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Abstract. An unpublished result by Mirković states that convolution-exact sheaves on the
flag variety of a simple linear algebraic group G over Fp are tilting, that is, they admit both
standard and costandard filtrations. The analogous statement for convolution-exact sheaves
on the affine flag variety is false, but Arkhipov and Bezrukavnikov noted that it is still not
known whether the projections of such sheaves to a different category, which they called
the Iwahori–Whittaker category, are tilting. We make partial progress toward this question
by considering reductions to the combinatorics of the extended affine Weyl group of G. In
particular, we demonstrate an obstruction to a direct generalization of Mirković’s original
proof, even in the G = SL2 case. We also investigate Wakimoto filtrations, as introduced
by Arkhipov and Bezrukavnikov, and their variants.
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1. Introduction

Let G be a simple linear algebraic group over the field k = Fp. Fix a Borel subgroup B
of G, and let the ind-variety F` be the corresponding affine flag variety, as in [1]. Let l 6= p
be a prime, let D := Db(F`) be the bounded derived category of constructible l-adic sheaves
on F` (see for instance [2, 4]), let DI := Db

I(F`) be the Iwahori-equivariant bounded derived
category, and let P ⊆ D and PI ⊆ DI be the (full) subcategories of perverse sheaves. Let
∗ denote the convolution operation, which gives the category DI a monoidal structure, and
also gives a right action of DI on D.

Let Ǧ be the Langlands dual group of G over the field Ql, with category of representations
Rep(Ǧ). Much work has been done in describing various categories of l-adic sheaves over
the affine Grassmannian and affine flag variety of G in terms of the group Ǧ. For instance,
the geometric Satake isomorphism gives an equivalence of (Tannakian) categories between
a certain category of equivariant l-adic perverse sheaves over the affine Grassmannian of G
and Rep(Ǧ) [7]. Further work has been done in describing categories of l-adic sheaves on F`
in terms of Ǧ [1, 3].

Let Wf be the (finite) Weyl group associated to G, let Λ be the coweight lattice of G, and
let W = Wf oΛ be the extended affine Weyl group. Let ` : W → Z≥0 be the length function
on W (which extends the length function on the (non-extended) affine Weyl group), and let
fW ⊆ W be the set of minimal-length representatives of right cosets of Wf in W . Recall
that the Schubert cells on F` are parameterized by W . For w ∈ W , let jw : F`w ↪→ F` denote
the embedding of the Schubert cell corresponding to w. Furthermore, let jw! := jw!(Ql[`(w)])

and jw∗ := jw∗(Ql[`(w)]) be the standard and costandard objects of PI , respectively.
An object F ∈ PI is said to be convolution-exact if F ∗ X ∈ PI for all X ∈ PI . As

mentioned in [1, Remark 7], we have the following unpublished result by Mirković:

Theorem 1.1 (Mirković). A convolution-exact sheaf on the finite-dimensional flag vari-
ety G/B is tilting, i.e., it has a filtration with standard subquotients and a filtration with
costandard subquotients.

Here, the standard and costandard objects over G/B are defined analogously to those over
F`. But in [1, Remark 7], it is also mentioned that it is false in general that convolution-exact
objects of PI are tilting, with certain “central sheaves” serving as counterexamples. However,
Arkhipov and Bezrukavnikov later note that the validity of the following weaker statement,
which involves another abelian category PIW they refer to as the Iwahori–Whittaker category,
and an exact “projection” functor AvΨ : PI → PIW, is unknown:

Question 1.2 ([1, Remark 11]). If F ∈ PI is convolution-exact, then AvΨ(F) is a tilting
object of the Iwahori–Whittaker category.

Note that AvΨ(F) ∈ PIW is tilting if F ∈ PI is. Extending the argument for Theorem 1.1
given in [1, Remark 7] allows us to prove the following special case of Question 1.2. First,
we set some more notation: following [1], for any F ∈ DI , we define

W ∗
F := {w ∈ W | j∗w(F) 6= 0} and W !

