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EXCEPTIONAL SET ESTIMATES FOR ORTHOGONAL AND

RADIAL PROJECTIONS IN Rn

PAIGE DOTE AND SHENGWEN GAN

Abstract. We give different proofs of classic Falconer-type and Kaufman-
type exceptional estimates for orthogonal projections using the high-low method.
With the new techniques, we resolve Liu’s conjecture on radial projections:
given a Borel set A ⊂ Rn, we have

dim({x ∈ R
n \A | dim(πx(A)) < dimA}) ≤ ⌈dimA⌉.
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1. Introduction

In this paper, we study the orthogonal and radial projections in Rn.
Let G(n,m) be the set of m-dimensional subspaces in R

n, which is also known
as the Grassmannian. For V ∈ G(n,m), define πV : Rn → V to be the orthogonal
projection onto V . Given x ∈ Rn, define πx : Rn \ {x} → Sn−1 to be the radial
projection centered at x:

πx(y) =
y − x

|y − x|
.

We first discuss some background of the projection theory. We use dimX to
denote the Hausdorff dimension of the set X . Projection theory dates back to
Marstrand [8], who showed that if A is a Borel set in R2, then the projection of A
onto almost every line through the origin has Hausdorff dimension min{1, dimA}.
This was generalized to higher dimensions by Mattila [9], who showed that if A is
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2 PAIGE DOTE AND SHENGWEN GAN

a Borel set in Rn, then the projection of A onto almost every k-plane through the
origin has Hausdorff dimension min{k, dimA}. It turns out that one can obtain
some finer results which are known as the exceptional set estimates. The exceptional
set estimates give a bound on the set of directions where the projection is small.
Two classic types of exceptional set estimates (see Proposition 1, 2) were obtained
by Falconer [1] and Kaufman [5] using s-energy and Fourier analysis.

In this paper, we provide a approach to these two theorems from another perspec-
tive, by using incidence geometry and high-low method. The connection between
projection theory and incidence geometry is well known now, and dates back to
Wolff [13]. This connection is used in a fair amount of recent work in projection
theory, but this paper revisits these two classical theorems of projection theory
from the incidence geometry angle. We believe that our proofs have the same fun-
damental idea as the original proofs by Falconer and Kaufman, but writing the
proofs using incidence geometry and high-low method makes these ideas a little
more flexible. Actually, our approach can also be applied to resolve a conjecture of
Liu on radial projections(see [6] Conjecture 1.2).

We first state the following two classic results of Falconer and Kaufman. We
also recommend [10] Theorem 5.10 for the classic proofs.

Proposition 1 (Falconer-type). Suppose A ⊂ Rn is a Borel set of Hausdorff di-
mension α. For 0 ≤ s < min{m,α}, define the exceptional set

Es(A) = {V ∈ G(n,m) | dim(πV (A)) < s}.

Then we have
dim(Es(A)) ≤ max{m(n−m) + s− α, 0}.

Proposition 2 (Kaufman-type). Suppose A ⊂ Rn is a Borel set of Hausdorff
dimension α. For 0 ≤ s < min{m,α}, define the exceptional set

Es(A) = {V ∈ G(n,m) | dim(πV (A)) < s}.

Then we have
dim(Es(A)) ≤ m(n−m− 1) + s

Let us turn to the radial projections. We first state our two theorems.

Theorem 1. Let A ⊂ Rn be a Borel set such that α = dimA ∈ (k, k+1] for some
k ∈ {1, . . . , n− 1}. Fix 0 < s < k and let

Es(A) := {y ∈ R
n \A | dim(πy(A)) < s}.

Then,
dim(Es(A)) ≤ max{k + s− α, 0}.

Theorem 2. Let A ⊂ Rn be a Borel set such that α = dimA ∈ (k− 1, k] for some
k ∈ {1, . . . , n− 1}. Define the exceptional set

E(A) := {x ∈ R
n \A | dim(πx(A)) < α}.

Then we have
dim(E(A)) ≤ k.

Theorem 2 is sharp. If we let A be an α-dimensional subset of Rk, we see that
E(A) = Rk \A which has dimension k.

We remark that Theorem 1 is a conjecture made by Lund, Pham and Thu ([7]
Conjecture 1.2); Theorem 2 is Liu’s conjecture ([6] Conjecture 1.2).
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Recently, Orponen and Shmerkin [12] proved the n = 2 case for both Theorem 1
and Theorem 2. Their proof of Theorem 1 (when n = 2) is based on a Furstenberg-
type estimate due to Fu and Ren [3]. Then by a swapping trick, they are able
to prove Theorem 2 (when n = 2). In this paper, we prove the Theorems for
all dimensions. We remark that the upper bound in Theorem 1 is a Falconer-
type bound, compared with Proposition 1. In the later sections, we will see many
similarities between the proofs of Proposition 1 and Theorem 1.

Let us also talk about the relations between orthogonal projection and radial
projection. For an (n− 1)-plane V , we can view the orthogonal projection πV as a
radial projection πx(V ) whose projection center x(V ) lies on the infinite hyperplane.
Therefore, we see that Theorem 1 with k = n−1 implies Proposition 1 with m = 1.
However, Proposition 1 only implies a weaker result than Theorem 1, which is of
form

dim(Es(A) ∩ Π) ≤ max{k + s− α, 0}.

Here, Π is an (n − 1)-plane. Such comparison between orthogonal projection and
radial projection was discussed in Orponen and Shmerkin’s paper (see [12] (1.4)).
For more backgrounds on the radial projections, we refer to Orponen’s paper [11].

We briefly discuss about the strategies in the proofs. We mainly use the high-low
method and the double counting technique. For instance, the proof of Proposition
3 uses the high-low method. Then the proof of Proposition 4 uses both of the
tricks. Theorem 1 is a result of Proposition 3 and Proposition 4. Finally, the proof
of Theorem 2 is a combination of Theorem 1 and a trick of Orponen and Shmerkin
[12].

We talk about the structure of the paper. In Section 2, we prove Proposition 1.
In Section 3, we prove Proposition 2. In Section 4, we prove Theorem 1. In Section
5, we prove Theorem 2.

1.1. Some notations. We will frequently use the following definitions.

Definition 1. For a number δ > 0 and any set X (in a metric space), we use |X |δ
to denote the maximal number of δ-separated points in X.

The simplest definition of a (δ, s)-set is seen on Rn:

Definition 2. Let δ, s > 0, and let A ⊂ Rn be a finite δ-separated set. We say A
is a (δ, s)-set if it satisfies the following estimate:

#(A ∩Br(x)) . (r/δ)s

for any x ∈ Rn and r ≥ δ.

Remark 1. Throughout the rest of this paper, I will use #E to denote the cardi-
nality of a set E and |·| to denote the measure of a region.

These types of sets are vastly useful in helping us reduce discrete sums, find
upper bounds for cardinalities of sets or measures of regions, etc. For instance,
consider the following lemma:

Lemma 1. Let δ, s > 0 and let B ⊂ Rn be any set with Hs
∞(B) =: κ > 0. Then,

there exists a (δ, s)-set P ⊂ B with #P & κδ−s.

Proof. See [2] Lemma 3.13. �
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In this paper, we will focus on the planks T of dimensions

δ × δ × · · · × δ︸ ︷︷ ︸
m times

× 1× 1× · · · × 1︸ ︷︷ ︸
n−m times

which are contained in Bn(0, 2), so we want a similar condition for when a collection
of planks is a (δ, s)-set. Recall that G(n,m) is the Grassmannian, and we also use
A(n,m) to denote the set ofm-planes in Rn that intersect with Bn(0, 1). Therefore,
A(n,m) is a bounded subset of AG(n,m) (the set of all m-dimensional spaces in
Rn). We can view A(n,m) as a manifold, and G(n,m) is a submanifold of A(n,m).
Let A(n,m) be equipped with the metric d given by

d(V1, V2) = ‖πV1 − πV2‖+ |a1 − a2|,

where ai = Vi ∩ V ⊥
i (see also [12] Definition 2.2).

