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Abstract

The problem on the largest triangle-intersecting family of graphs on n labeled vertices was proposed by

Simonovits and Sós in 1976. They conjectured the upper bound to be 2(
n
2)−3, which is obtained by taking all

graphs containing some fixed triangle. This was proven by Ellis, Filmus, and Friedgut, who also conjectured
that their results extend to the Kt-intersecting families. Berger and Zhao recently proved the case for t = 4.
We present current progress to prove the case for t = 5, including reductions and optimizations in the
computational process. Moreover, we extend these conjectures to hypergraph K

(3)
4 -intersecting families of

graphs.

1 INTRODUCTION

A triangle-intersecting family of graphs is a family F of graphs on n labeled vertices such that each pair of graphs
in F intersects at a triangle. Simonovits and Sós in 1976 posed the question of the largest triangle-intersecting

family of graphs on n labeled vertices and conjectured a tight bound of 2(
n
2)−3. In 1986, Chung, Graham,

Frankl, and Shearer [5] proved that every triangle-intersecting family of graphs on n labeled vertices has a size

of less than 2(
n
2)−2 using Shearer’s entropy theorem. The tight bound was proven by Ellis, Filmus, and Friedgut

[6] using Fourier analysis methods and reduction to a linear program. They also proved the uniqueness and
stability of the maximizer. In particular, a family of graphs with a size close to the tight upper bound will also
be close to a triangle-umvirate. They also conjectured an extension of their results for Kt-intersecting families
of graphs and the tetrahedron-intersecting family of hypergraphs.

Definition 1.1. A hypergraph H is a pair (V, E) where V is a finite set of vertices and E is a collection of
subsets of V , called edge set. We denote the number of edges in graph H as e(H) and the number of vertices as
v(H). An r-uniform hypergraph or r-graph is a hypergraph such that all its edges have size r. The 2-graphs
are called graphs.

2V is the set of all subsets of V .
(
V
r

)
denotes the set of all r-subsets of the set V .

(
V
r

)
is called the complete

r-graph over V , and is abbreviated to K
(r)
n , where |V | = n. K

(2)
n is the complete graph on n vertices, also

denoted by Kn. K
(3)
4 is complete 3-graph on 4 vertices, also called tetrahedron in this paper.

A complete t-partite r-graph, denoted by T (r)
n (t), has a t-partition of its vertices V =

⋃
i∈[t] Vi. The edge set

contains exactly all r-subsets of V where all members of the subset are in distinct parts. Complete t-partite

2-graphs are abbreviated as Tn(t). A complete t-equipartite r-graph, denoted by P(r)
n (t), is a complete r-graph

such that all parts have almost equal size, i.e. |Vi| = ⌊(n + i − 1)/t⌋ [9]. Complete t-equipartite 2-graphs are
abbreviated as Pn(t).

Definition 1.2. For an unlabeled hypergraph H, a family F of hypergraphs on n common labeled vertices is
H-intersecting if for every pair of G1, G2 ∈ F , G1 ∩ G2 contains a copy of H. A family of hypergraphs is
called H-umvirate if all hypergraphs contain some fixed copy of H.

Here, we describe the conjecture on the upper bound, as well as the stability and uniqueness of the maximizer
in a general form.

Conjecture 1.3. Let H be a complete r-graph on k vertices and F be an H-intersecting family of r-graphs on
n vertices. Let N :=

(
n
r

)
be the number of edges in a complete r-graph on n vertices and M :=

(
k
r

)
be the number

of edges in H. Then,

• |F| ≤ 2N−M .

• Equality is achieved if and only if F is a H-umvirate.
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• There is an absolute constant C > 0 such that for all ϵ > 0, if |F| ≥ (1 − ϵ)2N−M , then there exists a
H-umvirate U such that |U△F| ≤ Cϵ2N .

Recently, Berger and Zhao [2] gave a tight solution for the case when H = K4 using a similar Fourier analysis
as in [6] but with a simplified verification of dual constraints. Our paper presents the progress on the cases of

H = K5 and H = K
(3)
4 .

Orgnization. In Section 2, we explain the reduction to a linear program introduced in [6] and the framework
to reduce the verification of dual constraints to a finite computation introduced in [2]. In Section 3, we introduce
further computational optimization to verify the case for K5. In Section 4, we introduce the extension of the
conjecture to hypergraphs. Then, we conclude with future steps in Section 5.

2 REDUCTION TO A LINEAR PROGRAM AND VERIFICATION OF DUAL LINEAR
CONSTRAINTS

In this section, we briefly present the framework introduced in [6] to reduce the problem to one of a linear
program. It was also explained carefully in [2]. We also show the methods introduced in [2] to reduce the
verification of dual linear constraints to a finite computation.

