n].

Fix subsets I, J ⊆ [n] and let I \ J = {i1, . . . , i`I}, J \ I = {j1, . . . , j`J}. Let K(a, b) = (I ∩ J) ∪
{i1, . . . , ia, j1, . . . , jb} for 0 ≤ a ≤ `I and 0 ≤ b ≤ `J . Note that {K(a, b− 1),K(a− 1, b)} is a close

pair for a, b > 0. Additionally we have that

0 ≤ sK(a,b−1),K(a−1,b) = f(K(a, b)) + f(K(a− 1, b− 1))− f(K(a, b− 1))− f(K(a− 1, b)).

Now we sum inequality over all 1 ≤ a ≤ `I and 1 ≤ b ≤ `J . Most terms on the RHS cancel, leaving

us with

0 ≤ f(K(`I , `J)) + f(K(0, 0))− f(K(`I , 0))− f(K(0, `J)) = f(I ∪ J) + f(I ∩ J)− f(I)− f(J).

Thus f is supermodular. �

Note that the kernel of T is the space of modular functions, which has dimension n + 1. Thus

the image of T has dimension 2n − n− 1.

We can determine the image of T in RPn by a set of
(
n
2

)
2n−2− 2n +n+ 1 linear conditions on s.

The possible vectors s obtained from supermodular functions are just the vectors satisfying these

conditions with nonnegative entries. So the relevant subset of vectors is the intersection of imT

with the positive orthant, which is a cone. The irreducible supermodular functions then correspond

to the extreme rays of this cone.

We now characterize the linear conditions determining imT . Given a permutation σ = (σ1, . . . , σn) ∈
Sn, we let Ir(σ) = {σ1, . . . , σr} and Jr(σ) = {σ2, . . . , σr+1}, for each 1 ≤ r ≤ n − 1. Also let

In(σ) = [n] and J0(σ) = ∅, so that Ir ∪ Jr = Ir+1 and Ir ∩ Jr = Jr−1. We define the path sum of s

along σ to be

Pσ(s) =

n−1∑
r=1

sIr,Jr .

Here σ corresponds to a maximal chain in the poset of square faces of the hypercube ordered by

the relation {I, J} < {I ′, J ′} when one of I ′ and J ′ contains both of I and J and the other contains

at least one of I and J . Additionally, we say that the path corresponding to σ has color σ1.

Example 3.5. When n = 4 and σ = (2, 4, 1, 3), we obtain the following path on square faces. The

color of the path is σ1 = 2, which can be seen by each square face having a pair of opposite edges

in the direction 1{2}.
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The following theorem explains the relevance of the color of a path and uses path sums to describe

imT .

Theorem 3.6. The following are equivalent for any s ∈ RPn:

(1) s ∈ imT .

(2) There exist m1, . . . ,mn such that Pσ(s) = mσ1 for all σ ∈ Sn. The value of mi will be

referred to as the weight of color i.

(3) For all distinct i, j, k ∈ [n] and I ⊆ [n] \ {i, j, k},

sI∪{i},I∪{j} + sI∪{i,j},I∪{j,k} = sI∪{i},I∪{k} + sI∪{i,k},I∪{j,k}.

Proof. We will show that (1) =⇒ (2) =⇒ (3) =⇒ (1).

We first show (1) =⇒ (2). Let f be a function with Tf = s. We claim that

mi = f([n]) + f(∅)− f({i})− f([n] \ {i}) = ∂if([n] \ {i})− ∂if(∅)

satisfies condition (2).

Consider an arbitrary σ ∈ Sn. Note that

sIr,Jr = ∂σ1∂σr+1f(Ir ∩ Jr) = ∂σ1∂σr+1f(Jr−1) = ∂σ1f(Jr)− ∂σ1f(Jr−1).

Thus the sum in Pσ(s) telescopes to ∂σ1f(Jn−1)− ∂σ1f(J0) = mσ1 , as desired.