F := {w ∈ W | j!
w(F) 6= 0}.

Moreover, for any subset S ⊆ W , we define the “downward closure”

S := {w ∈ W | w ≤ s for some s ∈ S under the (strong) Bruhat order}.
Finally, for w1, w2 ∈ W , we say that w1 is a prefix of w2 if `(w1) + `(w−1

1 w2) = `(w2).
Prefixes in W admit a visual interpretation in terms of “shortest paths” on alcoves, in much
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the same way as prefixes in the (non-extended) affine Weyl group; this is discussed further
in Section 2.1.

Theorem 1.3. Suppose F ∈ PI is convolution-exact. If there exists an element w1 ∈ W
that has each element of (W ∗

F)−1 as a prefix, then F has a costandard filtration. Similarly,

if there exists w2 ∈ W that has each element of (W !
F)−1 as a prefix, then F has a standard

filtration. In particular, if both such w1, w2 ∈ W exist, then both F ∈ PI and AvΨ(F) ∈ PIW

are tilting.

In the above result, (W ∗
F)−1 denotes the set {w−1 | w ∈ W ∗

F}, and similarly for (W !
F)−1.

For instance, if all elements of W ∗
F and W !

F had length 0, then the result would apply.
But unfortunately, as we will see, for most finite sets S ⊆ W (let alone sets S of the form

T
−1

) there do not exist a w ∈ W having each element of S as a prefix, including many sets

S = (W ∗
F)−1, (W !

F)−1 that arise naturally from convolution-exact sheaves over F`. Moreover,
as discussed in Remark 2, even if we only want to show AvΨ(F) (not F itself) is tilting, we
may at best only very slightly weaken the hypotheses of Theorem 1.3.

Explicitly, using computations in W , we are able to describe one natural condition on S
which forces the existence of some w ∈ W having each element of S as a prefix:

Proposition 1.4. Let S ⊆ W be a finite set such that S ⊆ wf · fW for some wf ∈ Wf .
Then there exists w ∈ wf · fW that has each element of S as a prefix.

However, as alluded to above, it is rare that a set of the form T
−1

satisfies the condition
laid out in Proposition 1.4.

In another direction, we may use the so-called Wakimoto sheaves and their variants to
prove various similarly combinatorially-flavored results; these ideas are outlined in Section 4.

The rest of the paper is organized as follows. Definitions, notation, and useful preliminary
results are given in Section 2. We generalize the proof of Theorem 1.1 in Section 3, proving
Theorem 1.3 and Proposition 1.4; we also discuss the obstructions to generalizing this result
further. Then we consider Wakimoto filtrations in Section 4. We discuss possible directions
for future research in Section 5.

Finally, as in [1], we remark that everything in this paper remains true if the underlying
field k = Fp is replaced by k = C, the field of coefficients Ql is replaced by C, and the category
of l-adic constructible sheaves is replaced by the category of D-modules (as discussed for
instance in [5]).

2. Preliminaries

2.1. Root systems and alcoves. Let Φ ⊆ V be the root system of G, where V is a real
vector space with inner product 〈·, ·〉 that is spanned by Φ; note Φ is irreducible because G
is simple. Our choice of Borel subgroup B induces a system of positive roots Φ+, with cor-
responding negative roots Φ−. Let Λ+ ⊆ Λ be the corresponding set of dominant coweights.

Recall that W = WfoΛ acts on V on the left, where Λ acts by translations. We will often
denote this action by (w, v) 7→ w · v. For clarity, for λ ∈ Λ we write t(λ) ∈ W to denote the
corresponding element of W . We also let e denote the identity of W (note e = t(0)).