There is a natural correspondence between such planks and the δ-balls in A(n, n−
m). Given such a δ-thick plank T , we let VT ∈ A(n, n−m) be the central (n−m)-
plane of T . We let T correspond to B(VT , δ) (⊂ A(n, n − m)). We can see that
if T, T ′ are essentially the same (in the sense that C−1T ⊂ T ′ ⊂ CT ), then VT ∈
B(VT ′ , C′), and vice versa. Here the constant C,C′ depend on each other. In
particular, if {T } is a set of essentially distinct planks, then {VT } are ∼ δ-separated
points in A(n, n−m). We call these planks (n, n−m, δ)-planks. When the ambient
dimension n and the codimension of the planks m are fixed, we just simply call
such planks δ-planks.

Definition 3. Let T be a collection of δ-planks in Rn. We say T is a (δ, s)-set if

(1) T are essentially distinct, and
(2) for each r ≥ δ and any ball Br ⊂ A(n, n−m), we have

#{T ∈ T | VT ∈ Br 6= ∅} . (r/δ)
s
.

Remark 2. Actually, the condition (2) in the definition above can be replaced by

#{T ∈ T : T ⊂ Pr} . (r/δ)s, for any (n, n−m, rδ)-plank Pr,

which we will use often.

Acknowledgement. The research was done during the MIT SPUR program. We
would like to thank the MIT SPUR program. We would also like to thank Prof.
Larry Guth for suggesting the problem and helpful discussions, and Prof. Ankur
Moitra and Prof. David Jerison for helpful discussions.

2. Falconer-type estimate

In this section of the paper, we use the high-low method to prove Falconer’s
Bound in Rn. We first discretize the problem.

2.1. δ-discretization. We will prove the following δ-discretized version of Propo-
sition 1:

Theorem 3. Fix an integer m ∈ [1, n], a number a ∈ (0, n] and 0 < s < min{m, a}.
For each ε > 0, there exists Cs,ε so that the following holds. Let δ > 0. Let
H ⊂ Bn(0, 1) be a (δ, a)-set with #H & (log δ−1)−2δ−a. Let V be a δ-separated
subset of G(n,m) such that V is a (δ, t)-set and #V & (log δ−1)−2δ−t for some
t > 0. Assume for each V ∈ V, we have a collection of (n, n − m, δ)-planks TV

orthogonal to V . TV satisfies the s-dimensional condition:
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(1) #TV . δ−s, and
(2) #{T ∈ TV : T ⊂ Pr} . (r/δ)s, for any (n, n−m, r)-plank Pr with δ ≤ r ≤

1.

We also assume that each δ-ball contained in H intersects & (log δ−1)−2#V many
planks from

⋃
V ∈V TV . Then

δ−t ≤ Cs,εδ
−m(n−m)−s+a−ε.

We will first show that Theorem 3 implies Proposition 1, and then prove Theorem
3. Before starting the proof, we state a very useful lemma. We use the following
notation. Fix a dimension m. For any δ = 2−k (k ∈ N+), let Dδ denote the lattice
of δ-cubes in [0, 1]m.

Lemma 2. Suppose X ⊂ [0, 1]m with dimX < s. Then for any ε > 0, there exist
dyadic cubes C2−k ⊂ D2−k (k > 0) so that

(1) X ⊂
⋃

k>0

⋃
D∈C

2−k
D,

(2)
∑

k>0

∑
D∈C

2−k
r(D)s ≤ ε,

(3) C2−k satisfies the s-dimensional condition: For l < k and any D ∈ D2−l ,
we have #{D′ ∈ C2−k : D′ ⊂ D} ≤ 2(k−l)s.

Proof. See [4] Lemma 2. �

Remark 3. Besides [0, 1]m, this Lemma also works for other compact metric
spaces, for example S

n and G(n,m), which we will use throughout the rest of
the paper.

Proof of Proposition 1 assuming Theorem 3. Suppose A ⊂ R
n is a Borel set. We

may assume A ⊂ Bn(0, 1). Define the exceptional set

Es(A) := {V ∈ G(n,m) : dim(πV (A)) < s}.

Recall that the definition of the t-dimensional Hausdorff content is given by

Ht
∞(B) := inf

{∑

i

r(Bi)
t : B ⊂

⋃

i

Bi

}
.

A property for the Hausdorff content is that

dim(B) = sup{t : Ht
∞(B) > 0}.

We choose a, t such that Ha
∞(A) > 0,Ht

∞(Es(A)) > 0. We only need to prove

a ≤ m(n−m) + s− t,

since then we can send a→ dim(A) and t→ dim(Es(A)). As a and t are fixed, we
may assume Ha

∞(A),Ht
∞(Es(A)) ∼ 1 are constants.

Fix a V ∈ Es(A). By definition, we have dim(πV (A)) < s. We also fix a small
number ǫ◦ which we will later send to 0. By Lemma 2, we can find a covering
of πV (A) by disks DV = {D}, each of which has radius 2−j for some integer
j > | log2 ǫ◦|. We define DV,j := {D ∈ DV : r(D) = 2−j}. Lemma 2 yields the
following properties:

(1)
∑

D∈DV

r(D)s < 1,
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and for each j and r-ball Br ⊂ V , we have

(2) #{D ∈ DV,j : D ⊂ Br} .
( r

2−j

)s
.

After finding such a DV , we can define a set of δ-planks by lifting DV . More
precisely, we define the plank sets TV,j := {π−1

V (D) : D ∈ DV,j} ∩ Bn(0, 2), TV =⋃
j TV,j. Each plank in TV,j has dimensions

2−j × 2−j × · · · × 2−j

︸ ︷︷ ︸
m times

× 1× 1× · · · × 1︸ ︷︷ ︸
n−m times

such that the 1×· · ·×1 ‘side’ is orthogonal to V . One easily sees that A ⊂
⋃

T∈TV
T .

By pigeonholing, there exists j(V ) such that

(3) Ha
∞(A ∩ (∪T∈TV,j(V )

T )) ≥
1

10j(V )2
Ha

∞(A).

For each j > | log2 ǫ◦|, define Es,j(A) := {V ∈ Es(A) : j(V ) = j}. Then we obtain
a partition of Es(A):

Es(A) =
⊔

j

Es,j(A).

By pigeonholing again, there exists j such that

(4) Ht
∞(Es,j(A)) ≥

1

10j2
Ht

∞(Es(A)) ∼
1

10j2
.

In the rest of the proof, we fix this j. We also set δ = 2−j . By Lemma 1, there
exists a (δ, t)-set V ⊂ Es,j(A) with cardinality #V & (log δ−1)−2δ−t.

Next, we consider the set S := {(x, V ) ∈ A× V : x ∈ ∪T∈TV,j
T }. We also use µ

to denote the counting measure on V . Define the sections of S:

Sx = {V : (x, V ) ∈ S}, SV := {x : (x, V ) ∈ S}.

By (3) and Fubini, we have

(5) (Ha
∞ × µ)(S) ≥

1

10j2
Ha

∞(A)µ(V).

This implies

(6) (Ha
∞ × µ)

({
(x, V ) ∈ S : µ(Sx) ≥

1

20j2
µ(V)

})
≥

1

20j2
Ha

∞(A)µ(V),

since

(7) (Ha
∞ × µ)

({
(x, V ) ∈ S : µ(Sx) ≤

1

20j2
µ(V)

})
≤

1

20j2
Ha

∞(A)µ(V).

By (6), we have

(8) Ha
∞

({
x ∈ A : µ(Sx) ≥

1

20j2
µ(V)

})
≥

1

20j2
Ha

∞(A) ∼
1

20j2
.

We are ready to apply Theorem 3. Recall δ = 2−j and #V & (log δ−1)−2δ−t.
By (8) and Lemma 1, we can find a δ-separated subset of {x ∈ A : #Sx ≥ 1

20j2#V}

with cardinality & (log δ−1)−2δ−a. We denote this set by H . For x ∈ H , we see
that there are & (log δ−1)−2#V many planks from ∪V ∈VTV,j that intersect x. We
can now apply Theorem 3 to obtain

δ−a−t ≤ Cs,εδ
−m(n−m)−s−ε.
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•

Figure 1. Dual Slabs

Letting ǫ◦ → 0 (and hence δ → 0) and then ε→ 0, we obtain

a+ t ≤ m(n−m) + s.

�

2.2. Discretized Falconer-type estimate. In this subsection, we prove Theorem
3.

Proof of Theorem 3. For each V ∈ V , let SV be a

δ−1 × δ−1 × · · · × δ−1

︸ ︷︷ ︸
m times

× 1× 1× · · · × 1︸ ︷︷ ︸
n−m times

slab centered at the origin such that the 1 × 1 × · · · × 1 ‘side’ is orthogonal to V .
Then, these slabs are dual to TV .

