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Abstract

The positive mass theorem states that for asymptotically flat spacetimes, the ADM mass,
defined by Arnowitt-Deser-Misner, is nonnegative. This theorem has been given several proofs,
notably by Schoen-Yau, Witten, Geroch, and others. We generalize an argument of Jang which
proves the positivity of the ADM mass of an asymptotically flat spacelike hypersurface (M3, g)
with a single exterior region Mext

∼= R3 \ B1(0). We focus on a quantity asymptotic to the
Hawking quasi-local mass defined on level sets of a p-harmonic function, for 1 < p < 3, and
demonstrate a monoticity formula similar to the Geroch monotonicity formula. For p = 2, we
recover Jang’s argument.

1. Introduction

In this paper we announce a proof of the positive mass theorem and sketch out in large our future
argument. Let (M3, g) be a complete Riemannian 3-manifold. An open submanifold N ⊆M is an
asymptotically flat end of order τ if there exists a diffeomorphism Φ: N → R3 \B1(0) for which the
metric satisfies the decay conditions

|(Φ∗g)ij − δij | = o(r−τ ); |∂k(Φ∗g)ij | = o(r−τ−1); |∂k∂l(Φ∗g)ij | = o(r−τ−2). (1.1)

We say M is asymptotically flat of order τ if there exists a compact set K ⊂M such that M \K =
N1t· · ·tNk is the disjoint union of k asymptotically flat ends of order τ , and R(g) ∈ L1(M), where
R is the scalar curvature of M . For simplicity, we shall consider asymptotically flat manifolds with
a single end Mend. Given such a manifold the ADM mass is defined as

m(M, g) = lim
r→∞

1

16π

∫
Sr

((Φ∗g)ij,j − (Φ∗g)jj,i)ν
i dSr, (1.2)

where Sr is the sphere of radius r in the coordinate system, ν is the normal vector to the sphere
with respect to Φ∗g, and dSr is the volume form induced on the sphere by Φ∗g. Bartnik [Ba]
showed that for a manifold with a single end asymptotically flat of order τ ≥ 1

2 , this quantity
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2 Positivity of the mass using p-harmonic functions on asymptotically flat 3-manifolds

does not depend on the choice of K or diffeomorphism Φ, and thus is a geometric invariant. By
[HI, Lemma 4.1], there exists an exterior region Mext ⊃ Mend diffeomorphic to R3 minus a finite
number of balls with disjoint closure, with ∂Mext minimal. In the physical setting, M is taken
to be spacelike hypersurface of a Lorentzian manifold (N 4, g̃), with timelike normal vector field ξ,
obeying the dominant energy condition µ ≥ |J |, where µ = T (ξ, ξ) is the mass-energy density and
J , which satisfies g̃(J, ξ′) = −T (ξ, ξ′) for arbitrary ξ′, is the momentum density [CP]. Here, T is
the stress-energy tensor, which satisfies the Einstein field equation Ric(g̃) − 1

2R(g̃) = 8πT . In the
case where M is a maximal surface this condition is equivalent to R(g) ≥ 0. The main result is:

Theorem 1.1. Let (M3, g) be a complete, asymptotically flat, manifold with nonnegative scalar
curvature and a single end contained in an exterior region with boundary homeomorphic to a 2-
sphere. Then m(M, g) ≥ 0.

Outline of Proof. We follow the general idea developed in [Ja]. Suppose there exists positive solution
f to the p-Laplace equation on Mext for 1 ≤ p ≤ 3, that is,

∆pf
def
= divg(|∇f |p−2∇f) = 0, (1.3)

satisfying the Dirichlet boundary condition f ≡ t0 on ∂Mext for some t0 > 0 and f = 0 at infinity.
Motivated by the fundamental solution |x|

p−n
p−1 on Rn, we define r = f

p−1
p−3 . We then consider level

sets Σt = r−1({t}) and define for regular values of r

W (t) =
1

16π

∫
Σt

t

[(
RΣt −

1

2
H2

)
+

1

2

(
H − 2|∇r|

t

)2
]

dσt, (1.4)

where RΣt and H are the scalar and mean curvatures of Σt respectively, and dσt is the volume form
on Σt. Note that when Σt