Let W0 denote the non-extended affine Weyl group of W . We now recall basic facts about
W0 and W and their actions on the alcoves of Φ. First, W0 is a normal subgroup of W , and
acts freely and transitively on the set of alcoves of Φ. This action extends to a transitive
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action of W on the set of alcoves. Let A0 be the fundamental alcove, and let Ω ⊆ W be
the stabilizer of A0. Then W = W0 o Ω. Moreover, for any w ∈ W , the length `(w) equals
the number of alcove boundaries separating A0 and w · A0 (thus Ω is the set of elements
of W with length 0). Furthermore, given w1, w2 ∈ W , we know that w1 is a prefix of w2 if
and only if there exists a shortest path from the alcove A0 to the alcove w2 · A0 that passes
through w1 · A0.

2.2. Convolutions and W . Under certain circumstances, convolutions involving jw! and
jw∗ for w ∈ W can be related to multiplication in the group W . First, the unit object δe of
the monoidal category DI (under convolution) is given by je! = je∗.

Lemma 2.1 ([1, Lemma 8]).

(1) For w1, w2 ∈ W such that `(w1w2) = `(w1)+`(w2), there are canonical isomorphisms
jw1∗ ∗ jw2∗ = jw1w2∗ and jw1! ∗ jw2! = jw1w2!.

(2) For w ∈ W , there are canonical isomorphisms

jw∗ ∗ jw−1! = jw−1! ∗ jw∗ = δe.

Convolution is not commutative in general; following [1, §3.6.3], we say a sheaf F ∈ PI is
central if there exist canonical isomorphisms F ∗X = X ∗ F for all X ∈ PI .

A careful analysis of the proof of [1, Lemma 15] yields the following result. The sets
W ∗

F ,W
!
F ⊆ W are defined in Section 1.

Lemma 2.2 (cf. [1, Lemma 15]). Let F ∈ DI . Then W ∗
F and W !

F are finite, and for all
w ∈ W ,

W !
F∗jw∗ ⊆ W !

F · w and W ∗
F∗jw!

⊆ W ∗
F · w.

Remark 1. The W !
F and W ∗

F arise in the statement of Lemma 2.2 because the closure of F`w
includes all F`v for v ≤ w in the strong Bruhat order. In general, we cannot replace W !

F

with W !
F, nor W ∗

F with W ∗
F . For example, if s ∈ W is a simple reflection and F = js!, then

W ∗
F = {s} but W ∗

F∗js! = W ∗
js!∗js! = {e, s}. Note W ∗

F = {e, s} in this case.

We now define more notation taken from [1]: for a triangulated category C (such as DI)
and a set S of objects of C, we let 〈S〉 denote the smallest subset of C containing S∪{0} and
closed under taking extensions (where C is an extension of A and B if there is a distinguished
triangle A → C → B → A[1]). We will occasionally refer to objects in 〈S〉 as lying in the
span of S. This allows us to state the following result, which is a less general version of [1,
Claim 1]. This result lets us describe certain (shifted) standard and costandard filtrations
of F in terms of W ∗

F and W !
F. First, let (D≤0, D≥0) denote the perverse t-structure on the

derived category D, so that P = D≤0 ∩D≥0.

Lemma 2.3 (cf. [1, Claim 1]).

(1) If F ∈ D≤0, then F ∈ 〈jw![d] | d ≥ 0, w ∈ W ∗
F〉. Similarly, if F ∈ D≥0, then

F ∈ 〈jw∗[d] | d ≤ 0, w ∈ W !
F〉.

(2) If F ∈ D≥0 and F ∈ 〈jw∗[d] | d ≥ 0, w ∈ W 〉, then F ∈ P and F ∈ 〈jw∗, w ∈ W !
F〉.

Similarly, if F ∈ D≤0 and F ∈ 〈jw![d] | d ≤ 0, w ∈ W 〉, then F ∈ P and F ∈ 〈jw!, w ∈
W ∗

F〉.
A related result is given by the following lemma.