For all T ∈ TV , choose a bump function ψT such that ψT ≥ 1 on T , ψT decays

rapidly outside of T , and supp ψ̂T ⊂ SV .
Define

fV =
∑

T∈TV

ψT and f =
∑

V ∈V

fV .

Then, by definition, f(x) & (log δ−1)−2#V & (log δ−1)−4δ−t. So,

(9) δn−a−2t / #H(#V)2 /

ˆ

H

|f |2.

Here, / means . (log δ−1)O(1).
We are going to find an upper bound of

´

H
|f |2 using the high-low method.

Let K be a large number to be determined later (we will actually choose K ∼
(log δ−1)O(1)). Let ηlow(ξ) be a smooth bump function on Bn(0, (Kδ)−1) and
ηhigh(ξ) = 1− ηlow(ξ). We have the following high-low decomposition for f :

f = flow + fhigh,

where f̂low = ηlowf̂ and f̂high = ηhigh f̂ . See Figure 1 for a diagram of the high
part and low part and the dual slabs.

For x ∈ H , we have

(10) (log δ−1)−2#V . f(x) ≤ |fhigh(x)|+ |flow(x)|.
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Wewill show that the high part dominates for x ∈ H , i.e., |fhigh(x)| & (log δ−1)−2#V .
It suffices to show

(11) |flow(x)| ≤ C−1(log δ−1)−2#V .

Recall that flow =
∑

V ∈V fV ∗η
∨
low. Since ηlow is a bump function onBn(0, (Kδ)−1),

we see that η∨low is an L1-normalized bump function essentially supported in Bn(0,Kδ).
Let χ(x) be a positive function = 1 on Bn(0,Kδ) and decays rapidly outside
Bn(0,Kδ). We have

|η∨low| .
1

|Bn(0,Kδ)|
χ.

Therefore,

(12) |flow(x)| .
∑

V ∈V

∑

T∈TV

ψT ∗
1

|Bn(0,Kδ)|
χ(x) .

∑

V ∈V

∑

T∈TV

K−mχTK
(x).

Here, each TK is a (n, n−m,Kδ)-plank which is the K-thickening of the δ×· · ·× δ
‘side’ of T , and χTK

is a bump function = 1 on TK and decays rapidly outside TK .
We just ignore the rapidly decaying tail and think of each χTK

as a indicator of
TK . For a fixed V ∈ V , we note that {T : T ∈ TV } are orthogonal to V . Therefore,
if we let PKδ be an (n, n−m, 100Kδ)-plank orthogonal to V and contains x, then
by Remark 2, ∑

T∈TV

χTK
(x) . #{T ∈ TV : T ⊂ PKδ} . Ks,

where the last inequality is by the s-dimensional condition of TV . Plugging this
back into (12), we obtain

|flow(x)| . Ks−m#V .

Noting that s < m, we may choose K ∼ (log δ−1)O(1) large enough so that (11)
holds.

Now, we have

δn−a−2t /

ˆ

|fhigh|
2 =

ˆ

∣∣∣∣∣
∑

V ∈V

f̂V ηhigh

∣∣∣∣∣

2

We use the following lemma to estimate the overlap of {supp(f̂V ηhigh)}V ∈V , or
more precisely {SV \Bn(0, (Kδ)−1)}V ∈V .

Lemma 3. {SV \Bn(0, (Kδ)−1)}V ∈V is . KO(1)δ− dim(G(n−1,m−1))-overlapping.

Proof. Let ξ0 = (0, . . . , 0, (Kδ)−1). We just need to show that the number of planks
SV that pass through 0 and ξ0 is . KO(1)δ− dim(G(n−1,m−1)). Since we allowKO(1)-
loss, we may assume K = 100 (it will be clear from our proof that such assumption
is allowable).

Consider the G̃ = {W ∈ G(n,m) : 0, ξ0 ∈ W} which is a submanifold of G(n,m).

Note that each W ∈ G̃ is orthogonal to the (n − 1)-plane Π = {ξ = (ξ1, . . . , ξn) :

ξn = 1
100δ

−1} and contains ξ0 ∈ Π. We can project eachW ∈ G̃ to Π, which gives an
(m−1)-dimensional planeW ′ pass through ξ0. Conversely, given any (m−1)-plane
W ′ in Π that contains ξ0, the inverse image of W ′ under the projection is an m-

plane in G̃. Actually, this map gives rise to a homeomorphism G̃ ≃ G(n−1,m−1).

The only thing we need is dim G̃ = dim(G(n− 1,m− 1)).
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Let us come back to the slabs. If SV contains 0, ξ0, then the central m-plane

of SV corresponds to a point in N100δG̃(⊂ G(n,m)). Therefore, since {SV } are
essentially distinct for all V ∈ V , we see that the number of SV that pass through

0 and ξ0 is . |N100δG̃(⊂ G(n,m))|δ . δ− dim(G(n−1,m−1)). �

We are now able to find an upper bound to the high part of the integral. We
have

δn−a−2t /

ˆ

|fhigh|
2 =

ˆ

|f̂high|
2 /s δ

− dim(G(n−1,m−1))
∑

V ∈V

ˆ

|ηhighf̂V |
2

by Lemma 3. Since |ηhigh| . 1 and the planks in TV (for a fixed V ) are essentially
disjoint, we have

ˆ

|ηhighf̂V |
2 .

∑

V ∈V

ˆ

|fV |
2 .

∑

V ∈V

∑

T∈TV

ˆ

|ψT |
2 ≤ (#V)(#TV )δ

m . δ−t−s+m

Combining everything and noting that dim(G(n− 1,m− 1)) = (m− 1)(n−m), we
have that

δ−t .s,ε δ
−m(n−m)−s+a−ε.

�

3. Kaufman-type estimate

In this section of the paper, we prove Proposition 2. We first state a discretized
version.

Theorem 4. Fix an integer m ∈ [1, n], 0 < s < m, t > m(n − m − 1) and
0 < u ≤ t − m(n − m − 1). For sufficiently small ε > 0 (depending on s, t,
and u), the following holds. Let δ > 0. Let H ⊂ Bn(0, 1) be a (δ, u)-set with
#H & (log δ−1)−2δ−u (we use #H to denote the number of δ-balls in H). Let V be
a δ-separated subset of G(n,m) such that V is a (δ, t)-set and #V & (log δ−1)−2δ−t

for some t > 0. Assume for each V ∈ V, we have a collection of (n, n−m, δ)-planks
TV orthogonal to V . TV satisfies the s-dimensional condition:

(1) #TV . δ−s,
(2) #{T ∈ TV : T ⊂ Pr} . (r/δ)s, for any Pr being a (n, n − m, r)-plank

(δ ≤ r ≤ 1).

We also assume that each δ-ball contained in H intersects & (log δ−1)−2#V many
planks from ∪V ∈VTV . Then

δ−u .ε δ
−s−ε.

We first prove Proposition 2 assuming Theorem 4. This will follow from the
same scheme as we did for the proof of Proposition 1 assuming Theorem 3.

3.1. δ-discretization.

Proof of Proposition 2 assuming Theorem 4. Suppose A ⊂ Rn is a Borel set. We
may assume A ⊂ Bn(0, 1). Define the exceptional set

Es(A) := {V ∈ G(n,m) : dim(πV (A)) < s}.

Using the same argument as in the previous section, choose a, t such that Ha
∞(A) >

0,Ht
∞(Es) > 0. We only need to prove

t ≤ m(n−m− 1) + s,



10 PAIGE DOTE AND SHENGWEN GAN

since then we can send a→ dim(A) and t→ dim(Es(A)). As a and t are fixed, we
may assume Ha

∞(A),Ht
∞(Es(A)) ∼ 1 are constants.

Fix a V ∈ Es(A). By definition, we have dim(πV (A)) < s. We also fix a small
number ǫ◦ which we will later send to 0. By Lemma 2, we can find a covering
of πV (A) by disks DV = {D}, each of which has radius 2−j for some integer
j > | log2 ǫ◦|. We define DV,j := {D ∈ DV : r(D) = 2−j}. Lemma 2 yields the
following properties:

(13)
∑

D∈DV

r(D)s < 1,

and for each j and r-ball Br ⊂ V , we have

(14) #{D ∈ DV,j : D ⊂ Br} .
( r

2−j

)s
.