∼= S2, the first term in the integrand is related to the Hawking quasi-local
mass by

mH(Σt) =

√
area(Σt)

16π

(
1− 1

16π

∫
Σt

H2dσt

)
=

√
area(Σt)

area(S2
t )
· 1

16π

∫
Σt

t

(
RΣt −

1

2
H2

)
dσt, (1.5)

where S2
t ⊂ R3 is the sphere of radius t. The second term in (1.4) can be shown to be negligible for

large t. Since we expect the Hawking quasi-local mass for 2-spheres to approach the ADM mass, by
choosing t0 so that area(Σt)/ area(S2

t )→ 1, we can obtain limt→∞W (t) = m(M, g). The argument
proceeds by establishing W (t0) ≥ 0 and the monotonicity of W . On an interval of regular values
W ′(t) is well-defined and is shown to be nonnegative. In general, however, there will be critical
values for which W is ill-defined. To handle this, we would like to consider the modificaton

W̃ (t) =

[
W (t)− t

4
χ(Σt)

]
+
t

2
|Γ(Σt)|, (1.6)

where χ(X) and Γ(X) are, respectively, the Euler characteristic and the set of connected components
of a topological space X, and |S| is the cardinality of a set S. We verify that W̃ (t0) = W (t0) and
that limt→∞ W̃ (t) = limt→∞W (t), as near the horizon and near infinity Σt is homeomorphic to a
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2-sphere. Now suppose that r has only isolated critical values. Then to examine the monotonicity of
W or W̃ , one only needs to study the potential jump discontinuities occuring at each critical value.
Suppose that the potential jump discontinuities ofW only arise due to changes in the topology of Σt

across critical values. Then the first term [W (t)− t
4χ(Σt)], which removes the explicit dependence

of W (t) on the topology of Σt, does not change across critical values. Thus we may calculate

m = W (t0) +

∫ ∞
t0

[
W ′(t) +

(
2|Γ(Σt)|−χ(Σt)

)]
dt+

∑
ti∈Crit(r)

ti

[
lim
t→t+i
|Γ(Σt)| − lim

t→t−i
|Γ(Σt)|

]
. (1.7)

We have that W (t0) ≥ 0, and as W ′(t) is nonnegative and 2|Γ(X)| − χ(X) ≥ 0 for orientable 2-
surfaces, the second term is nonnegative as well. The last term will be 0 by the maximum principle.
Roughly speaking, an additional component can never exist, for it must bound a domain containing
a maximum or minimum point not belonging to the level set, violating the maximum principle.

Our assumptions that the critical values of r are isolated and that the potential jump discon-
tinuities of W only appear in the χ(Σt) term are unfounded, however. At best, we may guarantee
that the set of critical values are contained in some interval [tmin, tmax]. We approximate r on
r−1([tmin, tmax]) to obtain a Morse function rε satisfying some “ε-close” criterion. As a result we
must work with slightly perturbed functions Wε, W̃ε and level sets Σε

t. One now must show that

(a) the term Wε(t)− t
4χ(Σε

t) does not change across critical values of rε,

(b) as ε→ 0, the integral
∫∞
t0
W ′ε(t) dt may be made arbitrarily small, and

(c) as ε → 0, the sum
∑

ti∈Crit(r) ti

[
limt→t+i

|Γ(Σt)| − limt→t−i
|Γ(Σt)|

]
may be made arbitrarily

small.

For (c), we give an argument that relies on a “near”-maximum principle which allows us to pair
positive and negative contributions from different critical points. The details of this argument are
carried out in Section 5.