A hypergraph H is F-free if no subgraph of H is a member of the hypergraph family F . The Turán number
of F , denoted by ex(n,F), is the maximum number of edges of an F-free r-graph on n vertices. An F-free
r-graph H on n vertices such that e(H) = ex(n,F) is called an extremal hypergraph, denoted by ex(H). Tuŕan
proved that ex(n,Kt) = (1− 1/(t− 1))

(
n
2

)
+O(n), which is achieved by complete (t− 1)-equipartite graphs on

n vertices, Pn(t− 1) [14]. He also conjectured that ex(n,K
(3)
4 ) is attained in the 3-graph on n vertices defined

as follows. Let V = V0 ∪ V1 ∪ V2 be an equipartition of V . The edge set contains all possible edges that either
intersect all Vi’s or contain two vertices of Vi+1(mod 3) and one in Vi. The notation above is taken from [9]. The

exact value of ex(n,K
(3)
4 ) is not yet proven but several papers proved upper bounds. The best-known upper

bound of 0.593592 . . . was given by Chung and Lu in [4]. Another likely correct upper bound was given by

Razborov in [13]. Another hypergraph that we will consider in Section 4 is K
(3)−
4 , or tetrahedron with one edge

removed. A family of dense graphs that is K
(3)−
4 -free is complete 3-equipartite 3-graphs [3]. The Turán number

for this graph is also not proven exactly. The current best upper bound is 0.2871 by Baber and Talbot [1] and
the best known lower bound is 0.2857 . . . by Frankl and Füredi [7]. A good summary of Turán type problems
can be found in [10].

Following the conjecture on the extremal hypergraph of K
(3)
4 , we define complete 3-proper 3-graphs, de-

noted by T ∗
n as follows. For a 3-graph, Let V = V0 ∪ V1 ∪ V2 be a partition (not necessarily equipartition)

of V . We call an edge proper if it either intersects all Vi’s or contains two vertices of Vi+1(mod 3) and one in
Vi. Otherwise, we call the edge improper. We call a graph 3-proper if there is a 3-partition of its vertices
such that all edges are proper. A complete 3-proper graph is a 3-proper graph whose vertices can be parti-
tioned into three independent sets such that the edge set contains all 3-subset of V that could form a proper edge.

Degree of a hypergraph is defined as the maximum degree of all vertices in the hypergraph. Co-degree of two
vertices u, v is defined as the number of distinct edges containing both u and v. The co-degree of a hypergraph
is defined as the maximum co-degree of all pairs of vertices.

Below we see how we can reduce the problem into one of a linear program by considering the intersection
of hypergraphs and extremal hypergraphs for H. The reason why we consider intersections with the densest
graphs that are H-free is to have a rich set of resulting subhypergraphs such that the linear program has a rich
set of coefficients and is more likely to be solvable.

2.1 REDUCTION TO A LINEAR PROGRAM

Each hypergraph G on n labeled vertices is indicated by a FN
2 vector where each dimension is an indicator for

the existence of an edge and N is the number of edges in a fully connected graph on n vertices.

Proposition 2.1 ([2], Proposition 2.1). Let f be a 0/1 valued Boolean function and ν be a real valued Boolean
function satisfying E[ν] = 1 and ⟨f ∗ f, ν⟩ = 0. Let m = maxλ ̸=0 |ν̂(λ)| Then,

• (Upper Bound) E[f ] ≤ m
1+m .

• (Maximum) If equality is achieved, then f̂(λ) = 0∀λ ̸= 0 with |ν̂(λ)| < m.

2



• (Stability) ∀ϵ, δ ∈ (0, 1],E[f ] ≥ m
1+m − ϵ, then

∑
λ̸=0,|ν̂(λ)≤(1−δ)m|

f̂(λ)2 ≤ (1 +m)ε

m( 1−2m
1+m + ε)δ

The proof of the proposition follows from Proposition 2.1 in [2].

Definition 2.2. The support distribution of H, denoted by TH, is a uniform distribution over a set of dense
H-free graphs. In particular, for H = Kt, TH will be a uniform distribution over all complete (t − 1)-partite

graphs on n vertices, or Tn(t− 1). For H = K
(3)
4 , TH will be a uniform distribution over all complete 3-proper

3-graphs on n vertices, T ∗
n .

In order to apply Proposition 2.1 to a H-intersecting family of graphs, we need to find a suitable ν. It is
hard to directly find a ν that satisfies the constraints, so we will reduce the search space to find ν of a specific
form. We restate the linear program (Proposition 2.3 in [2]) as follows.

Lemma 2.3. Let f : FN
2 → F2 be an indicator function of H-intersecting families of hypergraphs on n labeled

vertices. Also, let {fG} be a set of functions indexed by hypergraphs on n vertices. If ν : FN
2 → R satisfies:

ν̂(G) = (−1)e(G)ET∼THfT (T ∩G)

then ⟨f ∗ f, ν⟩ = 0.

Proof. We can show that ν is supported on graphs whose complements are H-free following the proof of Lemma
2.3 in [2]. Thus, for any x, y such that f(x) = f(y) = 1, x+ y’s complement must contain a copy of H where x
and y intersect. Thus, ⟨f ∗ f, ν⟩ = E[f(x)f(y)ν(x+ y)] = 0.

Theorem 2.4. Fix an H with M edges. If there exists a set of unlabeled graphs {H}, corresponding coefficient
{cH} and δ > 0 such that for any G on n labeled vertices, we have

µ(G) := (−1)e(G)
∑
H

cHPT∼TH [G ∩ T ∼= H]

that satisfies

(a) µ(0) = 2M − 1,

(b) |µ(G)| ≤ 1 for all G ̸= Ø,

(c) |µ(G)| ≤ 1− δ whenever G has more than M edges,

then Conjecture 1.3 holds for H. Here A ∩B ∼= C means the resultant subgraph from the intersecting edge sets
of A and B is isomorphic to C.