For each V ∈ Es(A), we can find such a DV . We also define the plank sets
TV,j := {π−1

V (D) : D ∈ DV,j} ∩ Bn(0, 1), TV =
⋃

j TV,j . Each plank in TV,j has
dimensions

2−j × 2−j × · · · × 2−j

︸ ︷︷ ︸
m times

× 1× 1× · · · × 1︸ ︷︷ ︸
n−m times

such that the 1×· · ·×1 ‘side’ is orthogonal to V . One easily sees that A ⊂
⋃

T∈TV
T .

By pigeonholing, there exists j(V ) such that

(15) Ha
∞(A ∩ (∪T∈TV,j(V )

T )) ≥
1

10j(V )2
Ha

∞(A).

For each j > | log2 ǫ◦|, define Es,j(A) := {V ∈ Es(A) : j(V ) = j}. Then we obtain
a partition of Es(A):

Es(A) =
⊔

j

Es,j(A).

By pigeonholing again, there exists j such that

(16) Ht
∞(Es,j(A)) ≥

1

10j2
Ht

∞(Es(A)) ∼
1

10j2
.

In the rest of the proof, we fix this j. We also set δ = 2−j . By Lemma 1, there
exists a (δ, t)-set V ⊂ Es,j(A) with cardinality #V & (log δ−1)−2δ−t.

Next, we consider the set S := {(x, V ) ∈ A× V : x ∈ ∪T∈TV,j
T }. We also use µ

to denote the counting measure on V . Define the sections of S:

Sx = {V : (x, V ) ∈ S}, SV := {x : (x, V ) ∈ S}.

By (15) and Fubini, we have

(17) (Ha
∞ × µ)(S) ≥

1

10j2
Ha

∞(A)µ(V).

This implies

(18) (Ha
∞ × µ)

({
(x, V ) ∈ S : µ(Sx) ≥

1

20j2
µ(V)

})
≥

1

20j2
Ha

∞(A)µ(V).

By (18), we have

(19) Ha
∞

({
x ∈ A : µ(Sx) ≥

1

20j2
µ(V)

})
≥

1

20j2
Ha

∞(A) ∼
1

20j2
.
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We are ready to apply Theorem 4. Recall δ = 2−j and #V & (log δ−1)−2δ−t.
We may assume t > m(n−m− 1), otherwise we are done. Set

u = min{t−m(n−m− 1), a} − ε.

By (19), we can find a (δ, u)-subset of {x ∈ A : #Sx ≥ 1
20j2#V} with cardinality

& (log δ−1)−2δ−u. We denote this set by H . For each x ∈ H , we see that there are
& (log δ−1)−2#V many planks from ∪V ∈VTV,j that intersect x. We can now apply
Theorem 4 to obtain

δ−u . δ−s−ε.

Noting that s < a and letting ǫ◦ → 0 (and hence δ → 0) and then ε→ 0, we obtain
t ≤ m(n−m− 1) + s. �

3.2. Discretized Kaufman-type estimate.

Proof of Theorem 4. Set T :=
⋃

V ∈V TV . For each x ∈ H , let Tx be the planks in T

that intersect x. By assumption, we have #Tx & | log δ|−4δ−t. Also, Tx inherits the
t-dimensional condition from V . To see this, note that each T ∈ Tx is a (n, n−m, δ)-
plank passing through x and is orthogonal to some V ∈ V . Such T corresponds to
some VT ∈ Gx(n, n−m). Here, Gx(n, n−m) is the set of (n −m)-planes passing
through x. We may regard Gx(n, n−m) as the Grassmannian G(n, n−m). Since
V is a (δ, t)-set, we see that {VT : T ∈ Tx} is a (δ, t)-set in G(n, n−m).

The theorem will be proved by comparing the upper and lower bound of #T.
We easily see the upper bound

(20) #T . #Vδ−s . δ−t−s.

For the lower bound, we first choose a δ| log δ|O(1)-separated subset H ′ ⊂ H with
#H ′ & | log δ|−O(1)δ−u. we have

#T = #

( ⋃

x∈H′

Tx

)
≥ #


 ⋃

x∈H′


Tx \

⋃

y∈H′\{x}

Ty




(21)

=
∑

x∈H′

#


Tx \

⋃

y∈H′\{x}

Ty


(22)

=
∑

x∈H′

(
#Tx −

∑

y∈H′\{x}

#(Tx ∩ Ty)

)
.(23)

We show that

#Tx −
∑

y∈H′\{x}

#(Tx ∩ Ty) ≥
1

2
#Tx.

For fixed x, and y ∈ H ′ \ {x}, we want to find an upper bound for #(Tx ∩ Ty).
First, we consider the set of (n−m)-planes that pass through x and y:

Gx,y(n, n−m) := {V ∈ Gx(n, n−m) : y ∈ V }.

By the discussion in the proof of Lemma 3, We have

Gx,y(n, n−m) ≃ Gx(n− 1, n−m− 1)(⊂ Gx(n, n−m)).

Since Tx ∩ Ty consists of δ-planks passing through x, y, we see that

{VT : T ∈ Tx ∩ Ty} ⊂ N δ
|x−y|

(
Gx(n− 1, n−m− 1)

)
(⊂ G(n, n−m)).
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Noting that dim(Gx(n−1, n−m−1)) = m(n−m−1), we can cover N δ
|x−y|

(
Gx(n−

1, n−m− 1)
)
by ∼

(
δ

|x−y|

)−m(n−m−1)

many δ
|x−y| -balls in B δ

|x−y|
⊂ Gx(n, n−m).

By the (δ, t) property of Tx, we have

#{VT ∈ B δ
|x−y|

: T ∈ Tx} . |x− y|−t.

Therefore,

#(Tx ∩ Ty) .

(
δ

|x− y|

)−m(n−m−1)

|x− y|−t.

So, we have

∑

y∈H′\{x}

#(Tx ∩ Ty) .
∑

y∈H′\{x}

(
δ

|x− y|

)−m(n−m−1)

|x− y|−t

=
∑

δ| log δ|O(1)≤d≤1

∑

y∈H′,|x−y|∼d

(
δ

d

)−m(n−m−1)

d−t.

Here the summation over d is over dyadic numbers. Since #(H ′ ∩ Bd(x)) . (dδ )
u,

the expression above is bounded by

.
∑

δ| log δ|O(1)≤d≤1

(
d

δ

)u(
d

δ

)m(n−m−1)

d−t

= δ−t
∑

δ| log δ|O(1)≤d≤1

(
d

δ

)u+m(n−m−1)−t

. δ−t| log δ|O(1)(u+m(n−m−1)−t).

Since u+m(n−m− 1)− t < 0, by choosing the constant O(1) big enough, we have

∑

y∈H′\{x}

#(Tx ∩ Ty) ≤ C−1| log δ|−4δ−t ≤
1

2
#Tx.

As a result, we have

#T ≥ | log δ|−O(1)δ−u−t.

Compared with the upper bound of #T in (20), we finish the proof. �

4. Falconer-type estimates for radial projections

In this section of the paper, we prove Theorem 1.
We introduce some notations. Fix 0 ≤ σ, δ > 0. For a bounded set E ⊂ Rn,

define

Hδ,∞(E) := inf




∑

j

r(Dj)
s : E ⊂ ∪jDj



 ,

where the infimum runs over the coverings of E by a lattice of dyadic cubes {Dj}
with length ≥ δ, and r(D) denotes the length of the cube. We state three useful
lemmas about Hs

δ,∞. Recall that Dδ denotes the lattice of δ-cubes in [0, 1]m.
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Lemma 4. Suppose X ⊂ [0, 1]m. Then there exist dyadic cubes

C =

log2 δ−1⊔

k=0

C2−k

(with C2−k ⊂ D2−k) that cover X and

(1)
∑

D∈C r(D)s = Hs
δ,∞(X),

(2) C2−k satisfies the s-dimensional condition: For l < k and any D ∈ D2−l , we
have #{D′ ∈ C2−k : D′ ⊂ D} ≤ 2(k−l)s. In particular, Hs

2−k,∞(∪D∈C
2−k

D) =

#C2−k2−ks.