The paper is structured as follows. In Section 2, we discuss the p-Laplace boundary value
problem and determine existence and regularity. In Section 3, we reintroduce the W function and
determine that its limiting value is equal to the ADM mass; in Section 4, we establish (a) and (b)
for approximations Wε. In Section 5, we demonstrate the pairing argument and prove the positive
mass theorem.
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2. p-Harmonic Functions on the Exterior Region

Let (M3, g) be an asymptotically flat manifold with a single end Mend contained in an exterior
region Mext with minimal boundary. Let Φ0 : Mext → R3 be an embedding of the exterior region
satisfiying the decay conditions (1.1). Assume that we may extend the diffeomorphism Φ0 to a
coordinate system Φ: Mext → R3.

For 1 ≤ p <∞ and δ ∈ R we define the weighted Lebesgue space Lpδ(Mext) ⊂ Lploc(Mext) to be
the subspace of functions for which

‖u‖p,δ
def
=

(∫
Mext

|u|pσ−δp−3 dV

) 1
p

<∞. (2.1)

where σ(x) = (1 + |Φ(x)|2)1/2 is the weight function. Proceeding, we can define weighted Sobolev
spaces W 1, p

δ (Mext) ⊆ Lpδ(Mext) to be the subspace of functions u with weak derivative ∇u for with

‖u‖1, p, δ
def
= ‖u‖p, δ + ‖∇u‖p, δ−1 <∞, (2.2)

where

‖∇u‖p, δ−1
def
=

(∫
Mext

|∇iu|pσ−(δ−1)p−3 dV

) 1
p

. (2.3)

The definitions given are equivalent to those given in [Ba] for n = 3. We define the subspace of trace
zero functions W 1, p

δ,0 (Mext) to be the completion of C∞c (M ◦
ext) under the ‖·‖1, p,δ norm. Without

fullying defining a trace operator, we may meaningfully talk about solutions to a boundary value
problem on W 1, p

δ (Mext). Suppose that ∂Mext 6= ∅. Then for u ∈ W 1, p
δ (Mext), we say that u ≡ 1

on ∂Mext if u− η ∈W 1, p
δ,0 (Mext) for some(any)1 smooth function η ∈ C∞c (Mext) such that η ≡ 1 on

∂Mext.
A function u ∈ W 1, p

δ (Mext) is said to be a weak solution to the p-Laplace equation if for all
smooth ϕ compactly supported in the interior M ◦

ext of the exterior region.∫
Mext

〈∇ϕ, |∇u|p−2∇u〉g dV = 0. (2.4)

The central theorem in this section involves the existence and uniqueness of weak solutions. Shortly
after, we will show our solution satisfies a regularity lemma, and give description of the asymptotic
nature of solutions.

Theorem 2.1. Let 1 < p < 3 and 1 − 3/p < δ < 0. Then there exists a weak solution u ∈
W 1, p
δ (Mext) ∩ C1,α

loc (Mext) of the p-Laplace equation satisfying the boundary conditions u ≡ 1.

The problem of existence and uniqueness of a solution to the p-Laplace equation may be
rephrased in terms of finding a minimizer to the p-Dirichlet energy

Ep[u]
def
=

∫
Mext

|∇u|p dV, (2.5)

1Since compactly supported smooth functions which vanish on ∂Mext are in W 1, p
δ,0 (Mext), “some” may be replaced

with “any.”
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after which we proceed with the direct method in the calculus of variations [?]. Note that |∇u| is
in general only locally integrable, so we consider the energy to be a functional Ep : W 1, p

δ (Mext) →
[0,∞].

Lemma 2.2. Suppose that u ∈W 1, p
δ (Mext) minimizes Ep with Ep[u] <∞, subject to the boundary

condition u ≡ 1 on ∂Mext. Then u is a weak solution to the p-Laplace equation.

Proof. Let ϕ ∈ C∞c (Mext) and supp ⊂ M ◦
ext . Consider the variation us = u + sϕ for s ∈ R. Let

Ep(s) = Ep[us]. Since the variation ϕ has compact support, we may differentiate Ep, which by
minimality has

0 =
d

ds

[∫
Mext

|∇us|p dV

]
s=0

=

∫
Mext

[
p|∇u+ s∇ϕ|p−2 · 〈∇ϕ,∇u+∇sϕ〉

]
s=0

dV.