Next we show that (2) =⇒ (3). Fix distinct i, j, k ∈ [n] and I ⊆ [n] \ {i, j, k}. Let t = |I|.
Choose a σ ∈ Sn such that σ1 = i, Jt(σ) = I, σt+2 = j, and σt+3 = k. Let σ′ ∈ Sn be such that

σ′r = σr for r 6= t + 2, t + 3 and σ′t+2 = k, σ′t+3 = j. Then we have that Ir(σ) = Ir(σ
′) except

when r = t+ 2 and Ir(σ) = Ir(σ
′) except when r = t+ 1. Since σ1 = σ′1, we have Pσ(s) = Pσ′(s).

Cancelling the common terms from the sum gives

sIt+1(σ),Jt+1(σ) + sIt+2(σ),Jt+2(σ) = sIt+1(σ′),Jt+1(σ′) + sIt+2(σ′),Jt+2(σ′).
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After substituting for Ir and Jr we obtain

sI∪{i},I∪{j} + sI∪{i,j},I∪{j,k} = sI∪{i},I∪{k} + sI∪{i,k},I∪{j,k},

as desired.

Finally we show (3) =⇒ (1). Let s be a function satisfying (3). We will construct an f such

that Tf = s. To construct f we define f(J) inductively based on |J |. If |J | < 2 we let f(J) = 0.

Now suppose that we have defined f(J) for all J with |J | < t, for some t ∈ [2, n]. Fix a J with

|J | = t. Choose i, j ∈ J arbitrarily let I = J \ {i, j}. We define

f(J) = sI∪{i},I∪{j} + f(I ∪ {i}) + f(I ∪ {j})− f(I).

This inductive procedure defines some function f : 2[n] → R. We claim that the choices of i, j ∈ J
do not affect the function f defined by the procedure.

We prove that f(J) is uniquely determined by induction on |J |. This is clear for |J | ≤ 2. Now

suppose we know that f(J) is uniquely determined for all J with |J | ≤ t for some J ∈ [2, n]. Fix a

J with |J | = t. It suffices to show that for any distinct i, j, k ∈ J we obtain the same value for f(J)

be recursing with {i, j} or {i, k}, because applying this fact twice connects any two pairs {i, j} and

{i′, j′}.
Applying condition (3) with i, j, k and I = J \ {i, j, k} we obtain that

sI∪{i},I∪{j} + sI∪{i,j},I∪{j,k} = sI∪{i},I∪{k} + sI∪{i,k},I∪{j,k}.

By the inductive hypothesis we have that

sI∪{i},I∪{j} = f(I ∪ {i, j}) + f(I)− f(I ∪ {i})− f(I ∪ {j}).

Similarly, we have that

sI∪{i},I∪{k} = f(I ∪ {i, k}) + f(I)− f(I ∪ {i})− f(I ∪ {k}).

Substituting these values into condition (3) gives

sI∪{i,j},I∪{j,k} + f(I ∪ {i, j})− f(I ∪ {j}) = sI∪{i,k},I∪{j,k} + f(I ∪ {i, k})− f(I ∪ {k}).

Adding f(I ∪ {j, k}) to both sides gives that the two potential values for f(J) in question are in

fact equal. �

By the above theorem, we know that we can describe imT using linear conditions of the form

s · v = 0, where v has all entries 0 except for 2 entries of +1 and 2 entries of −1. We will use this

fact to understand the complexity of irreducible supermodular functions.
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4. Irreducibility of Balanced Multisets

For each square face of the hypercube, we have an associated supermodularity value sI,J . Addi-

tionally, we have some subset of our n! paths passing through this face. Our only condition on the

supermodularity values is that their sum along each path of a given “color” is fixed.