Proof. This lemma looks like Lemma 2, but it is much easier since we only care
about the scales≥ δ. We just choose C to be the covering that attain the “inf” in the
definition of Hs

δ,∞(X). It is not hard to check the two properties are satisfied. �

The next lemma is [2] Proposition A.1. Though it is stated for Hs
∞ there, the

proof also works for Hs
δ,∞.

Lemma 5. Suppose X ⊂ [0, 1]m, with Hs
δ,∞(X) = κ > 0. Then there exists a

(δ, s)-subset of X with cardinality & κδ−s.

We also have the following lemma saying that the lemma above can be reversed.

Lemma 6. Suppose X ⊂ [0, 1]m is a (δ, s)-set with #X ≥ κδ−s. Then, Hs
δ,∞(X) &

κ. In particular, by Lemma 5, this implies that for any δ ≤ ∆ ≤ 1, X contains a
subset X ′ which is a (∆, s)-set and satisfies #X ′ & κ∆−s; and also implies that for
any u ≤ s, X contains a subset X ′ which is a (∆, u)-set and satisfies #X ′ & κ∆−u.

Proof. Assuming our (δ, s)-set X satisfies #X ≥ κδ−s, we are going to show
Hs

δ,∞(X) & κ. Let C be the covering of X that attains “inf” in the definition

of Hs
δ,∞(X). Also let C∆ ⊂ C be the set of ∆-cubes. We write X =

⊔
∆X∆, where

X∆ is the points in X covered C∆. By the definition of (δ, s)-set, each ∆-cube
contains . (∆δ )

s many points from X∆. We have #C∆ & ( δ
∆ )s#X∆. We see that

Hs
δ,∞(X) =

∑

∆≥δ

∆s#C∆ & δs#X = κ.

�

Remark 4. From now on, when X is a (δ, s)-set, we will treat the two conditions
#X ≥ δ−s+ε, Hs

δ,∞(X) ≥ δε as the same.

We recall Theorem 1 here.

Theorem 5. Let A ⊂ Rn be a Borel set such that α = dimA ∈ (k, k+1] for some
k ∈ {1, . . . , n− 1}. Fix 0 < s < k and let

Es(A) := {y ∈ R
n \A | dim(πy(A)) < s}.

Then,

dim(Es(A)) ≤ max{k + s− α, 0}.

We will actually prove the following δ-discretized version which is a generalization
of [12] Proposition 4.2.
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Theorem 6. Let 0 < σ < k, a ∈ (k, k + 1] for some k ∈ {1, . . . , n − 1} and
t > max{k + σ − a, 0}. Let η > 0 be any small number. Then for ε and δ small
enough depending on η, σ, a, and t, we have the following result.

Let E,F ⊂ Bn(0, 1) be a (δ, t)-set and a (δ, a)-set respectively, with Ht
δ,∞(E) &

δε, Ha
δ,∞(F ) & δε, and dist(E,F ) ≥ 1/2. Then, there exists y ∈ E such that for all

F ′ ⊂ F with #F ′ ≥ δǫ#F , we have

Hσ
δ,∞(πy(F

′)) > δη.

We first show that Theorem 6 implies Theorem 5.

Proof that Theorem 6 implies Theorem 5. By a standard reduction, we can find
subsets A1, A2 ⊂ A with dist(A1, A2) > c > 0, and dim(A1) = dim(A2) =
dim(A) = α. We only need to show for any ball Bc/2 of radius c/2, Es(A) ∩ Bc/2

has dimension ≤ max{k+s−a, 0}. We may assume dist(Bc/2, A1) > c/2. We show
that set

E := Es(A1) ∩Bc/2 = {y ∈ Bc/2 : dim(πy(A1)) < s}

has dimension ≤ max{k+ s− dim(A1), 0}. We may assume A1, E
′ ⊂ Bn(0, 1) and

dist(A1, E
′) ≥ 1/2.

We choose t < dim(E′), a < dim(A1). Then Ht
∞(E′),Ha

∞(A1) > 0. We only
need to prove t ≤ max{k + s − a, 0}, since then we can send a → dim(A1), t →
dim(E′). For the sake of contradiction, assume that t > max{k + s− a, 0}. Thus,
we can find σ > s so that t > max{k + σ − a, 0}. Set η = σ − s > 0.

Now we fix a, t, so we may assume Ht
∞(E′),Ha

∞(A1) ∼ 1 are constants. For any
y ∈ E′, we have dim(πy(A1)) < s. Since 0 = Hs

∞(πy(A1)) = limδ→0 Hs
δ,∞(πy(A1)),

we find a subset of E′ such that we have Ht
∞(E′) ∼ 1 and for small enough δ:

Hs
δ,∞(πx(A1)) ≤ 1 for all y ∈ E′.

Using Lemma 2 to πy(A1), we obtain a set of dyadic caps C =
⊔

j Cy,j in Sn−1

that cover πy(A1). Here each Cy,j is a set of 2−j-caps that satisfy the s-dimensional
condition as dim(πy(A)) < s. Also, the radius of these caps is less than ε◦ which is
any given small number.

By the s-dimensional condition of Cy,j, we have

Hs
2−j ,∞


 ⋃

C∈Cy,j

C


 = #Cy,j2

−js.

Therefore, we have

(24) Hσ
2−j ,∞


 ⋃

C∈Cy,j

C


 ≤ #Cy,j2

−jσ = 2−jηHs
2−j ,∞


 ⋃

C∈Cy,j

C


 ≤ 2−jη.

For each cap C ∈ C, consider π−1
y (C) ∩ {x ∈ Rn : 1 − 1

100 ≤ |x − y| ≤ 1} which
is a tube. We obtain a collection of finitely overlapping tubes

Ty =
⊔

j

Ty,j

that cover A1 (see Figure 2). Here, each tube has its coreline passing through y
and at distance ∼ 1 from y. The tubes in Ty,j have dimensions 2−j × · · ·× 2−j × 1.
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•

• •

• •

•

E′

A1

y

Figure 2. Ty,j in the radial projection

For any y ∈ E′, there exists a j(y) ≥ | log2 ε◦| such that

(25) Ha
∞


A1 ∩

⋃

T∈Ty,j(y)

T


 ≥

1

10j(y)2
Ha

∞(A1).

We have a partition E′ =
⊔

j E
′
j where E′

j = {y ∈ E′ : j(y) = j}. We choose j such

that Ht
∞(E′

j) &
1
j2 . We let δ = 2−j . Note that δ ≤ ǫ0 by assumption. By Lemma

1, there exists a subset E′′ ⊂ E′
j which is a (δ, t)-set and #E & | log δ|−2δ−t. We

use µ to denote the counting measure on E′′.
Next, we consider the set S = {(y, x) ∈ E′′ × A1 : x ∈

⋃
T∈Ty,j

T }. We also

denote the y-section and x-section of S by Sy and Sx. By (25), we have Ha
∞(Sy) ≥

1
10j(y)2H

a
∞(A1), so we have

(26) (Ha
∞ × µ)(S) ≥

1

10j2
Ha

∞(A1)µ(E
′′).

This implies

(27) (Ha
∞ × µ)

({
(y, x) ∈ S : µ(Sx) ≥

1

20j2
µ(E′′)

})
≥

1

20j2
Ha

∞(A1)µ(E
′′).

Therefore, we have

(28) Ha
∞

({
x ∈ A1 : µ(Sx) ≥

1

20j2
µ(E′′)

})
≥

1

20j2
Ha

∞(A1) ∼ | log δ|−2.

By Lemma 1, we can find a subset F of
{
x ∈ A1 : µ(Sx) ≥

1
20j2 µ(E)

}
, so that F

is a (δ, a)-set and #F & | log δ|−2δ−a.
Hence,

(29)

| log δ|−2#F#E . #



(y, x) ∈ E × F : x ∈

⋃

T∈Ty,j

T



 =

∑

y∈E

#



x ∈ F : x ∈

⋃

T∈Ty,j

T



 .
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By pigeonholing, there exists a subset E ⊂ E′′ with E & | log δ|−2#E′′ & δε/2δ−t,
so that for any y ∈ E:

#{x ∈ F : x ∈
⋃

T∈Ty,j

T } & δε#F.

We set Fy := {x ∈ F : x ∈
⋃

T∈Ty,j
T }.

Now we use Theorem 6 to derive a contradiction. Since E is a (δ, t)-set with
#E & δε/2δ−t, by Lemma 6,Ht

δ,∞(E) & δε. Similar reasoning showsHa
δ,∞(F ) & δε.