=

∫
Mext

〈∇ϕ, |∇u|p−2∇u〉dV. (2.6)

Thus u is a weak solution to the p-Laplace equation.

The direct method requires one to produce a minimizing sequence of the p-Dirichlet energy
and extract a subsequence convergent in some topology of W 1, p

δ where Ep is lower semicontinuous,
implying the limit is in fact a minimizer. The relevant topology will be the weak topology on W 1, p

δ ;
therefore it is of interest to determine if such a subsequence can extracted via a weak compactness
argument.

Lemma 2.3 (Hardy’s Inequality). Let 1 < p < 3. Then there exists a constant C(p) such that for
all u ∈ C∞c (Mext), ∫

Mext

|σ−1u|p dV ≤ C ·
∫
Mext

|∇u|p dV. (2.7)

Proof. If we let u ∈ C∞c (Mext), then sinceMext is diffeomorphic to Rn minus a union of finitely many
balls, we can consider u as a function on Rn, minus a finite number of balls. After a rigid motion,
we may assume one of these balls contains the origin. If the number of balls is zero, thenMext

∼= Rn
and we assume u ∈ C∞c (Rn \ {0}). Hardy’s Inequality on Euclidean space then immediately gives
that ∫

Mext

∣∣∣u
r

∣∣∣p dVeuc ≤ p

n− p

∫
Mext

|d |u||2geuc dVeuc. (2.8)

By asymptotic flatness, g and geuc are uniformly equivalent on Mext. Therefore, up to a constant,
the above inequality must hold when dVgeuc is replaced with dVg. In addition, g and geuc are also
uniformly equivalent on Mext, so if we apply Kato’s inequality we see that |d |u||geuc ≤ C |d |u||g ≤
C |∇u|g. We have thus shown that∥∥r−1u

∥∥
Lp(Mext)

≤ C ‖∇u‖Lp(Mext)
(2.9)

The lemma then immediately follows from the fact that r and σ are uniformly equivalent.

Lemma 2.4. Let 1 < p < 3 and δ ≥ 1 − 3/p. Then there exists a constant C(p) such that
‖u‖1, p, δ ≤ C · Ep[u] for all u ∈W 1, p

δ (Mext).
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Proof. Since C∞c (Mext) is dense in W 1, p
δ (Mext) [Ba], it suffices to consider u ∈ C∞c (Mext). We may

write for some c(p) [Ba, Thm. 1.2(i)],

‖u‖1, p, δ = ‖u‖p, δ + ‖∇u‖p, δ−1 ≤ c ·
[
‖u‖p, 1− 3

p
+ ·‖∇u‖p,− 3

p

]
(2.10)

By (2.3), for some C(p) we may write ‖∇u‖p, 1−3/p = ‖σ−1u‖p ≤ C‖∇u‖p, where ‖·‖p is the norm
on Lp(Mext). Furthermore, since ‖·‖p,−3/p = ‖·‖p, we have

‖u‖1, p, δ ≤ C
′ · ‖∇u‖p = C ′ · Ep[u], (2.11)

which proves the claim.

Lemma 2.5. Let 1 < p < 3. Then W 1, p
δ is reflexive; in particular, every bounded sequence has a

weakly convergent subsequence.