So, choosing a supermodular functions is equivalent to choosing a weight for each square face

(and thus the corresponding set of paths) such that the each path of a given “color” has a fixed

total weight. This is equivalent to choosing a collection of subsets of a set of size n! subject to

the sum of the collection having a nice form, which is the same as our simplified irreducibility

problem with two modifications. First, we are only allowed to use certain subsets in our collection

(i.e., those corresponding to a square face). Second, the sum of the collection doesn’t have to be

a perfect multiple of the set of all n! paths; it only has to be count paths of each color the same

number of times.

Definition 4.1. A multiset M of subsets of [N ] is balanced with complexity m if each i ∈ [N ]

appears in exactly m sets in M. We say that a balanced multiset is Z-irreducible if no proper

nonempty subset is balanced.

Example 4.2. When N = 4, the multiset M = {{1}, {1}, {2, 3}, {2, 4}, {3, 4}} is balanced with

complexity 2 and is Z-irreducible.

Given a multiset M of subsets of [N ], we can construct a vector v = v(M) ∈ R2[N ]
such that vI

is the number of times I appears inM. Then we have thatM is balanced (of complexity m) if and

only if BNv(M) = m1[N ], where BN is the N × 2N matrix with columns 1I for each I ⊆ [N ]. This

allows us to extend the definition of balanced multisets to all vectors v ∈ R2[N ]
with nonnegative

entries.

Definition 4.3. A vector v ∈ R2[N ]

≥0 is balanced if BNv = m1[N ] for some m ∈ R. A balanced vector

v is irreducible if whenever v = u1 + u2 for balanced u1 and u2, both u1 and u2 are real multiples

of v. Equivalently, v is irreducible if it lies on an extreme ray of the cone of all balanced vectors in

R2[N ]
.

Given a nonzero balanced vector v ∈ R2[N ]
we can construct a balanced multiset M by scaling

v to have integer entries not sharing a common factor. We define the complexity of a balanced v

to be the complexity of the multiset M obtained in this way. We also say that a multiset M is

irreducible if it is obtained from an irreducible v in this way.

Note that if M is irreducible, then it is also Z-irreducible. However, the reverse does not hold.

For example, the multiset M = {1234, 4, 12, 135, 235, 45} is Z-irreducible but not irreducible by

Lemma 4.5.
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To analyze irreducibility for balanced multisets and vectors, we will use some results from random

matrix theory. Let MN be the N × N matrix with uniform and independent ±1 entries. In [12],

Tikhomirov showed that MN is singular with probability (1/2 + o(1))N . We will only need that

MN is invertible with probability 1− o(1/N)

By Hadamard’s inequality, |detMN | ≤ nn/2. Equality is attained when MN is a Hadamard

matrix. Additionally, in [11], Tao and Vu showed that |detMN | ≥ (cn)n/2 with probability 1−o(1)

for fixed c < 1/e.

For our applications, we will need the following lemma, which follows by applying row operations

to MN .

Lemma 4.4. Let A be a uniformly random N ×N matrix with {0, 1} entries and let Ai be A with

the i-th column replaced with all 1’s. Then the distribution of |detA| is 2−N times the distribution

of |detMN+1| and the distribution of |detAi| is 2−N+1 times the distribution of |detMN |.

Proof. We first show the second claim. From Ai, replace each column j 6= i with column i minus

twice column j to obtain a matrix A′i. We have that detA′i = (−2)N−1 detAi, and A′i has ±1

entries. Next independently negate each row of A′i with probability 1/2 to obtain A′′i . Then

|detA′′i | = |detA′i| and A′′i is distributed identically to MN . So the distribution of |detAi| is 2−N+1

times the distribution of |detMN |.
Now we show the first claim. Consider the (N+1)×(N+1) matrix A′ with A in the bottom right

N ×N block, all 1’s in the first column, and all 0’s in the rest of the top row. Then detA′ = detA.