Theorem 6 yields the existence of an y ∈ E such that Hσ
δ,∞(πy(Fy)) > δη. This

contradicts (24). �

Before proving Theorem 6, we prove two propositions. Then we show Theorem
6 is a result of them. The first proposition is a quantitative version of Marstrand’s
projection theorem. The second proposition is a special case of Theorem 6 when
k = n− 1.

Proposition 3. Set dn,m = m(n−m) = dim(G(n,m)). Let 0 < a < m. Let η > 0
be any small number. Then for ε and δ small enough depending on η, a, we have
the following result.

Let F ⊂ Bn(0, 1) be a δ-separated set, where Ha
δ,∞(F ) & δε. Let G ⊂ G(n,m)

be a δ-separated set, where H
dn,m

δ,∞ (G) & δε. Then, there exists V ∈ G(n,m) such

that for all F ′ ⊂ F with #F ′ ≥ δǫ#F , we have

Ha
δ,∞(πV (F

′)) > δη.

Here, πV is the orthogonal projection onto V .

Proof. The main idea of the proof has appeared in the previous section when we
proved a Falconer-type estimate.

Suppose the result is not true. By contradiction, for any V ∈ G, there exists
FV ⊂ F with #FV ≥ δε#F and

Ha
δ,∞(πV (FV )) ≤ δη.

By the standard argument as in the previous proof, we can find a covering of FV :

FV ⊂
⊔

δ≤∆≤η

TV,∆.

Here, each TV,∆ consists of planks of dimensions ∆×∆× · · · ×∆︸ ︷︷ ︸
m times

× 1× 1× · · · × 1︸ ︷︷ ︸
n−m times

that are orthogonal to V . Also, TV,∆ satisfies the a-dimensional spacing condition.
Therefore,

(30) #TV,∆ ≤ ∆−aHa
δ,∞(πV (FV )) ≤ δη∆−a.

By the standard pigeonhole argument, we can find a scale ∆, a (∆, dn,m)-subset
G′ ⊂ G with #G′ & | log δ|−2∆−dn,m and a (∆, a)-subset F ′ ⊂ F with #F ′ &
| log δ|−2∆−a, so that

(1) for each V ∈ G′, #

(
F ∩

⋃
T∈TV,∆

T

)
& δ2ε#F ,

(2) and each x ∈ F ′ is contained in & δ2ε#G planks from
⋃

V ∈G′ TV,∆.
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Define f =
∑

V ∈G′

∑
T∈TV,∆

ψT where ψT is a smooth bump function at T . We

have

δO(ε)∆n#F ′(#G′)2 .

ˆ

N∆(F )

|f |2 .

ˆ

|fhigh|
2.

The last step is by a high-low argument and a < m. Noting (30), we have the
following estimate for the high part

ˆ

|fhigh|
2 . ∆−dn−1,m−1∆m#

( ⋃

V ∈G′

TV,∆

)
. δη∆−dn−1,m−1+m−a#G′.

Combining the estimates yields δO(ε) . δη, which is a contradiction if ε is much
smaller depending on η. �

Proposition 4. Let 0 < σ < n− 1, a ∈ (n− 1, n] and t > max{n− 1 + σ − a, 0}.
Let η > 0 be any small number. Then for ε and δ small enough depending on s, t,
and η, we have the following result.

Let E,F ⊂ Bn(0, 1) satisfy Ht
δ,∞(E) & δε, Ha

δ,∞(F ) & δε, and dist(E,F ) ≥ 1/4.

Then, there exists y ∈ E such that for all F ′ ⊂ F with Ha
δ,∞(F ′) ≥ δ2ǫ, we have

Hσ
δ,∞(πy(F

′)) > δη.

Proof. By Lemma 6, we can assumeE is a (δ, t)-set with # & δ−t+ε and F is a (δ, a)-
set with # & δ−a+ε by passing to a subset. Since n−1+σ−a < σ, it suffices to prove
the proposition for t < σ. Assume for the sake of contradiction that for all y ∈ E
there exists Fy ⊂ F with #Fy ≥ δε#F such that Hσ

δ,∞(πy(Fy)) ≤ δη. Then we do
similar reduction to Proposition 4 using pigeonholing, and it can be reduced to the
following lemma. Since we have done this kind of reduction many times, we omit it.
To prove Proposition 4, it suffices to prove the following lemma. We will see that the
result of the following lemma contradicts the condition t > max{n−1+σ−a, 0}. �

Lemma 7. Let 0 < t < σ < n− 1, a ∈ (n− 1, n]. Let 0 < δ ≤ ∆ ≤ η, ε > 0, where
δ, ε are small enough depending on η, t, σ, a. Let E,F ⊂ Bn(0, 1) be non-empty
∆-separated sets where

(1) E is a (∆, t)-set with cardinality #E & ∆−tδε,
(2) F is a (∆, a)-set with cardinality #F & ∆−aδε, and
(3) dist(E,F ) ≥ 1

2 .

For all y ∈ E, we assume there exists a collection of ∆-tubes Ty, such that

(1) each T ∈ Ty is of form π−1
y (C)∩ {x ∈ R

n : 1− 1
100 ≤ |x− y| ≤ 1} for some

∆-cap C ⊂ Sn−1,
(2) Ty is a (∆, σ)-set of tubes with cardinality #Ty . δη∆−σ,
(3) and for all x ∈ F , #{y ∈ E : ∃T ∈ Ty such that x ∈ T } & ∆−tδε.

Then,

δO(ε)∆−t . δ
σ−t
σ

η∆−(n−1)−σ+a,

which implies that t ≤ n− 1 + σ − a (if ε is very small depending on η, t, σ).

Proof. Fix a y ∈ E. For any T ∈ Ty, choose a bump function ψT such that ψT ≥ 1

on T , ψT decays rapidly outside of T , and supp ψ̂T is contained in the dual tube
of T which is a ∆−1 × · · · ×∆−1 × 1-slab. Define

fy =
∑

T∈Ty

ψT and f =
∑

y∈E′

fy.
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Then, for x ∈ N∆(F ), f(x) & #{y ∈ E : ∃T ∈ Ty such that x ∈ T } & ∆−tδε by
assumption. Therefore,

(31) δO(ε)∆−2t−a+n . δO(ε)(#E)2(#F )∆n .

ˆ

N∆(F )

|f |2.

We will also use the same high-low argument as we did in the proof of Theorem
3. Let ηlow(ξ) be a smooth bump function on Bn(0, (Kδ)−1) and ηhigh = 1− ηlow.

We will choose K ∼ δ−O(ε). Define flow = η∨low ∗ f and fhigh = η∨high ∗ f .
For x ∈ N∆(F ), we have

∆−tδε . f(x) ≤ |flow(x)| + |fhigh(x)|.

By the same argument as in the proof of Theorem 3, we have

|flow(x)| . Kσ−(n−1)#E << ∆−tδε,

if K ∼ δ−O(ε) is properly chosen. Therefore, we have |f(x)| . |fhigh(x)| on N∆(F ).
We have

ˆ

N∆(F )

|f |2 .

ˆ

|fhigh|
2.

Here is where things become a little more different than the proof of Proposition
1. For each T ∈

⋃
y∈E Ty =: T, define

nT := #{y ∈ E | T ∈ Ty}.

By looking at the overlaps of high parts of ψT in the frequency space and noting
Lemma 3, we get that

ˆ

|fhigh|
2 =

ˆ

∣∣∣∣∣
∑

T∈T

nT · ψT,high

∣∣∣∣∣

2

. δ−O(ε)∆−dn−1,n−2

∑

T∈T

n2
T

ˆ

|ψT |
2 . δ−O(ε)∆

∑

T∈T

n2
T .

We now find an upper bound to
∑

T∈T
n2
T .

∑

T∈T

n2
T =

∑

T∈T

#{y, y′ ∈ E | T ∈ Ty ∩ Ty′} =
∑

y∈E

∑

y′∈E

#{T ∈ T | T ∈ Ty ∩ Ty′}

Given that each Ty is a (∆, σ)-set, the above expression is bounded by

.
∑

y∈E

∑

y′∈E\{y}

|y − y′|−σ +
∑

y∈E

#Ty.