Proof. We follow the line of proof given in [Br, Prop. 8.1]. For 1 < p < ∞, the Lebesgue space
Lp(Mext, µδ) = Lpδ(Mext), where µδ(U) =

∫
U σ
−δp−3 dV , is reflexive [Br, Thm. 4.10]. So consider

the map
T : W 1, p

δ (Mext)→ Lpδ(Mext)× Lpδ−1(Mext;R3) (2.12)

which takes u 7→ (u,∇u). From (2.1) it is clear that T is an isometric embedding. SinceW 1, p
δ (Mext)

is complete it follows that im(T ) is complete and thus closed. Furthermore, since the product of re-
flexive spaces is reflexive, and closed subspaces of reflexive spaces are reflexive, it follows that im(T ),
and thus W 1, p

δ (Mext) is reflexive(see [Br, Section 3.5] for an account of the properties of reflexive
spaces). In particular, every bounded sequence in W 1, p

δ has a weakly convergent subsequence [Br,
Thm. 3.18].

Lemma 2.6. Let 1 < p < 3 and δ ∈ R. Then the p-Dirichlet energy functional Ep is weakly
sequentially lower semicontinuous on W 1, p

δ (Mext).

Proof. We follow the proof the Tonelli-Serrin theorem as done in [Ri, Thm. 2.6]. First, we prove
the strong lower semicontinuity of Ep. Consider the following well-known fact.

Fact 2.7. Let an be a sequence of real numbers. Suppose there exists some real a such that for every
subsequence bm = anm of an, there exists a further subsequence bmk such that a ≤ lim infk→∞ bmk .
Then a ≤ lim infn→∞ an.

Now, let un → u be a norm-convergent sequence in W 1, p
δ (Mext), and vm = vnm be an arbitrary sub-

sequence. Since vm → u, it follows from (2.1) that ‖σ−(δ−1)p−3|∇u−∇vm|‖p → 0; therefore there
exists some subsequence vmk for which σ−(δ−1)p−3|∇u−∇umk | → 0 pointwise almost everywhere,
so ∇umk → ∇u pointwise a.e. as well. Thus by Fatou’s lemma,

Ep[u] =

∫
Mext

|∇u|p dV ≤ lim inf
k→∞

∫
Mext

|∇vmk |
p dV = lim inf

k→∞
Ep[vmk ]. (2.13)

Thus by (2.7), using the sequence En = Ep[un], we obtain Ep[u] ≤ lim infn→∞ Ep[un]. Since un was
arbitrary, this shows the strong lower semicontinuity of Ep.
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To show weak sequential lower semicontinuity, we use the fact that a map f : X → R ∪ {+∞}
on a Banach space is (weakly) lower semicontinuous if and only if the epigraph, denoted by epi(f) =
{(x, α) ∈ X × R | f(x) ≥ α} is a (weakly) sequentially closed subset of X×R, and similarly, that f
is convex if and only if epi(f) is convex. [Ri, Section 2.6]. Since Ep is strongly lower semicontinuous,
epi Ep is closed in the norm topology. Furthermore, given λ1, λ2 ∈ [0, 1] such that λ1 + λ2 = 1 and
u1, u2 ∈W 1, p

δ (Mext), we have

Ep[λ1u1 + λ2u2] =

∫
Mext

|λ1∇u1 + λ2∇u2|p dV ≤ λ1

∫
Mext

|∇u1|p dV + λ2

∫
Mext

|∇u2|p dV

= λ1Ep[u1] + λ2Ep[u2], (2.14)

which holds by the convexity of the integrand. Thus epi Ep is convex. In particular, as it is closed
in the norm topology and convex, it is closed in the weak topology [Br, Theorem 3.7]. Thus Ep is
weakly lower semicontinuous.

With these lemmas proven, all the sufficient conditions needed in order to proceed with the
direct method have been established:

Proof of Theorem (2.1). By (2.2), it suffices to show that there exists a minimizer of the energy Ep,
subject to the given boundary condition. Let Ap,δ(Mext) = {v ∈ W 1, p