Now, we construct a new matrix A′′, obtained from A′ as follows. Independently, for each i > 1,

with probability 1/2, either keep column i the same or replace column i with column 1 minus

column i. Then |detA′′| = |detA′| and A′′ is distributed the same as A1 in the second claim with

N replaced by N+1. So the distribution of |detA| is 2−N times the distribution of |detMN+1|. �

Now we analyze irreducible balanced vectors. First we prove the following lemma.

Lemma 4.5. Let v be an irreducible balanced vector in R2[N ]
. Then the set of vectors {1I : vI > 0}

is linearly independent.

Proof. Suppose this is not the case. Let {I1, . . . , I`} = {1I : vI > 0}. Then there exists αi not all 0

such that
∑`

i=1 αi1Ii = 0.

Now, let

t = min

{
vIi
|αi|

: 1 ≤ i ≤ `, αi 6= 0

}
.

Define v+ by v+
Ii

= vIi + tαi and v+
I = 0 if vI = 0. Similarly define v− by v−Ii = vIi − tαi and

v−I = 0 if vI = 0.
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By definition of t, v+ and v− have nonnegative entries and v+ + v− = 2v. Additionally, there

exists i such that v+
Ii

= 0 or v−Ii = 0 but vIi 6= 0. Thus v+ and v− cannot both be real multiples of

v. So v is reducible. �

We are now ready to bound the complexity of irreducible balanced vectors. The key idea is to

consider the support of such a vector and think about solving for the values of the nonzero entries.

Theorem 4.6. Let v be an irreducible balanced vector in R2[N ]
with complexity m. Then

m ≤ max
A∈{0,1}N×N

detA ≤ (N + 1)(N+1)/2/2N .

Proof. Without loss of generality scale v so that it has relatively prime integer entries. In particular

we have BNv = m1[N ].

Let {I1, . . . , I`} = {1I : vI > 0}. Note that ` ≤ N by Lemma 4.5. If ` < N choose N − ` more

sets J`+1, . . . , JN such that the set of vectors {1I1 , . . . , 1I` , 1J`+1, . . . , 1JN } is linearly independent.

Let x be the N × 1 column vector with i-th entry vIi for i ≤ ` and all other entries 0. Let A be

the N ×N matrix with i-th column vIi for i ≤ ` and i-th column vJi for i > `. Then we have that

Ax = m1[N ].

Now, consider solving for x by treating this as a linear system in the entries of x. By Cramer’s

rule, we have that vIi = xi = mdet(Ai)/ det(A), where Ai is the matrix A with the i-th column

replacing by 1[N ]. Since the values xi are positive integers that are collectively relatively prime, we

must have that

m =
det(A)

gcd(det(A1), . . . ,det(A`),det(A))
≤ det(A).

Now by Hadamard’s inequality and Lemma 4.4, we have that m ≤ (N + 1)(N+1)/2/2N , as desired.

�

We can extend this result to Z-irreducibility using Carathéodory’s Theorem, losing a negligible

factor of 2N .

Theorem 4.7. LetM be a Z-irreducible multiset with complexity m. Then m ≤ (N + 1)(N+1)/2.

Proof. Let v = v(M). By Carathéodory’s Theorem, we can write v as a positive linear combination

of irreducible balanced vectors v1, . . . , vr with r ≤ 2N . Without loss of generality, each vj has

relatively prime integer entries.

Now, let v =
∑r

j=1 λjvj for some reals λj ≥ 0. Note that λj < 1 because otherwise we could

reduce M from v = vj + (v − vj).
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Now we have that

m(M)1[N ] = m(v)1[N ] = BNv = BN

r∑
j=1

λjvj =
r∑
j=1

λjBNvj =
r∑
j=1

λjm(vj)1[N ].

So, by Theorem 4.6 we have that

m(v) =
r∑
j=1

λjm(vj) < r(N + 1)(N+1)/2/2N ≤ (N + 1)(N+1)/2.