Lemma 2.4 ([1, Proof of Sublemma 2]). For all w1, w2 ∈ W ,

jw1∗ ∗ jw2∗ ∈ 〈jw∗[d] | d ≥ 0, w ∈ W 〉 and jw1! ∗ jw2! ∈ 〈jw![d] | d ≤ 0, w ∈ W 〉.
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2.3. The Iwahori–Whittaker category. We now discuss the Iwahori–Whittaker category
PIW mentioned in Section 1, which is abelian and can be thought of as a geometric counterpart
of the realization of the anti-spherical module Masp in terms of the Whittaker model. The full
subcategories DIW ⊆ D and PIW ⊆ P are defined in full in [1, §1.6], but for our purposes, we
will only need that the standard and costandard objects of PIW are given by sheaves ∆w and
∇w for w ∈ fW , respectively, along with the following results. The functor AvΨ : DI → DIW,
defined via F 7→ ∆e ∗ F, restricts to an exact functor PI → PIW. Moreover:

Lemma 2.5 ([1, Lemma 4]).

(1) ∆e = ∇e.
(2) For w = wfw

′, where wf ∈ Wf and w′ ∈ fW ,

AvΨ(jw!) = ∆w′ and AvΨ(jw∗) = ∇w′ .

We also note that as mentioned in [1, §2.0.2], the objects of PI are given by

〈jw![d] | w ∈ W,d ≥ 0〉 ∩ 〈jw∗[d] | w ∈ W,d ≤ 0〉,

and the objects of PIW are given by

〈∆w[d] | w ∈ fW,d ≥ 0〉 ∩ 〈∇w[d] | w ∈ fW,d ≤ 0〉.

2.4. A proof of Theorem 1.1. We now quickly reproduce the proof of Mirković’s result,
Theorem 1.1, that is given in [1, Remark 7].

Proof of Theorem 1.1. Recall that the standard and costandard perverse sheaves over the
finite-dimensional flag variety G/B are defined analogously to those over F`; we also denote
them by jw! and jw∗, respectively, but these are only given for w in the finite Weyl group Wf .
Let w0 denote the longest element of Wf . Now suppose F ∈ PI is convolution-exact: then
F ∗ jw0! is perverse, so it lies in 〈jw![d] | w ∈ Wf , d ≥ 0〉. By standard facts about perverse
sheaves, this implies that F ∗ jw0! ∗ jw0∗ = F lies in 〈jw! ∗ jw0∗[d] | w ∈ Wf , d ≥ 0〉, where
jw! ∗ jw0∗ = jww0∗[d] for all w ∈ Wf (because `(w0) = `(w−1) + `(ww0)). It follows that a
costandard filtration exists. The proof that a standard filtration exists is similar. �

Note that the above argument hinges on the existence of the longest element w0 in Wf ;
the lack of a “longest element” in W is what makes extending this argument to the infinite-
dimensional setting difficult.

2.5. The central sheaves Zλ. Finally, we introduce certain convolution-exact sheaves over
the affine flag variety F` that are not tilting. Let λ ∈ Λ+ be a dominant weight of the
Langlands dual Ǧ. In [1, §3.2], Arkhipov and Bezrukavnikov construct a representation
Vλ ∈ Rep(Ǧ) with highest weight λ, to which they apply the geometric Satake isomorphism
and a functor constructed by Gaitsgory [4] to obtain a central sheaf Zλ ∈ PI such that W ∗

Zλ

and W !
Zλ

both contain the weights of Vλ that occur with nonzero multiplicity (i.e., if µ ∈ Λ is

a weight of Vλ with nonzero multiplicity, then t(µ) ∈ W ∗
Zλ
,W !

Zλ
). For λ 6= 0, the sheaves Zλ

are convolution-exact but not tilting [1, Remark 7], though the projection AvΨ(Zλ) ∈ PIW

is tilting [1, Remark 10].
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3. Generalizing the proof of Mirković’s result

In this section, we try to generalize the argument for Mirković’s result regarding convolution-
exact sheaves over G/B, as presented in Section 2.4, to convolution-exact sheaves over F`.
Theorem 1.3 is the result of this attempt at a generalization.