δ,0 (Mext) | v ≡ 1 on ∂Mext}
be the space of admissible functions, and note that for any smooth η ∈ Ap,δ(Mext) ∩ C∞c (Mext)

we may write Ap,δ(Mext) = η + W 1, p
δ,0 (Mext). In particular, infAp,δ(Mext) Ep ≤ Ep[η] < ∞, since η

has compact support. Now there exists a sequence of admissible functions un ∈ Ap,δ(Mext) such
that Ep[un] ≤ E0 + 1/n, where E0 = infAp,δ(Mext) Ep. By (2.4), ‖un‖1, p, δ ≤ C · Ep[un] for some
constant C(p), implying that un is a bounded sequence. Hence by (2.5), there exists a weakly
convergent subsequence unk ∈ Ap,δ(Mext) with weak limit u ∈ W 1, p

δ (Mext). However, the plane
Ap,δ(Mext) = η+W 1, p

δ,0 (Mext) is clearly convex and is closed in the norm topology, sinceW 1, p
δ,0 (Mext)

is closed. Thus it is closed in the weak topology [Br, Theorem 3.7]; in particular, u ∈ Ap,δ(Mext).
By (2.6), Ep is weakly sequentially lower semicontinuous, implying

E0 ≤ Ep[u] ≤ lim inf
k→∞

Ep[unk ] = E0, (2.15)

so u ∈ Ap,δ(Mext) is a minimzer of Ep satisfying u ≡ 1 on ∂Mext.
Now since the p-Laplace equation ∆pu = 0 takes on the divergence form div~a(x, u, ∂u) = 0,

where a(x, u, ∂u) = |g|−1(gijuiuj)
p−2
2 gk`u` ∂k. We then calculate for ξ ∈ R3

akumξ
jξk = p−2

2 |g|
−1/2(gijuiuj)

p−4
2 (gimui)(g

k`u`)ξ
jξk, (2.16)

|akum | =
p−2

2 |g|
−1/2(gijuiuj)

p−4
2 (gimui)(g

k`u`), (2.17)

|akxm | = ∂m(|g|−1/2)(gijuiuj)
p−2
2 (gk`u`) (2.18)

+ p−2
2 |g|

−1/2(gijuiuj)
p−4
2 [(∂mg

ij)uiuj + 2gijuimuj ](g
k`u`),

and |aku| = 0. By asymptotic flatness, there exists continuous γ0, γ1 : [0,∞)→ [0,∞) such that the
hypotheses of [DB, Thm. 2] are satisfied. It follows that u ∈ C1,α

loc (Mext) [DB].
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Lemma 2.8. Let 1 < p < 3 and u ∈W 1, p
δ (Mext)∩C1,α

loc (Mext) be a weak solution to the p-Laplace
equation satisfying the boundary conditions given in Lemma (2.1). Suppose U ⊂ Mext is an open
subset of M containing no critical points of u. Then u|U ∈ C∞(U).

Proof. Let K ⊆ U be compact. Then since |∇u| is bounded below by a positive constant, the
p-Laplace equation is uniformly elliptic and satisifies the conditions of [LU, Thm. 5.2, 6.3], which
implies it is smooth.

We will use an argument based on the comparison principle for supersolutions and subsolutions
of the p-Laplace equation to handle the asymptotic behavior of a solution u. On Rn, the fundamental
solution of the p-Laplace equation is given by |x|(p−n)/(p−1).

Lemma 2.9. Let 1 < p < 3 and u ∈W 1, p
δ (Mext)∩C1,α

loc (Mext) be a weak solution to the p-Laplace
equation satisfying the boundary conditions given in Lemma (2.1). Then the set of critical points
Crit(u) is contained in a compact set K. In particular, u is smooth on Mext \K.

Lemma 2.10. Let 1 < p < 3 and u ∈W 1, p
δ (Mext)∩C1,α

loc (Mext) be a weak solution to the p-Laplace
equation satisfying the boundary conditions given in Lemma (2.1). Then ∇u 6= 0 on ∂Mext. In
particular, this implies the existence of an open set U ⊃ ∂Mext such that Crit(u) ∩ U = ∅.