Proof. The proof follows Section 2.3 in [2]. The uniqueness claim is a special case of Lemma 2.8 in [8] and the
stability follows from a result of Kindler and Safra [11].

Definition 2.5. Define a k-coloring of a hypergraph with vertex set V as a mapping φ : V → {0, 1, . . . , k− 1}.

Remark. Proposition 2.5 in [2] expressed the probability as P[Gt−1
∼= H]. Where Gt−1 is the subgraph of G

formed by uniformly randomly coloring vertices of G with t − 1 colors and deleting all monochromatic edges.
This is equivalent to PT∼TH [G∩ T ∼= H] for the case H = Kt, where we consider intersections with a uniformly
distributed complete (t− 1)-partite graph since all edges in G∩T will contain vertices from distinct independent
sets. It will be used interchangeably in this paper.

Berger and Zhao found a valid µ for the case of t ∈ {3, 4} in [2] by reducing the verification of dual linear
constraints to a finite computational problem. We will briefly present the main idea behind the reduction.
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2.2 VERIFICATION OF THE DUAL LINEAR CONSTRAINTS

In order to apply Theorem 2.4 to prove Conjecture 1.3, we need to come up with a valid set of {H} and {cH}.
In order to do so, we need to verify that µ(G) satisfies the constraints for all graphs, so we need to bound µ(G)
for large graphs. The intuition behind why we can find an upper bound for large graphs based on small graphs
is that for G larger than H, P[G ∩ T ≃ H] is decreasing with the number of edges in G, so the contribution to
the sum (−1)e(G)

∑
H cHP[G ∩ T ≃ H] will decay.

Below we show how we can verify the validity of µ using a finite number of checks given an upper bound on
µ for large graphs.

Proposition 2.6. Fix a hypergraph H with M edges. Given a set of hypergraphs {H} with coefficients {cH},
suppose there is an nH ≥ v(H) such that

∀G, v(G) > nH , |µ(G)| ≤ F ({G : v(G) ≤ nH}),

where F is some function on all hypergraphs with at most nH vertices. Then, we can verify that {H} and {cH}
satisfy the constraints on µ with O(2poly(nH)) number of checks, where poly(x) means polynomial in x.

Proof. Given the upper bound on |µ| for large hypergraphs, we just need to verify that constraints on µ in 2.4
are satisfied for small hypergraphs (with at most nH vertices) and that the upper bound is bounded away from
1. In particular, we need to check that

(a) µ(0) = 2M − 1.

(b) |µ(G)| ≤ 1 for all G with at most M edges.

(c) |µ(G)| ≤ 1− δ for all G with more than M edges but at most nH vertices.

(d) F ({G : G ⊆ KnH
}) ≤ 1− δ.

Step (b), (c) involves checking all subhypergraphs of KnH
, so only O(2poly(nH)) checks are required. Since the

upper bound is only a function of small hypergraphs, step (d) can also be computed in finite time.

3 K5-INTERSECTING FAMILIES OF GRAPHS

The verification for K5 is implemented using codes in Python. We used graph data taken from [12] and a valid
upper bound function F for complete graphs Kt introduced in [2]. Since computation time increases exponen-
tially with the nH , the computational power quickly becomes the limiting factor. In this section, we present
and introduce several optimizations to further simplify the verification of dual constraints. We also give the
coefficients for subgraphs of K5.

Berger and Zhao [2] introduced an upper bound function F ({G : G ⊆ KnH
}) for the cases H = Kt and

found valid pairs of nH and {H} for the cases H = K3 and H = K4.

Proposition 3.1 ([2], Proposition 3.5). For each H = Kt, t ≥ 3, given a list {H} of unlabeled graphs on at
most nH vertices with corresponding coefficients {cH}, for any G on n > nH labeled vertices, we have

∑
H

|cH | · PT∼TH [G ∩ T ∼= H] ≤ max
G⊆KnH

[
1

(t− 1)κ(G)−1

∑
H

c̃H · P[G ∩ T ∼= H] ·DCt,nH
(v(H))

]

where κ(G) is the number of connected components in G.
The coefficient DCt,nH

is defined as

DCt,nH
(x) := max

n∈Z,n>nH

(
n
nH

)
(t− 1)n−nH

(
n−x
nH−x

) := F ({G : G ⊆ KnH
}).

Since
( n
nH

)
( n−x
nH−x)

starts decreasing when n ≥ 2x + 1, we only need to numerically check the maximum over nH <

n ≤ 2x. Denote S(H) as the set of graphs that can be transformed to H by repeatedly identifying pairs of
disconnected vertices. Then c̃H is defined as

c̃H := max
H′∈S(H)

|cH′ |.