The second term is bounded by

∑

y∈E

#Ty . δη∆−t−σ.
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For the first term, we have

.
∑

y∈E

log2 ∆−1∑

k=0

∑

|y−y′|≤2−k

min{|y − y′|−σ, δη∆−σ}

.
∑

y∈E

log2 ∆−1∑

k=0

#{y′ ∈ E ∩Bn(y, 2−k)}min{2kσ, δη∆−σ}

. ∆−t

log2 ∆−1∑

k=0

(∆−12−k)t min{2kσ, δη∆−σ}

= ∆−t

log2 ∆−1∑

k=0

∆−t min{2k(σ−t), δη∆−σ2−kt}.

When 2k(σ−t) = δη∆−σ2−kt or equivalently 2kσ = δη∆−σ, the value of “min”

dominates. The expression above is therefore bounded by δ
σ−t
σ

η∆−t−σ.
Combining all the estimates, we have

∑

T∈T

n2
T . (δ

σ−t
σ

η + δη)∆−t−σ.

Plugging into (31), we have

δO(ε)∆−t . δ
σ−t
σ

η∆−(n−1)−σ+a.

�

We now prove Theorem 6.

Proof of Theorem 6. We will show that the result hold for ε ≤ ε0(η, σ, a, t), δ ≤
δ0(η, σ, a, t), where ε0(η, σ, a, t), δ0(η, σ, a, t) depend on Proposition 3 and 4.

We will apply Proposition 4 with n = k + 1. For our purpose, we determine the
parameters of Proposition 4 in advance. For fixed η, we first choose small number
ε′ so that Proposition 4 holds for ε = ε′.

Let G̃ be an open subset of G(n, k + 1) such that any V ∈ G̃ satisfies

dist(πV (E), πV (F )) ≥
1

4
.

We choose G to be a δ-separated subset of G̃ with H
dn,m

δ,∞ (G) & 1. By Proposition

3, if δ, ε are small enough depending on ε′, a, there exists a subset G1 ⊂ G with

H
dn,m

δ,∞ (G1) & H
dn,m

δ,∞ (G)−O(δε
′

), so that for any V ∈ G1 we have

(32) Ha
δ,∞(πV (F

′)) > δε
′

, for any F ′ ⊂ F with #F ′ ≥ δε#F.

Similarly, there exists a subset G2 ⊂ G with H
dn,m

δ,∞ (G2) & H
dn,m

δ,∞ (G) − O(δε
′

),
so that for any V ∈ G2 we have

(33) Ha
δ,∞(πV (E)) > δε

′

.

Noting that G1 ∩G2 6= ∅, we can find V ∈ G1 ∩G2 so that (32) and (33) hold for
this V .

Let F,E be sets in Theorem 6, so πV (F ), πV (E) are sets in V = Rk+1. Note

that Ht
δ,∞(πV (E)) & δε

′

, Ha
δ,∞(πV (F )) & δε

′

, and dist(πV (E), πV (F )) ≥ 1
2 . We
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can apply Proposition 4 to (πV (F ), πV (E)) to find a ỹ ∈ πV (E) such that: for all

F̃ ⊂ πV (F ) with Ha
δ,∞(F̃ ) ≥ δ2ε

′

, we have

(34) Hσ
δ,∞

(
πỹ(F̃ )

)
> δη.

We use this property to finish the proof. We choose y ∈ E so that πV (y) = ỹ.
We show that this y satisfies the requirement in Theorem 6. For any F ′ ⊂ F
with #F ′ ≥ δε#F , by (32) we have Ha

δ,∞(πV (F
′)) ≥ δ2ε

′

. We obtain (34) with

F̃ = πV (F
′):

Hσ
δ,∞

(
πỹ
(
πV (F

′)
))

> δη.

Note that

Hσ
δ,∞

(
πy(F

′)
)
≥ Hσ

δ,∞

(
πỹ
(
πV (F

′)
))
,

as any covering of πy(F
′) naturally gives rise to a covering of πỹ

(
πV (F

′)
)
. There-

fore, we have

Hσ
δ,∞

(
πy(F

′)
)
> δη.

�

5. Liu’s conjecture on radial projections

In this section, we prove Liu’s conjecture (Theorem 2). The idea is the same as
in [12], but we still provide some details to clarify the numerology since we are in
higher dimensions.

Theorem 7. Given a Borel set E ⊂ Rn, with dimE ∈ (k − 1, k] for some k ∈
{1, . . . , n− 1}, then

dim{y ∈ R
n \ E | dim(πx(E)) < dimE} ≤ k.

It suffices to prove

Proposition 5. Given a Borel set E ⊂ Rn, with dimE ∈ (k − 1, k] for some
k ∈ {1, . . . , n− 1}, and τ0 > 0 being a small number, then we have

dim{x ∈ R
n \ E | dim(πx(E)) ≤ dimE − τ0} ≤ k.

The proof is by contradiction to assume the set

(35) F = {x ∈ R
n \ E | dim(πx(E)) ≤ dimE − τ0}

satisfies t = dimF > k.We will derive a contradiction through the following propo-
sition and a standard reduction (see also [12] Proposition 4.8). Since we have done
similar reductions many times, we omit it. So, it suffices to prove

Proposition 6. Let k ∈ {1, · · · , n − 1}. Let 0 < s < k, t > k and τ0 > 0. For
ε, δ small enough depending on s, t, τ0, the following holds. Let E,F ⊂ Bn(0, 1)
be (δ, s)-set and (δ, t)-set, with #E & δ−s+ε, #F & δ−t+ε, and dist(E,F ) ≥ 1/2.
Then there exists x ∈ F such that

(36) |πx(E
′)|δ ≥ δ−s+τ0 , for all E′ ⊂ E,#E′ ≥ δε#E.

Remark 5. (36) roughly says there exists x ∈ F such that dim(πx(E)) > dimE−
τ0, contradicts the definition of F (35). Throughout the proof, we will use x to
denote points in F and y to denote points in E.
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We will discuss more about the proof in Appendix. Before that, we give an
intuitive proof for Proposition 5. We will use Theorem 5.

An intuitive proof of Proposition 5. We just need to prove for dimE < k. We set
s = dimE. By contradiction, we assume t = dimF > k (F is given by (35)). Also,
by passing to a subset of F , we may assume t ∈ (k, k + 1). Now we let this F be
the set A in Theorem 5. Since s < k, we have that the s-exceptional

Es(F ) = {y ∈ R
n \ F : dim(πy(F )) < s}

has dimension ≤ k + s − t < s = dimE. Subtracting this small exceptional part
from E, we may pass to a subset of E (still denoted by E) with the same dimension
s and satisfying

dim(πy(F )) ≥ s,

for any y ∈ E.
By δ-discretization, we may assume F is a t-dimensional set of points and E is an

s-dimensional set of points. (Here, when we say F is a t-dimensional set, it means
that F is a (δ, t)-set and #F & δ−t). For each x ∈ F and y ∈ E, we connect them
by a δ-tube. Let T be the set of δ-tubes produced in this way. We also identify
comparable tubes. Roughly speaking, we define

T := {T : T connects some x ∈ F, y ∈ E}.

We also define Tx := {T ∈ T : x ∈ T } for x ∈ F , and Ty := {T ∈ T : y ∈ T }
for y ∈ E. By definition, we have dim(πx(E)) ≤ s − τ0 for x ∈ F . This condition
morally says that Tx is an (s−τ0)-dimensional set. Since the tubes in Tx are finitely
overlapping, we have

δ−s ≤ #E .
∑

T∈Tx

#(T ∩E).

Since #Tx ≤ δ−s+τ0 , we may morally assume #(Tx ∩E) & δ−τ0/2 for any Tx ∈ Tx.
Morally, we may further assume for any T ∈ T, we have #(T ∩ E) & δ−τ0/2. The
condition dim(πy(F )) ≥ s morally says that Ty is at least an s-dimensional set.

We consider the incidence between E and T. We will derive a contradiction by
comparing the upper and lower bounds of I(E,T). First, we have

I(E,T) =
∑

T∈T

#(T ∩E) & #Tδ−τ0/2.

For the upper bound of the incidence, we have

I(E,T) =
∑

T∈T

#(T ∩ E) ≤ (#T)1/2

(∑

T∈T

#(T ∩E)2

)1/2

= (#T)1/2


 ∑

y,y′∈E

#{T ∈ T : y, y′ ∈ T }




1/2

= (#T)1/2


∑

y∈E

∑

y′∈E

#{T ∈ T
y : y′ ∈ T }




1/2

.
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By the s-dimensional condition for Ty, we have

#{T ∈ T
y : y′ ∈ T } .