Lemma 2.11. Let 1 < p < 3 and u ∈W 1, p
δ (Mext)∩C1,α

loc (Mext) be a weak solution to the p-Laplace
equation satisfying the boundary conditions given in Lemma (2.1) such that u is smooth on the
complement Mext \K of a compact set K. Let r = u(p−1)/(p−3). Then on Mext \K we have

lim
|x|→∞

|∇r| > 0, (2.19)

lim
|x|→∞

∇∇r/|∇r|2 |∇r| = 0. (2.20)

3. Hawking and ADM Masses

In this section we recall known expressions for the mass and introduce a new quantity whose
limiting value is bounded above by the ADM mass. LetMend be the single end of an asymptotically
flat manifold (M3, g) with coordinates Φ: Mend → R3 \B1(0) satisfying (1.1) for τ ≥ 1

2 . Recall that
the ADM mass is defined as

m(M, g) = lim
r→∞

1

16π

∫
Sr

((Φ∗g)ij,j − (Φ∗g)jj,i)ν
i dSr.

Given a 2-surface Σ ⊂Mend one has the Hawking quasi-local mass [Ha],

mH(Σ) =

√
area(Σ)

16π

(
1−

∫
Σ
H2 dσ

)
, (3.1)

which is asymptotic to the ADM mass for coordinate spheres Σr = Sr(0) as r → ∞. We have the
following result, see [Ba, Prop. 4.1]2, which allows more generality in the choice of surface in (??).

2Note that the first condition in [Ba] is redundant and the connectedness assumption may be relaxed.
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Proposition 3.1. Let (M3, g) be an asymptotically flat manifold with a single end Mend and
asymptotically flat coordinates Φ: Mend → R3 \ B1(0) satisfying (1.1) with τ ≥ 1

2 . Let {Dk}∞k=1

be an exhaustion of Mend by compact sets such that Dk is a smooth 3-manifold with boundary
Σk = ∂Dk, and areag(Σk) = O(r2

k) as rk →∞, where rk = infx∈Σk |x|. Then

m(M, g) = lim
k→∞

1

16π

∫
Σk

((Φ∗g)ij,j − (Φ∗g)jj,i)ν
i dσk, (3.2)

where dσk is the volume form induced on Σk by g.

Definition 3.2. Let {Dρ}ρ>ρ0 be an exhaustion of Mend by compact 3-manifolds with smooth
boundary Σρ. We say that {Σρ}ρ>ρ0 approximates S2

ρ (compare with “nearly round” in [MT, Def.
2.1]) if

1. there exists c1, c2 > 0 such that c1ρ ≤ |x| ≤ c2ρ for all x ∈ Σρ,

2. area(Σρ) = area(S2
ρ)(1 +O(ρ−τ )), where S2

ρ = {|x| = ρ}, and

3. supΣρ |X − ρν| = O(ρ1−τ ), where X = xi∂i and ν is the unit normal vector to Σρ.

Note that the third condition is stronger than what the hypotheses taken by [MT, Def. 4.1] imply,
as (3.2) further restricts the “center” of the approximate family to be the origin. We now determine
an asymptotic relation between the Hawking and ADM mass sufficient for our purposes; to do this,
we adapt the method of argument in [MT, Thm. 2.1]. Before doing so, we define a notion of
asymptotic behavior for functions defined on the Mend using the index ρ.

Definition 3.3. Let f : Mend → R and ξ : [ρ0,∞) → R be functions. We say that f = Oρ(ξ) as
ρ → ∞ if there exists a constant C and ρ1 ≥ ρ0 such that f(x) ≤ Cξ(ρ) for all x ∈ Σρ for ρ ≥ ρ1.
Likewise, we say that f = oρ(ξ(ρ)) as ρ → ∞ if for every c > 0 there exists ρ1(c) ≥ ρ0 such that
f(x) ≤ cξ(ρ) for all x ∈ Σρ for ρ ≥ ρ1(c).

It follows immediately that O(|x|) ⊆ Oρ(ρ) and o(|x|) ⊆ oρ(ρ). Furthermore, the usual rules of
arithmetic apply.