Proof. Proof can be seen in Section 3 of [2].
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We will also use this

F ({G : G ⊆ KnH
}) = max

G⊆KnH

[
1

(t− 1)κ(G)−1

∑
H

c̃H · P[G ∩ T ∼= H] ·DCt,nH
(v(H))

]

for the K5 case. We used a list of G up to 9 vertices (there are 274668 non-isomorphic graphs on at most 9
vertices), so computational power is a great constraint. Therefore, we introduce below further optimizations.
These optimizations are briefly mentioned in [2] but we give more detailed proofs below.

Proposition 3.2. Fix an H with M edges. In order to satisfy the constraints in 2.4, cH are uniquely determined
for all subhypergraphs H ⊂ H. In particular, µ(G) = −1 for all G ⊂ H.

Proof. Construct a matrix A of dimension 2M − 1 by 2M − 1 where the rows are indexed by H ′ ⊂ H and the
columns are indexed by G′ ⊂ H. The entry indexed by (G′,K ′) has a value

(−1)e(G
′)cH′PT∼TH [G′ ∩ T ∼= H ′].

This matrix is lower triangular with no zeros on the diagonal. Thus, it is full rank. Now, augment A to a
matrix B with an additional column of −1 except for the first entry with value 2M − 1 and an additional row
of (−1)e(H)cH′PT∼T [H ∩ T ∼= H ′] for H ′ ⊂ H with the last entry set to −1.

B =

 A
2M − 1
−1
...

(−1)e(H)c∅PT∼T [H ∩ T ∼= ∅] . . . −1


Note that {cH′} is a set of valid coefficients if and only if it is in the null space of B. To show that there is

a unique set of {cH′}, we just need to show that B has nullity equal to 1, i.e. rank equal to 2M − 1. First note
that the rank of B is at least the rank of the submatrix A, i.e. 2M − 1. Now, we want to show that the rank of
B is at most 2M − 1 by showing that rows are not linearly independent.

To show that rows of B are linearly dependent, we just need to show that sum of each column of B is 0.
The last column is trivial. For any column indexed by H ′ ⊂ H, we have

(BT1)H′ =
∑

G′⊆H

(−1)e(H)cH′PT∼T [G
′ ∩ T ∼= H ′].

Since H ′ are strict subsets of H, there is some edge e ∈ G\H ′. If we pair up G′ and G′ ⊕ e ⊆ G, we have
PT∼T [G

′ ∩ T ∼= H ′] = PT∼T [G
′ ⊕ e ∩ T ∼= H ′], but (−1)e(G′⊕e) = −(−1)e(G′), so they cancel out in the sum.

This shows that the sum of each column of B is 0.

Lemma 3.3. For two disconnected components U, V of G, if we identify one pair of vertices u ∈ U, v ∈ V and
call the resulting hypergraph G1, then P[G ∩ T ∼= H] = P[G1 ∩ T ∼= H].

Proof. Consider G = U ⊔ V . Since U, V are disjoint, U ∩ T ∼= H and U ∩ T ∼= H ′ are independent events, we
have

#{T : G ∩ T ∼= H} = #{T : U ∩ T ∼= H}#{T : V ∩ T = ∅}+#{T : U ∩ T = ∅}#{T : V ∩ T ∼= H}.

Recall that if T follows a uniform distribution over complete k-partite graphs or 3-proper graphs (k = 3 in
this case), it is equivalent to considering a uniformly random k-coloring φ : V → {0, 1, . . . k − 1} of vertices of
G. Also, if G ∩ T ∼= H for some G and H, then rotations (φ(v) → φ(v) + 1(mod k)) of the colors of v ∈ V
preserve this property. When we identify vertices u and v, we added the constraints that u and v must be of
the same color. We can think of this as uniformly randomly coloring vertices in U without constraints, then for
any coloring of vertices of V , if the color of v is not equal to the color of u, rotate the colors of vertices in V
until they are equal. Thus,

P[G1 ∩ T ∼= H] =
#{T : G1 ∩ T ∼= H}

#{T}
=

#{T : G ∩ T ∼= H}/k
#{T}/k

= P[G ∩ T ∼= H].
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Recursively applying the above lemma, we can derive similar results for an arbitrary number of disconnected
components. From this, we can just consider isoclasses of graphs. Namely, consider the equivalence relation
G ∼ G′. Assuming v(G′) > v(G) + 1, G ∼ G′ if G can be transformed to G′ by repeatedly identifying one pair
of vertices from two disconnected components in the current graph. In all below, H denotes equivalence classes
of graphs. As an example, below three graphs on the left are all in the same equivalence class, but K3 is not in
the same equivalence class.

K33e

Figure 1: Examples of equivalence classes for Kt

Note that for hypergraphs, since we can only identify one pair of vertices from two disconnected components,
the graph on the right with two pairs of identifying vertices won’t be in the equivalence class 2e.

F22e

Figure 2: Examples of equivalence classes for tetrahedron

We also made optimizations in terms of code implementation. Since checking isomorphism is time-consuming,
TBD. Our computational procedure follows steps in Algorithm 3.