�

To construct a lower bound on the largest possible complexity m, it suffices to construct a matrix

A with large determinant such that the gcd factor is small. It is unlikely that all matrices A with

large determinant also give a large gcd factor, but we have not established this yet. We expect that

a lower bound is possible losing at most a factor of cN for some c ∈ R.

Theorem 4.8. The number of distinct irreducible balanced vectors is (1− o(1))2N
2
/N !.

Proof. Recall that each irreducible balanced vector is supported on most N distinct sets. For each

choice of N distinct sets, we can solve for the unique irreducible balanced vector supported on a

subset those sets. So we have an upper bound of(
2N

N

)
= (1− o(1))

2N
2

N !
.

Now, consider sampling a matrix A from all matrices N × N matrices with {0, 1} entries, uni-

formly at random. Then construct matrices Ai for 1 ≤ i ≤ N by replacing the i-th column of A

with ~1N .

SinceMN andMN+1 are singular with probability o(1/N), by Lemma 4.4, we have thatA,A1, . . . , AN

are each singular with probability at most (1
2 +o(1))−N+1. So by a union bound we have that all of

A,A1, . . . , AN are invertible with probability 1− o(1). Now we focus on the (1− o(1))2N
2

matrices

A for which this holds.

When we solve Ax = ~1N , all entries of x will be nonzero. This gives us a irreducible sequence

with exactly n distinct sets. Over all matrices A, we will obtain each such sequence exactly N !

times, giving a lower bound of (1− o(1))2N
2

N ! �

This also shows that almost all irreducible sequences have exactly N distinct sets. Also note

that we can obtain a smaller error term by using the full strength of Tikhomirov’s result in [12].

Obtaining an upper bound for the number of Z-irreducible sequences is more difficult. We

can obtain a weak bound by counting all possible sequences with m ≤ (N + 1)(N+1)/2 or via

Carathéodory’s Theorem, but this unlikely to be tight.
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5. Upper Bounds for Irreducible Supermodular Functions

In this section we analyze irreducible supermodular functions. We consider the vector of super-

modularity values s ∈ RPn , indexed by square faces of the hypercube. We have that s lies in a fixed

subspace of dimension 2n − n− 1 given the restrictions from Section 3. For s to be irreducible, it

must lie on an extreme ray of the cone s ≥ 0 in this subspace. In particular, any irreducible s must

satisfy 2n − n− 2 linearly independent conditions of the form sI,J = 0. These conditions allow us

to solve for s up to a scaling factor. So, we obtain the following theorem.

Theorem 5.1. There are at most
(
n22n

2n

)
irreducible supermodular functions up to equivalence.

Proof. For each irreducible s, take 2n − n− 2 linearly independent conditions of the form sI,J = 0

that determine s. Thus the number of possible irreducible s is at most( (
n
2

)
2n−2

2n − n− 2

)
≤
(
n22n

2n

)
�

This bound is clearly not tight. However, as we see in Section 6 the true growth rate is in fact

exponential in 2n.

As in the previous section, we can also obtain a bound on complexity. In this case, we define the

complexity of an irreducible supermodular f as the maximum weight of a color of s = Tf (defined

in Theorem 3.6) after scaling s to have relatively prime integer entries.

Theorem 5.2. Let f be an irreducible supermodular function. Then the complexity of f is at most

2n
22n.

Proof. As in the proof of Theorem 4.6, we consider solving for s. Pick 2n−n−2 pairs I, J with sI,J =

0 which allow us to determine s. Now consider the matrix A in which the top
(
n
2

)
2n−2−(2n−n−2)

rows determine the subspace imT , the next 2n − n− 2 rows enforce sI,J = 0, and the last row has

all 1’s to account for scaling. For an irreducible s with integer entries, we have that As is a vector

with all 0 entries except the last entry.

As in the proof of Theorem 4.6, it suffices to bound the determinant of A. The first
(
n
2

)
2n−2 −

(2n−n− 2) rows each have norm 2. The next 2n−n− 2 rows have norm 1. The last row has norm

at most n2n/2. So by Hadamard’s inequality we have that the determinant of A is at most

2(n2)2n−2−(2n−n−2)n2n/2 ≤ 2n
22n .