Proof of Theorem 1.3. Let F ∈ PI be convolution-exact. Suppose first that there exists
w1 ∈ W that has each element of (W ∗

F)−1 as a prefix. Then by Lemma 2.2, W ∗
F∗jw1!

⊆ W ∗
F ·w1,

so by Lemma 2.3, because F ∗ jw1! is perverse (since F is convolution-exact),

F ∗ jw1! ∈ 〈jvw1![d] | v ∈ W ∗
F , d ≥ 0〉.

It then follows by a standard fact about perverse sheaves that

F = F ∗ jw1! ∗ jw−1
1 ∗
∈ 〈jvw1! ∗ jw−1

1 ∗
[d] | v ∈ W ∗

F , d ≥ 0〉.

Fix v ∈ W ∗
F and d ≥ 0. We know v−1 is a prefix of w1, so `(w−1

1 ) = `(w−1
1 v−1) + `(v), and

we can write by Lemma 2.1

jvw1! ∗ jw−1
1 ∗

[d] = jvw1! ∗ jw−1
1 v−1∗ ∗ jv∗[d] = jv∗[d].

Thus F ∈ 〈jv∗[d] | v ∈ W,d ≥ 0〉, which is enough to imply that F has a filtration with
costandard subquotients, say by Lemma 2.3.

The proof of the second statement is similar; one writes F = F ∗ jw2∗ ∗ jw−1
2 !. �

Remark 2. As mentioned in Section 1, even if we only want to show AvΨ(F) is tilting,
by applying more facts about AvΨ we may at best only slightly weaken the hypotheses of
Theorem 1.3; and by considering the alcoves, one easily sees that the resulting statement is
really not much of an improvement on the sets W ∗

F ,W
!
F we can handle. Explicitly, take the

proof of the first statement: a priori, given any w1 ∈ W , it seems most general to use the full
powers of Lemmas 2.4 and 2.5 to try to write each convolution jvw1! ∗ jw−1

1 ∗
[d] in the form

jwf ! ∗ ju1∗ ∗ ju2∗[d] for wf ∈ Wf and u1, u2 ∈ W , so that because ∆e ∗ − is a triangulated
functor, AvΨ(F) = ∆e ∗ F would lie in the span of sheaves of the form

∆e ∗ jwf ! ∗ ju1∗ ∗ ju2∗[d] = ∆e ∗ ju1∗ ∗ ju2∗[d]

∈ 〈∆e ∗ jw∗[d] | d ≥ 0, w ∈ W 〉
= 〈∇w[d] | d ≥ 0, w ∈ fW 〉,

which would imply AvΨ(F) has a costandard filtration. The most reasonable way to accom-
plish this is to try to write vw1 = wfx, where wf ∈ Wf and `(vw1) = `(wf ) + `(x), and
w−1

1 = yz, where `(w−1
1 ) = `(y) + `(z) and x−1 is a prefix of y; this would allow us to write

jvw1! ∗ jw−1
1 ∗[d] = jwf ! ∗ jx! ∗ jy∗ ∗ jz∗[d] = jwf ! ∗ jxy∗ ∗ jz∗[d].

However, if such wf , x, y, z exist, then x−1 is a prefix of w−1
1 , and we can assume without loss

of generality that y = w−1
1 and z = e (or alternatively that y = x−1 and z = xw−1

1 ). After
rearranging, we find that it is equivalent to require the existence of some wf ∈ Wf such that
v−1wf is a prefix of w1 and `(vw1) = `(wf ) + `(w−1

f vw1). But even if we ignore the length
condition, we will see that most finite sets S do not satisfy the resulting desired property:
there exists w ∈ W such that for all v ∈ S, there exists wv ∈ Wf for which v−1wv is a prefix
of w. Moreover, this property is only slightly more general than the original property: in the
alcove picture (as described in Section 2.1), multiplying v−1 on the right by various elements
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of Wf can only yield other alcoves close to the alcove of v−1, and all these alcoves are the
prefixes of similar w ∈ S. (However, if v−1wf were replaced by wfv

−1, and we ignored the
length condition, then we would be done by Proposition 1.4.)