Algorithm 1 Computational Steps to Generate Coefficients Set for K5

allG← all edge vectors of subgraphs of K5, namely, all binary strings of length 2(
9
2)

allColors← all strings of length 9 consisting of 0,1,2,3, indicating partitions of all vertices
allT ← convert each coloring into an edge list of edges that are not monochromatic
allSubgraphs← zeros(allG.length, allT.length)
for G ∈ allG do

for T ∈ allT do
allSubgraphs[G,T ]← G ∩ T

end for
end for
allH ← for each H, generate edge list of all graphs on at most 9 vertices isomorphic to H
P ← zeros(allG.length, allH.length)
for G ∈ allSubgraphs do

for subgraph ∈ G do
for H ∈ allH do

if subgraph in H then
P [G,H] += 1

end if
end for

end for
end for
for row ∈ P do

row ← row · (−1)e(G)

end for
A← P/allT.length
Asmall ← rows of A corresponding to G with at most 10 edges at most 9 vertices.
Alarge ← rows of A corresponding to G with at least 11 edges at most 9 vertices.
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for col ∈ P do
col← col ·DCH

end for
Aextra ← P
Use a convex programming solver to solve the optimization problem

maximize x[0] subject to

1. abs(Asmall · c) ≤ 1

2. abs(Alarge · c) ≤ 1− x[0]

3. x[1] = 2M − 1

4. x[0] > 0

In the resulting convex programming problem, x[0] represents δ in Theorem 2.4, x[1] represents coefficient
on ∅. We want to maximize δ, by bounding |µ(G)| away from 1 for large G. We can additionally set coefficients
for all subgraphs of K5 to the precomputed value to speed up the convex programming solver. The set of
precomputed coefficients for all subgraphs of K5 can be found here.

4 K
(3)
4 -INTERSECTING FAMILIES OF HYPERGRAPHS

In this section, we extend the results on graphs to 3-graphs. The framework of reduction to linear program in-

troduced in Section 2 still applies. We show that the conjecture 1.3 is likely to not hold for H = K
(3)−
4 , which is

K
(3)
4 with one edge removed, but present some evidence to support why the conjecture is likely to work for K

(3)
4 .

As shown in Figure 4, on the left is an illustration of a 3-partite 3-graph. For H = K
(3)−
4 , TH in Definition

2.2 is a uniform distribution over all complete 3-partite 3-graphs T (3)
n (3). On the right is an illustration of a

3-proper 3-graph on n vertices. The black edge is an edge with all three vertices in different positions. Let the
three vertex sets be labeled 0, 1, 2, then the blue edges are edges with one vertex in the set i and two in the set

i+ 1 (mod 3). The densest graphs on n vertices that are K
(3)
4 -free are complete 3-proper 3-graphs.

Notice if there are two vertices in a 3-graph G being partitioned into the same vertex set, then any edge
containing these two vertices can never be in G∩T , where T is a complete 3-partite 3-graph. Thus, if there are
two vertices with high degrees in G and in the same partition, then all edges containing those two vertices cannot

appear in G ∩ T . Intuitively, we cannot find an upper bound on |µ(G)| as in Proposition 2.6 for H = K
(3)−
4

since there are bad cases of G such that |µ(G)| does not decrease as G gets larger. Below we will give a more

detailed example of the above argument and explain why this is not of concern when H = K
(3)
4 .

(a) (b)

Figure 3: An illustration of (a) a 3-partite 3-graph and (b) a 3-proper graph

Recall that the feasibility of finding an upper bound in Proposition 2.6 relies on the fact that for G larger
than H, P[G∩T ≃ H] converges to 0 as e(G)→∞, so the contribution to the sum (−1)e(G)

∑
H cHP[G∩T ≃ H]

will decay. We show how the argument fails to work for H = K
(3)−
4 .

Proposition 4.1. Fix H = K
(3)−
4 . Given a set of hypergraphs {H}, there is a sequence of hypergraph G with

an increasing number of edges such that G ∩ T ∼= H does not converge to 0 as e(G)→∞.
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...

G0 G1

G

u v

Figure 4: A plot of G with high degree

Proof. Consider the graph in Figure 4. First notice that for a 3-graph T to be K
(3)−
4 free, it needs to be a

3-partite 3-graph, such that we can color the vertices of T using three colors where the vertices in each edge all
have distinct colors. Let T be a uniform distribution over all 3-partite 3-graphs.

Consider Gk = G ⊔Wk where G is a graph chosen such that the probability that G ∩ T ∼= H is positive
for all H in the set. Wk is a graph with all edges containing two fixed vertices u, v. Consider a 3-coloring of
vertices, φ. Observe that as long as u and v in the graph is mapped to the same color, all edges in Wk cannot
appear in G ∩ T . Then, Wk (thus Gk) can have arbitrarily many number of edges but P[G ∩ T ≃ H] does not
decay to 0, since

P(Gk ∩ T ≃ H) ≥ P[φ(u) = φ(v)] · P[G ∩ T ∼= H]

=
1

3
· P[G ∩ T ∼= H]

where P[G ∩ T ∼= H] is a constant as G remains intact as we add edges to Wk.

The argument for H = K
(3)
4 does not have this concern because the support distribution is complete 3-

proper 3-graphs. Consider a 3-coloring of vertices in a 3-graph. Given the colors of two vertices of an edge
in a 3-graph, no matter what those two colors are (can be equal), there is still a positive probability that
this edge is proper. Therefore, given a fixed set of {H}, P[G ∩ T ∼= H] decreases as e(G) increases since it is
less likely to have all the extra edges in G\H to be improper. Below we will provide some more detailed evidence.