(
δ

|y − y′|

)s

#T
y.

Therefore, we have

I(E,T) = (#T)1/2


∑

y∈E

∑

y′∈E\{y}

#{T ∈ T
y : y′ ∈ T }+

∑

y∈E

#T
y




1/2

. (#T)1/2


∑

y∈E

∑

y′∈E\{y}

(
δ

|y − y′|

)s

#T
y + I(E,T)




1/2

.

Using that E is an s-dimensional set, we have
∑

y′∈E\{y}

(
δ

|y − y′|
)s / 1,

so we have

I(E,T) / (#T)1/2I(E,T)1/2.

This means I(E,T) / #T, which contradicts the lower bound of I(E,T).
�

Appendix A. Proof of Proposition 6

We provide more details for the proof of Proposition 6. We remark that the
proof has the same idea as in [12]. We include here just for completeness.

We introduce some notations. Given set E,F and set of δ-tubes T, we define

I(E,F,T) := #{(y, x, T ) ∈ E × F × T : y, x ∈ T }.

For y ∈ E, we define

T
y := {T ∈ T : y ∈ T }.

For x ∈ F , we define
Tx := {T ∈ T : x ∈ T }.

One easily sees that

I(E,F,T) =
∑

y∈E

#

(
F ∩

⋃

T∈Ty

T

)
=
∑

x∈F

#

(
E ∩

⋃

T∈Tx

T

)
.

In [12], Orponen and Shmerkin derive their Corollary 4.5 from Proposition 4.2.
By the same argument, we can derive the following corollary from Theorem 6. We
omit the proof.

Corollary 1. Let 0 ≤ σ ≤ s ≤ k, t ∈ (k, k + 1], η > 0 very small, and s >
max{k + σ − t, 0}. Then, for sufficiently small ε, δ depending on s, σ, t, η, the
following holds.

Let E,F ⊂ Bn(0, 1) be (δ, s)-set and (δ, s)-set, with #E & δ−s+ε and #F &
δ−t+ε. Then, there exists a subset E′ ⊂ E with #E′ ≥ (1 − δε)#E, and for
every point y ∈ E′, there exist disjoint (possibly empty) families of δ-tubes Ty =
T
y
1 ⊔ · · · ⊔ T

y
L (where L = 3 log(1/δ)), with the following properties:

(1) The tubes in T
y pass through y.
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(2) Each T
y
j can be writen as T

y
j = ⊔iT

y
j,i, where each T

y
j,i is a (δ, σ)-set with

cardinality & δ−σ+η.
(3) #(T ∩ F ) ∼ 2j, for T ∈ T

y
j .

(4) T
y
j is either empty, or #(F ∩

⋃
T∈T

y
j
T ) ≥ δ2ε#F in which case #T

y
j ≥

δ2ε2−j#F .
(5) #(F ∩

⋃
T∈Ty T ) ≥ (1− δε)#F .

Let us return to the proof of Proposition 6. Since

s > max{k + s− t, 0},

we apply Corollary 1 with σ := s. We find a set E′ ⊂ E with #E′ ≥ (1− δ4ε)#E,
and for all y ∈ E′ the tubes Ty = T

y
1 ⊔ · · · ⊔ T

y
L (L = 3 log(1/δ)) satisfying the

properties in Corollary 1.
Set T

′
j = ∪y∈E′T

y
j , T = ∪jT

′
j = ∪y∈E′T

y . Note that a T ∈ T may belong to

both T
y and T

y′

for different y, y′. By (5), we have

(37) I(E′, F,T) =
∑

y∈E′

#

(
F ∩

⋃

T∈Ty

T

)
≥ (1− δ4ε)#E′#F.

Now, we make a counter assumption: (36) fails for all x ∈ F . Thus for every
x ∈ F , there exists a subset E′

x ⊂ E such that #E′
x ≥ δε#E, and

(38) |πx(E
′
x)|δ < δ−s+τ0 .

Since #E′ ≥ (1− δ4ε)#E, we have #(E′
x ∩E

′) & δε#E. We may assume E′
x ⊂ E′

by replacing E′
x with E′

x ∩ E′. For each x ∈ F , we choose δ-tubes Tx passing
through x so that Tx cover E′

x and

(39) #Tx < δ−s+τ0 .

We immediately have

(40) I(E′, F,∪xTx) =
∑

x∈F

#(E′ ∩ Tx) ≥ δε#E′#F.

The inequalities (37) and (40) together imply

(41) I

(
E′, F,T ∩

⋃

x

Tx

)
≥ (δε − δ4ε)#E′#F.

By pigeonholing, there exists a j such that

(42) I

(
E′, F,T′

j ∩
⋃

x

Tx

)
& δ4ε#E′#F.

We set Tj := T′
j ∩
⋃

x Tx.
Next, we introduce the high-tubes:

T
high
j := {T ∈ Tj : #(E′ ∩ T ) ≥ δ−τ0/2}.

Also define Tlow
j = Tj \ T

high
j . We want to show that

(43) I(E′, F,Thigh
j ) & δε#E′#F.
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To show this, note

(44) I(E′, F,Tlow
j ) =

∑

x∈F

#


E′ ∩

⋃

T∈(Tlow
j )x

T


 .

∑

x∈F

∑

T∈(Tlow
j )x

#(E′ ∩ T ).

Note that #(E′ ∩ T ) ≤ δ−τ0/2 for T ∈ Tlow
j , (Tlow

j )x ⊂ Tx and (39). Therefore

I(E′, F,Tlow
j ) . #Fδ−s+τ0/2 . δε#E′#F,

if ε is small enough depending on τ0. Combined with (42) yields (43).
Next, we show that there exists E′′ ⊂ E′ with #E′′ & δε#E′, such that for

y ∈ E′′:

#(Thigh
j )y ≥ δ4ε#T

y
j .

Note that

δε#E′#F . I(E′, F,Thigh
j ) =

∑

y∈E′

I(F, (Thigh
j )y).

By pigeonholing, we can choose E′′ ⊂ E′ with #E′′ ≥ δε#E′ and I(F, (Thigh
j )y) ≥

δε#F . Since (Thigh
j )y ⊂ T

y
j and each T ∈ T

y
j satisfies #(F ∩ T ) ∼ 2j, we have

I(F, (Thigh
j )y) ∼ 2j#(Thigh

j )y which implies #(Thigh
j )y & δε2−j#F & δε#T

y
j .

Noting that Ty
j = ⊔iT

y
j,i where each T

y
j,i is a (δ, s)-set with cardinality & δ−s+η,

by the same trick as in (21), we have

#T
high
j ≥ #


 ⋃

y∈E′′

(Thigh
j )y


 & δO(η+ε)

∑

y∈E′′

#(Thigh
j )y & δO(η+ε)

∑

y∈E′′

#T
y
j .

Combined with (4),

(45) #T
high
j & δO(η+ε)δ−s2−j#F.

Finally, we estimate I(E′,Thigh
j ). We easily have the lower bound

(46) I(E′,Thigh
j ) & #T

high
j δ−τ0/2.

We have the upper bound

I(E′,Thigh
j ) ≤ (#T

high
j )1/2




∑

T∈T
high
j

(#E′ ∩ T )2




1/2

≤ (#T
high
j )1/2


 ∑

y 6=y′∈E′

#{T ∈ T
y
j : y′ ∈ T }+ I(E′,Thigh

j )




1/2

.

By (2), #{T ∈ T
y
j : y′ ∈ T } . δ−O(η)(δ/|y − y′|)s#T

y
j . We see that

∑

y 6=y′∈E′

#{T ∈ T
y
j : y′ ∈ T } . δ−O(η)

∑

y 6=y′∈E′

(
δ

|y − y′|

)s

#T
y
j . δ−O(η+ε)δ−s2−j#F.

Plugging to the inequality above, we obtain

I(E′,Thigh
j ) . δ−O(η+ε)

(
(#T

high
j )1/2(δ−s2−j#F )1/2 +#T

high
j

)
.
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Comparing with (46), we obtain

#T
high
j . δ−O(η+ε)+τ0/2δ−s2−j#F,

which contradicts (45), since η, ε can be chosen much smaller than τ0.
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