�
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6. Lower bounds for irreducible supermodular functions

In this section we prove a double-exponential lower bound on the number of irreducible super-

modular functions. We do this by relating a special class of supermodular functions to matroids.

Definition 6.1. We say that a supermodular function f is simple if the nondecreasing function

∂if is irreducible or constant for each i ∈ [n].

Lemma 6.2. Let f be a simple supermodular function. If f is not irreducible, then there exists

a partition [n] = S1 ∪ S2 and simple functions g1 : 2S1 → R and g2 : 2S2 → R such that f(I) =

g1(I ∩ S1) + g2(I ∩ S2) for all I.

Proof. Suppose that f = g1+g2. WLOG each of f, g1, g2 are standard. For each i, ∂if = ∂ig1+∂ig2.

Since ∂if is irreducible as a nondecreasing function, one of ∂ig1 and ∂ig2 is 0. Then we can take

S1 = {i : ∂ig2 = 0} and S2 = [n] \ S1. �

Recall that a matroid M consists of a ground set of elements E and a collection of bases B ⊆ 2E

satisfying the following exchange axiom: for each pair of bases A,B ∈ B and a ∈ A\B, there exists

b ∈ B \A such that A ∪ {b} \ {a} ∈ B.

We will work with matroids M on the ground set E = [n]. Recall that each matroid has a rank

r which is the size of every base. Additionally, we can define a rank function on subsets I of E by

rank(I) = minB∈B |I ∩B|. We also have the nullity function given by null(I) = |I| − rank(I). We

say that I is an independent set if null(I) = 0.

Recall that a loop is an element of E that is in no bases, and a coloop is an element that is in

every base. We also say that a matroid M is reducible is we can partition the ground set E into

two nonempty sets E1 and E2 and construct matroids Mi on Ei with bases Bi such that

B = {B1 ∪B2 : B1 ∈ B1, B2 ∈ B2}.

If there does not exist such a decomposition of M , we say that M is irreducible. Note that if a

matroid on a ground set of at least 2 elements has a loop or a coloop, then it is reducible.

Next, we define a polytope associated with a matroid. Given a matroid M on [n], its matroid

polytope is the convex hull of the indicator vectors for its bases. We use the following result of

Gelfand, Goresky, MacPherson, and Serganov [3].

Theorem 6.3 (Gelfand, Goresky, MacPherson, and Serganov). Let P be a polytope in Rn with

vertices in {0, 1}n such that each edge is a translate of ei − ej for some i, j ∈ [n]. Then P is the

matroid polytope of some matroid M on [n].

Theorem 6.4. There exists a bijection between equivalence classes of simple supermodular func-

tions and loopless matroids on [n]. Furthermore, irreducible functions correspond to irreducible

matroids.
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Proof. Let M be a matroid on [n]. Then we can construct a supermodular function f by defining

f(I) = null(I). Since M is loopless, we have null(I) = 0 for |I| ≤ 1. So, f is the standard

representative for its equivalence class. Additionally f is simple since for any i ∈ [n], ∂if takes

values in {0, 1}.
Now suppose we have a simple function f that is the standard representative for its equivalence

class. We will construct a matroid M on [n] with f(I) = null(I). Consider the generalized

permutohedron P corresponding to f . Let x be a vertex of P . Since f takes integer values, x must

have integer entries (otherwise we could perturb x along a line while keeping it inside P ). We have

xi ≥ f({i}) = 0, and xi ≤ f([n])− f([n] \ {i}) ∈ {0, 1}. So, xi ∈ {0, 1}.
Now, consider an edge of P . It is parallel to ei − ej for some i, j ∈ [n]. Since the vertices of P

are in {0, 1}n, the edge must be a translate of ei − ej . Thus by Theorem 6.3 we have that P is the

matroid polytope of a matroid M . This gives that M maps to f by our map above.