From Proposition 3.2, we immediately have coefficients for subgraphs of K
(3)
4 as shown below.

15 -10.2 0.6 -6.6

H

coefficients

empty 1e F2 S3

Figure 5: Coefficients for subgraphs of K
(3)
4

Notice that given a fixed set of H, it is harder for graphs with vertices of high degree or co-degree to sat-
isfy the constraints on µ. This is because the probability of G ∩ T ∼= H becomes more concentrated on H
with a degree close to G, which necessarily needs a graph with a high degree (thus a large number of edges) to
be included in the set ofH. Before we present some empirical evidence for this, let’s define some classes of graphs.

Definition 4.2. Here we want to define 5 specific classes of 3-graphs.

1. If a 3-graph is a fan graph with k edges (denoted by Fk) is a 3-graph on k + 2 vertices, then there is a
labeling of vertex as u, v0, ...vk such that the edge set is E = {{u, vi, vi+1} | i ∈ {0, ..., k − 1}}.

2. If a 3-graph is a wheel graph with k edges (denoted by Wk) is a 3-graph on k + 1 vertices, then there is
a labeling of vertex as u, v0, ...vk−1 such that the edge set is E = {{u, vi, vi+1(mod k)} | i ∈ {0, ..., k − 1}}.

3. If a 3-graph is a star graph with k edges (denoted by Sk) is a 3-graph on k + 1 vertices, then there is a

labeling of vertex as u, v0, ...vk−1 such that the edge set is E = {{u, v, v′} | (v, v′) ∈
({v0,...,vk−1}

2

)
}.
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4. If a 3-graph is a wedge graph with k edges (denoted by Wdk) is a 3-graph on k + 2 vertices, then there
is a labeling of vertex as u0, u1, v0, ...vk−1 such that the edge set is E = {{u0, u1, vi} | i ∈ {0, ..., k − 1}}.

5. If a 3-graph is a double wedge graph with 2k edges (denoted by Wddk) is a 3-graph on k + 3 vertices,
then there is a labeling of vertices as u,w0, w1, v0, ...vk−1 such that the edge set E = {{u,wj , vi} | j ∈
{0, 1}, i ∈ {0, 1, ...k − 1}}.

F3 W3 S3
Wd3 Wdd3

Figure 6: Illustration of high degree/ co-degree 3-graphs

Figure 7: A heatmap of probabilities that each G intersects a 3-proper graph being isomorphic to H

Figure 7 is a heatmap of probabilities P[G ∩ T ∼= H] for a set of G labeled on the y-axis and a set of H
labeled on the x-axis. We have new notations for subgraphs of G. Namely, Bi, j is a union of two fan graphs
Fi, Fj with the vertex with the highest degree as the only intersection. Ti, j, k is a union of three fan graphs
Fi, Fj , Fk with the vertex with the highest degree as the only intersection.

As evident from Figure 7, the probability P[G∩T ∼= H] for G with a high degree/ co-degree is concentrated
on increasingly large H with similar degree/codegree as G. We want to calculate these probabilities and show
that they decrease with k.

9



Below, we calculate probabilities P[G∩T ∼= H] of a different set of H that probability is concentrated in for
each G of high degrees. Namely, for Fk or Wk, probabilities are concentrated in subgraphs of Fs, s ≤ k. For Sk,
probabilities are concentrated in Wdk−1 and Wddk−2. For Wdk, probabilities are concentrated in Wds, s ≤ k.
For Wddk, probabilities are concentrated in Wdds, s ≤ k. We also calculate the probability of P[G ∩ T ∼= H]
when H is empty or a single edge. This is because coefficients c∅ and c1e have high magnitude (Figure 4) so we
want to ensure that these probabilities also decay with k.

Below, we calculate the probability that G ∩ T ∼= H for several cases of G and H and show that the
probability converges to 0 as k →∞.

H = ∅ or 1e, G = Fk

WLOG, let the node with the highest degree be u. Let φ(u) = 0.

First, consider a fan graph G with vertices u, v0, ...vk. Let’s consider the probability that G∩T is empty for
each possible color of v0.

To calculate the probability that G ∩ T is empty when φ(v0) = 0, we first want to show the below lemma.

Lemma 4.3. The number of distinct binary sequence of length n that does not contain consecutive 1’s is
F (n+ 2), where F (i) is the ith Fibonacci number (F(0) = 0 and F(1) = 1).

Proof. To see this, notice that if the sequence starts with 1, then the second bit must be 0 and we have a
problem with n − 2 length. If the sequence starts with 0, then we are left with a problem of n − 1 length.
Thus, let the number of binary sequences of length n that does not contain consecutive 1’s be f(n). We have
f(n) = f(n− 1) + f(n− 2). Also, f(1) = 2, f(2) = 3.