But to be able to apply Theorem 1.3 to any particular F, we need to first give a more
explicit condition under which w1 ∈ W or w2 ∈ W exists. To do this, we work in terms of W
itself, proving Proposition 1.4, which gives a natural broad class of finite subsets S ⊆ W for
which there exists a w ∈ W having each element as a prefix. First, we prove a preliminary
computational result.

Lemma 3.1. Let λ ∈ Λ, and let Φ+
≥0 := {α ∈ Φ+ | 〈λ, α〉 ≥ 0} and Φ+

<0 := {α ∈ Φ+ |
〈λ, α〉 < 0}. Then P := Φ+

≥0 ∪ (−Φ+
<0) is a system of positive roots for Φ, so there exists a

unique wf ∈ Wf such that wf · P = Φ+. Moreover, wf t(λ) is the (unique) minimal-length
representative of the right coset Wf t(λ) ⊆ W , and has length∑

α∈Φ+

〈wf · λ, α〉 − `(wf ).

Proof. It is straightforward to check that Φ+
≥0 and −Φ+

<0 are disjoint and that P is a system of

positive roots for Φ. Thus such a wf exists uniquely, and moreover has length `(wf ) = |Φ+
<0|.

Now for any w ∈ Wf , it is standard (see for instance [6, Chapter 2]) that the length
`(wt(λ)) equals the sum∑

α∈Φ+

|〈λ, α〉+ χ(w · α)| =
∑
α∈Φ+

≥0

(〈λ, α〉+ χ(w · a))−
∑
α∈Φ+

<0

(〈λ, α〉+ χ(w · α)),

where χ : Φ→ {0, 1} is the indicator function of Φ−. This can be rewritten as

|(w · Φ+
≥0) ∩ Φ−| − |(w · Φ+

<0) ∩ Φ−|+
∑
α∈P

〈λ, α〉.

For all w ∈ Wf , this quantity is at least as large as −|Φ+
<0|+

∑
α∈P 〈λ, α〉. Equality is achieved

if and only if (w · Φ+
≥0) ⊆ Φ+ and (w · (−Φ+

<0)) ⊆ Φ+, that is, if and only if w · P ⊆ Φ+. It
follows that for w ranging in Wf , the length `(wt(λ)) is uniquely minimized when w = wf ,
and this minimum length equals

−|Φ+
<0|+

∑
α∈w−1

f Φ+

〈λ, α〉 = −`(wf ) +
∑
α∈Φ+

〈wf · λ, α〉,

as claimed. �

We now use Lemma 3.1 to prove Proposition 1.4.

Proof of Proposition 1.4. Note that we may assume without loss of generality that wf = 1.
Write S as {wit(λi)}, where wi ∈ Wf and λi ∈ Λ for all i. There exists some λ ∈ Λ+ such
λ−(wi ·λi) ∈ Λ+ for all i; we claim that setting w := t(λ) suffices. It is clear that t(λ) ∈ fW ,
say from Lemma 3.1. It remains to show that

`(t(λ)) = `(wit(λi)) + `(t(−λi)w−1
i t(λ))
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for all i. Fix i; then using the fact that λ− (wi · λi) ∈ Λ+ and λ ∈ Λ+, we compute

`(t(−λi)w−1
i t(λ)) = `(w−1

i t((−wi · λi) + λ))

= `(w−1
i ) + `(t(λ− (wi · λi)))

= `(wi) +
∑
α∈Φ+

〈λ− (wi · λi), α〉

= `(wi) + `(t(λ))−
∑
α∈Φ+

〈wi · λi, α〉.