By Lemma 6.2, a matroidM is irreducible exactly when the corresponding supermodular function

f is irreducible. �

Let mn be the number of matroids on [n]. The following bounds for the asymptotics of mn are

known (all logarithms are in base 2).

Theorem 6.5 (Bansal–Pendavingh–van der Pol [1]).

log logmn ≤ n−
3

2
log n+

1

2
log

2

π
+ 1 + o(1).

Theorem 6.6 (Knuth [4]).

log logmn ≥ n−
3

2
log n+

1

2
log

2

π
− o(1).

Theorem 6.7 (Mayhew–Newman–Welsh–Whittle [6]). The number of matroids on [n] with a loop

or a coloop is o(mn).

Using these results, we easily obtain the following.

Theorem 6.8. There are at least 2

(√
2/π−o(1)

)
2n/n3/2

irreducible supermodular functions.

Proof. It suffices to lower bound the number of irreducible matroids. The number of reducible

matroids on [n] is at most the number of matroids on [n] with a loop or coloop plus

bn/2c∑
t=2

(
n

t

)
mtmn−t ≤ 2nmn−2mbn/2c ≤ o(mn).

Here we used Theorem 6.5 and Theorem 6.6. So, with Theorem 6.7 we have that the number of

reducible matroids is o(mn). Thus the number of irreducible matroids is at least

(1− o(1))mn ≥ 2

(√
2/π−o(1)

)
2n/n3/2

.
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�

7. Supermodularities on two layers

In this section, we analyze irreducible supermodular functions which are nearly modular, for

some notion of “nearly”. Let Pn,t denote the set of close pairs {I, J} with |I| = |J | = t, for

t ∈ [n− 1].

Suppose that f is a supermodular function and let s = Tf as in Section 3. Suppose that s

is supported only on Pn,t for some fixed t ∈ [n − 1]. Then by iterating condition (3) of Theo-

rem 3.6, we have that sI,J is constant over Pn,t. In particular, there is only equivalence class of

irreducible supermodular functions with supermodularities supported on a single layer. As a gen-

eralized permutohedron, this corresponds to the hypersimplex ∆n,n−t. Let αn,t = max(0, |I| − t)
be the corresponding standard supermodular function.

A natural next step is to consider the case when s is supported only on Pn,t ∪ Pn,t+1 for some

fixed t ∈ [n− 2]. Here we allow the supermodularities to lie on two layers of the hypercube instead

of just one. Let Kn,t denote the set of standard irreducible supermodular functions of this form.

The hypersimplices ∆n,n−t and ∆n,n−t−1 correspond to the elements αn,t, αn,t+1 ∈ Kn,t as seen

above. Additionally, we can lift the hypersimplex ∆n−1,n−t+1 in n different ways to obtain a

supermodular function in Kn,t. Specifically, for each k ∈ [n], the corresponding function is

βn,t,k(I) = max(0, |I ∩ ([n] \ {k})| − t).

We will use the n+ 2 functions Bn,t = {αn,t, αn,t+1, βn,t,1, . . . , βn,t,n} to describe Kn,t.

Theorem 7.1. The elements of Kn,t other than αn,t and αn,t+1 are in bijection with subsets S ⊆ [n]

with |S| ∈ {1, n− 1} or

min(t+ 1, n− t) < |S| < max(t+ 1, n− t).

The bijection is given by the map

S 7→
∑
k∈S

βn,t,k −max(0, |S| − (t+ 1))αn,t −max(0, |S| − (n− t))αn,t+1.

Proof. First, notice the identity∑
k∈[n]

βn,t,k = (n− t− 1)αn,t + tαn,t+1. (1)

Additionally, this is the only linear dependence in Bn,t. Thus dim spanKn,t ≥ n+ 1.