When φ(v0) = 0, for {u, v0, v1} to be improper, φ(v1) ∈ {0, 2}. When φ(v0) = 2, φ(v1) can only be 2. When
φ(v0) = 1, φ(v1) can only be 1. Inducting on φ(vi), i ≥ 1, we know that when φ(v0) = 0, all remaining φ(v)
can be any sequence of 0 or 2, but there can not be i ∈ [k − 1] such that φ(vi) = φ(vi+1) = 2. On the other
hand, when φ(v0) = 1 (or 2), all remaining φ(vi), i ≥ 1 must be 1 (or 2).

Thus, from Lemma 4.3, the probability that G ∩ T is empty when φ(v0) = 0 is F (k+2)
3k

and probability that

G ∩ T is empty when φ(v0) = 1 or 2 is 1
3k
. The total probability of a fan graph with k edges having an empty

G ∩ T is F (k+2)+2
3k+1 .

We can similarly calculate that the probability of a fan graph with k edges having G ∩ T ∼= 1e (where 1e is
1 edge) is

1

9
(2 ·

k−1∑
j=0

F (j + 2)

3j
· 1

3k−1−j
+ 3 ·

k−1∑
j=0

1

3k−1
)

To see this, we know that an edge {u, vj , vj+1} is proper with φ(u) = 0 if and only if {vj , vj+1} has colors
{0, 1}, {1, 0}, {1, 2}, {2, 1}, or {2, 2}. Then, we can calculate the probability that all edges {u, vi, vi+1} are im-
proper for i < j and i > j respectively using results from the previous part. Then, summing over all possible
positions of j gives us the result as claimed.

Using the estimation of Fibonacci numbers, we have

F (n) ∼ φn

√
5
+O(φ−n)

where φ =
√
5+1
2 .

Thus,

P[Fk ∩ T ∼= ∅] ∼
φ2

3
√
5
(
φ

3
)k,

P[Fk ∩ T ∼= 1e] ∼ 2φ√
5(φ− 1)

(
φ

3
)k+1 +

k

3k
∼ 2φ2

3
√
5(φ− 1)

(
φ

3
)k.

Both converge to 0 as k →∞ since φ
3 < 1.
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H = ∅ or 1e, G = Wk

Consider a wheel graph with vertices u, v0, ...vk−1. Then, for G ∩ T to be empty, if φ(v0) = 1 or 2, then all
remaining vertices need to be the same color as v0. Else, if φ(v0) = 0, then all remaining vertices need to form

a (k − 1)-length sequence with no consecutive 2’s. Thus, P[G ∩ T ∼= ∅] = F (k+1)+2
3k

For G ∩ T to contain only 1 edge, WLOG, let {u, v0, v1} form a proper edge. Then, the only possibility
of the colors for v0, v1 are {2, 2}, which forces vk−1 and v2 to have color 0 and the remaining vertices form a
sequence of length k − 4 with no consecutive 2’s. Otherwise, if v0, v1 have colors {0, 1} or {1, 2}, then WLOG,
let v1 have color 1. It will force all remaining vertices to have color 1 and result in an extra edge {u, vk−1, v0}.
Thus, probability of G ∩ T to contain only 1 edge is F (k−2)

3k
.

We can also get the asymptotic behavior of probabilities as

P[Wk ∩ T ∼= ∅] ∼
φ√
5
(
φ

3
)k

and

P[Wk ∩ T ∼= 1e] ∼ 1

φ2
√
5
(
φ

3
)k.

Both converge to 0 as k →∞ since φ
3 < 1.

H = Fk, G = Fk

WLOG, let the color of the vertex with the largest degree u be 0. Then φ(v0), ...φ(vk−1) can be any sequence
of {0, 1, 2} such that there is no i ∈ {0, 1, ...k− 2} such that {φ(vi), φ(vi+1)} ∈ {{0, 0}, {1, 1}, {0, 2}}. To count
the total number of valid sequences, let the number of valid sequences of length k be f(k). Let the number of
valid sequences of length n and starting with i be fi(k) for i ∈ {0, 1, 2}. Then, we have

f2(k) = f1(k − 1) + f2(k − 1)

f0(k) = f1(k − 1)

f1(k) = f0(k − 1) + f2(k − 2)

or f0(k)
f1(k)
f2(k)

 =

1 0 0
1 0 1
0 1 1

f0(k − 1)
f1(k − 1)
f2(k − 1)


However, notice that

1 0 0
1 0 1
0 1 1

 is not diagonalizable, so we want to prove an upper and lower bound on the

probability. First, notice that the number of sequences of {0, 1, 2} such that there is no i ∈ {0, 1, ...k − 2} such
that {φ(vi), φ(vi+1)} ∈ {{0, 0}, {1, 1}, {0, 2}} is less than or equal to the number of sequences such that there
is no i ∈ {0, 1, ...k − 2} such that {φ(vi), φ(vi+1)} ∈ {{0, 0}, {1, 1}}. The latter can be solved by consideringf0(k)

f1(k)
f2(k)

 =

0 1 1
1 0 1
1 1 1

f0(k − 1)
f1(k − 1)
f2(k − 1)


where the coefficient matrix can be factorized and using fi(1) = 1 for all i, we have

f(k) = f0(k) + f1(k) + f2(k) = (−1)k + (1−
√
2)k + (1 +

√
2)k

where the last term is dominating when k becomes large. Thus, P[Fk∩T ∼= Fk] =
f(k)
3k

converges to 0 as k →∞.