The result then follows from the fact that wit(λi) ∈ fW and Lemma 3.1. �

Combining Theorem 1.3 with Proposition 1.4 allows us to affirmatively answer Ques-
tion 1.2 for some very elementary convolution-exact sheaves F, for instance, those such that
W !

F,W
∗
F ⊆ Ω, as mentioned in Section 1. But the scope of these results does not include

many of the more sophisticated sheaves we care about. For instance, suppose F is given
by the central sheaf Zλ for some λ ∈ Λ+. Then, as described in Section 2.5, the set W ∗

Zλ
contains the weights of Vλ; in particular, W ∗

Zλ
contains the Wf -orbit of λ. It is then easy to

see that in most cases, there is no element of W that contains each element of (W ∗
Zλ

)−1 as a
prefix (visually, one may consider the alcoves corresponding to elements of the Wf -orbit of
λ). Note that such examples arise even in the G = SL2 case; writing V = R, Φ = {2,−2},
and Λ+ = Z≥0, we notice that the argument fails for F = Zλ for λ ≥ 1.

4. Wakimoto filtrations

First we define the Wakimoto sheaves Jw ∈ DI for w ∈ W , following [1]. To define these,
we first set Jt(λ) := jt(λ)∗ for λ ∈ Λ+ and Jt(λ) = jt(λ)! for λ ∈ −Λ+ and Jwf = jwf∗ for
wf ∈ Wf ; it can then be shown that these definitions may be (uniquely) extended to all
w ∈ W in such a way that Jt(λ)w = Jt(λ) ∗ Jw for all λ ∈ Λ and w ∈ W . Moreover, we have
the following.

Lemma 4.1 ([1, Theorem 5a and Proposition 5a]). The sheaves Jw ∈ DI lie in the subcate-
gory PI . Moreover, any convolution-exact object F ∈ PI has a filtration with subquotients of
the form Jw.

In fact, the proof of Lemma 4.1 still holds if one makes small modifications to the definition
of Jw, for instance, if we instead require Jwt(λ) = Jw∗Jt(λ), or if we set Jt(λ) := jt(λ)! for λ ∈ Λ+

and Jt(λ) := jt(λ)∗ for λ ∈ −Λ+, or if we set Jwf = jwf !, or in general any combination of
these changes.

For example, suppose we require Jwt(λ) = Jw ∗Jt(λ) (and for ease of notation, we replace Jw
with J̃w). Then given a convolution-exact F, we immediately see (using results in Section 2)

that if F has a filtration with subquotients of the form J̃w where w ∈ wfΛ+, then ∆e ∗F has
a costandard filtration. We may find other similar results by applying different variants on
the definitions, but it seems difficult in general to rework these results into statements that
do not explicitly resort to the existence of a specific type of Wakimoto-like filtration.

5. Future work

While a direct attempt at generalizing the proof of Theorem 1.1 did not answer Ques-
tion 1.2, it is conceivable that a different combinatorial reduction may suffice. For example,
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as noted in Remark 2, if the group elements somehow showed up in a different order in the
proof of Theorem 1.3, it is possible that one would be able to write down a result with a
much farther reach.

Alternatively, from a more sheaf-theoretic point of view, we may consider the so-called
stalks and costalks of the sheaves involved. Explicitly, for w ∈ W , the stalk of a sheaf F at
w may be defined as (a shift of) j∗x(F), where x ∈ F`w and jx : x→ F`, with costalks defined
with j!

x instead of j∗x (cf. [1, §4]). In fact, it is possible to rewrite the proof of Theorem 1.1
given in Section 2.4 in these terms, so it is possible that similar considerations would allow
one to make additional progress on Question 1.2.

Another possible perspective is given by the Radon transform on certain perverse sheaves
over F`, as detailed in [8]; this operation may be thought of as an affine analog of the functor
F 7→ F ∗ jw0! in the case of the (finite-dimensional) flag variety, which was employed in the
proof of Theorem 1.1 given in Section 2.4.
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