In fact, we claim that this is an equality. By Theorem 3.6, for any f ∈ Kn,t, we can solve for

s = Tf from the color path sums m1, . . . ,mn and any fixed supermodularity value on Pn,t, since
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each path sum has only two nontrivial terms. Since f is standard, we can solve for f from s. Thus

dim spanKn,t = n+ 1.

Now, let f ∈ Kn,t with f 6= αn,t, αn,t+1 and let s = Tf . By Equation (1), we can write f as a

linear combination of Bn,t such that each βn,t,k has a nonnegative coefficient xk and at least one

of these coefficients is 0. Now, note that there must exist a close pair {I, J} ∈ Pn,t with sI,J = 0.

Otherwise, we could subtract a multiple of αn,t from f while leaving a supermodular function.

Thus the coefficient of αn,t is determined by the coefficients xk; it is the minimum supermodularity

value of
∑

k∈[n] xkβn,t,k on Pn,t. Note that βn,t,k is supermodular on a close pair {I, J} ∈ Pn,t if

and only if k 6∈ I ∪ J . So we obtain that the coefficient of αn,t is

y1 = − min
{I,J}∈Pn,t

∑
k 6∈I∪J

xk = − min
|K|=t+1

∑
k 6∈K

xk.

Similarly, we obtain that the coefficient of αn,t+1 is

y2 = − min
{I,J}∈Pn,t+1

∑
k∈I∩J

xk = − min
|K|=t

∑
k∈K

xk.

Next, we show that the coefficients xk only have one distinct nonzero value. Consider y1 and y2

as functions of ~x = {xk}. Note that both are piecewise linear. In particular, given ~x and ~x′ with

coordinates sharing a (weak) relative order, we have that y1(~x + ~x′) = y1(~x) + y1(~x′). Now, let

S ⊆ [n] consist of all k such that xk is maximal. Let x′k = 1 for k ∈ S and x′k = 0 for k 6∈ S. Then

have that

g =

(∑
k∈S

βn,t,k + y1(~x′)αn,t + y2(~x′)αn,t+1

)
is supermodular, and for sufficiently small ε > 0, f−εg is supermodular. Thus f must be a multiple

of g. In particular, we can assume xk = x′k ∈ {0, 1} for each k. Then y1 = −max(0, |S| − (t + 1))

and y2 = −max(0, |S|−(n−t)). Thus we have that each f ∈ Kn,t with f 6= αn,t, αn,t+1 corresponds

to an S ⊆ [n] as claimed. It suffices to check with choices of S give an irreducible f . By symmetry,

we only need to consider |S|.
First, we consider the case |S| ≤ min(t+ 1, n− t). If |S| = 0, then f = 0, so it is not irreducible.

If |S| = 1, then f = βn,t,k for some k, so it is irreducible. Otherwise, note that y1 = y2 = 0, so we

already have a decomposition of f . So, f is not irreducible.

Next, we consider the case |S| ≥ max(t+ 1, n− t). If |S| = n, then f = 0 by Equation (1), so it

is not irreducible. Now assume |S| < n. By the above calculations for y1 and y2, we have that for

each ` ∈ [n],

γn,t,` =
∑

k∈[n]\{`}

βn,t,k − (n− t− 2)αn,t − (t− 1)αn,t+1
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is supermodular. We claim that f =
∑

`∈[n]\S γ`. This follows by applying Equation (1) and

comparing coefficients. So, if |S| < n− 1, then f is not irreducible.

It remains to check that f is irreducible if |S| = n− 1 or

min(t+ 1, n− t) < |S| < max(t+ 1, n− t).

Now, since we know all possible elements of Kn,t, we just need to show that none of the claimed

elements can be decomposed using the other claimed elements. It suffices to check that for each

ordered pair of claimed elements, there exists a close pair on which the first is strictly supermodular

while the second is modular. This is a simple calculation, and we omit the details.

�
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