H = Wdk−1 or Wddk−2, G = Sk

WLOG, let the color of the vertex with the highest degree u be 0.

First, let’s consider the first equality. If the color of the vertex vi with the same codegree of u is 0. Then all
remaining vertices need to be 1 to form an edge with u, vi. If the color of vi is 2, then the color of the remaining
vertices can be either 2 or 1. However, they cannot contain both 2 and 1, since otherwise, those two vertices
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will form an edge with u. Also, there cannot be two remaining vertices both be 2 since otherwise, they can form
an edge with u. Thus, all remaining vertices need to be 1. If vi has color 1, then the remaining vertices can
have colors 0 or 2. However, as argued before, there cannot be two remaining vertices with color 2. Thus, either
all remaining vertices are 0 or at most one remaining vertex is 2. Thus, there are k possible colorings. Thus,
in total, there are k + 1 + 1 valid colorings out of the 3k+1 possible colorings of v0, ...vk−1. Also, the vertex vi
with same co-degree as u can be any of vi, i ∈ {0, 1, ...k − 1}. Thus, we have k(k + 2) valid colorings in total,

so P[Sk ∩ T ∼= Wdk−1] =
k(k+2)
3k+1 .

Now, for the second equality, WLOG, let v0, v1 be two vertices with co-degree k−2 and u has degree 2(k−2).
Then, (u, v0, v1) can be of colors (0, 0, 0), (0, 0, 2), (0, 2, 0) or (0, 1, 1). In each case, the total number of valid
colorings for the remaining k− 2 vertices is 1, 1, 1 and k− 1. Also, we have

(
k
2

)
choices for v0, v1. Thus, we have

the total probability P[Sk ∩ T ∼= Wddk−2] =
(k2)(2+k)

3k+1 . Both these probabilities converge to 0 as k →∞.

General 3-uniform Graphs

The results above are for G with high degrees/ co-degrees. When G is a general 3-graph with a bounded degree,
for a fixed H, we can also give an upper bound on the probability of G∩T ∼= H as a function of e(G) and show
that it decreases with e(G).

Lemma 4.4. When ∆(G) ≤ k,

P[G ∩ T ∼= H) ≤ P[e(G ∩ T ) ≤ e(H)] ≤ 2(1 + k)e(G)

9(2/9e(G)− e(H))2

Proof. Consider a uniformly random 3-coloring of vertices of G. Define X =
∑

e∈E(G) Xe, then

EX =
2

9
e(G)

EX2 =
∑

e∈E(G)

Xe +
∑

e∩e′≤1

E[Xe]E[Xe′ ] +
∑

e∩e′=2

E[XeXe′ ]

≤ 2

9
e(G) +

4

81
e(G)2 +

2

27
· 3ke(G)

V ar[X] ≤ 2

9
e(G)(1 + k)

Then, by Chebyshev’s inequality, we have

P [e(G ∩ T ) ≤ e(H)] = P [X ≤ e(H)]

≤ P[|X − EX| ≥ 2

9
e(G)− e(H)]

≤ V ar[X]

(2/9e(G)− e(H))2

≤ 2(1 + k)e(G)

9(2/9e(G)− e(H))2

5 FURTHER WORK

Using the introduced reduction framework and computation optimization, we have the following conjecture.

Conjecture 5.1. Conjecture 1.3 holds for H = Kt for all positive integers t and H = K
(3)
4 .

The intersecting family of hypergraphs for these two families have remained open questions for a long time
and was also proposed in [2, 6]. Below we provide some potential directions to prove the above conjecture.

First, we are optimistic that we can prove the case for H = K5 by expanding the list of graph G and running
computational verification on larger graphs (graphs with more than 9 vertices), such that we can find a set of
unlabelled graphs H and coefficients cH that satisfies all the constraints in Theorem 2.4. Towards proving the
cases for general Kt, we want to derive a general form for the set of H and coefficients cH in terms of t that will
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allow us to construct a µ that satisfies all constraints in Theorem 2.4 for the case when H = Kt. For the case

H = K
(3)
4 , following the intuitions in Section 4, our next step is to find an nH and an exact expression for the

upper bound F ({G : v(G) ≤ nH}) on |µ(G)| for large 3-graphs G. We can then use computational verification
to find a valid µ.

We also conjecture that the argument only holds for H-intersecting families when H is a complete graph.

Conjecture 5.2. If H is not a complete graph, there does not exist a function µ that satisfies the constraints
in Theorem 2.4.

For example, suppose H = K−
t , which is a complete graph Kt with one edge removed. From Proposition

3.2, we will be able to find the unique set of pre-determined cH for H ⊂ K−
t . However, when calculating µ(Kt),

we cannot use additional H other than the set of subgraphs of K−
t because any subgraph of Kt that is not a

subgraph of K−
t would contain a copy of K−

t . Therefore, we have more variables than linear constraints and
we conjecture that given the set of pre-determined cH ,

|µ(Kt) = |(−1)(
t
2)

∑
H:H⊂K−

t

cHPT∼TH [G ∩ T ∼= H]| > 1.
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8 APPENDIX

Figure 8: Coefficients cH for all subgraphs of K5
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