Lemma 3.4. Let (M3, g) be manifold with a single asymptotically flat end Mend of order τ ≥ 1
2 .

Let {Dρ}ρ>ρ0 be an exhaustion of Mend by compact 3-manifolds with smooth boundary Σρ such
that {Σρ}ρ>ρ0 approximates S2

ρ. Then

lim
ρ→∞

mH(Σρ) ≤ mADM(M, g). (3.3)

Proof. Define the tensor G = 1
2Rgg − Ricg. We wish to establish the inequality

lim
ρ→∞

mH(Σρ) ≤ lim
ρ→∞

1

8π

∫
Σρ

G(ρν, ν) dσρ = mADM(M, g), (?)

where ν is the unit normal to Σρ. To study the curvatures we apply the Koszul formula Γkij =
1
2(gjk,i + gki,j − gij,k) and use the fact that gij,k = oρ(ρ

−1−τ ) and gij,kl = o(|x|−2−τ ) = oρ(ρ
−2−τ ) to
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obtain

Rij = Rkikj = ∂kΓ
k
ji − ∂jΓkki + Γkk`Γ

l
ji − ΓkjlΓ

`
ki (3.4)

= ∂kΓ
k
ji − ∂jΓkki + oρ(ρ

−2−2τ ) (3.5)

= 1
2(gik,jk + gkj,ik − gji,kk)− 1

2(gik,kj + gkk,ij − gki,kj) + oρ(ρ
−2−2τ ) (3.6)

= 1
2(gik,jk + gkj,ik − gji,kk − gkk,ij) + oρ(ρ

−2−2τ ). (3.7)

In particular, Rij = oρ(ρ
−2−τ ). One also gets

R = gijRij = Rii + (gij − δij)Rij = Rii + oρ(ρ
−2−2τ ) = gij,ij + gii,jj + oρ(ρ

−2−2τ ). (3.8)

In order to calculate G we “extend” the metric coefficients gij to smooth functions defined on all of
R3. Let η : Rn → R be a smooth cutoff function such that η ≡ 0 on B1 and ηm ≡ 1 on Rn \ B2.
Define the functions

gij(x) =

{
η(x)gij(x) if x ∈ Rn \B1

0 if x ∈ B1.
(3.9)

Now for ρ ≥ ρ1, where B2(0) ⊆ Dρ1 , we may calculate∫
Σρ

1
2(gik,jk + gkj,ik − gji,kk − gkk,ij)xiνj dσρ (3.10)

=

∫
Dρ

1
2∂j

[
(gik,jk + gkj,ik − gji,kk − gkk,ij)xi

]
dV (3.11)

=

∫
Dρ

1
2(gik,jkj + gkj,ikj − gji,kkj − gkk,ijj)xi dV +

∫
Dρ

(gkj,kj − gkk,jj) dV (3.12)

=

∫
Dρ

1
2(gkj,ikj − gkk,ijj)xidV +

∫
Dρ

(gkj,kj − gkk,jj) dV (3.13)

=

∫
Dρ

1
2∂i[(gkj,kj − gkk,jj)x

i] dV +

∫
Dρ

1
2(gkk,jj − gkj,kj) dV (3.14)

=

∫
Σρ

1
2(gkj,kj − gkk,jj)xiνi dσρ +

∫
Σρ

1
2(gkk,j − gkj,k)νj dσρ, (3.15)

Note that
∫

Σρ
oρ(ρ

−2−2τ ) dσρ = o(ρ−2−2τ ) area(Σρ) = o(ρ−2τ ) = o(1), since τ ≥ 1
2 . Furthermore,

since |xi − ρνi| = Oρ(ρ
−τ ), and gij,kl = oρ(ρ

−2−τ ), we find from (3.10), (3.15), and (3.1),

lim
ρ→∞

1

8π

∫
Σρ

G(ρν, ν)dσρ = lim
ρ→∞

1

16π

∫
Σρ

(gkk,j − gkj,k)νj dσρ = mADM(M, g). (3.16)

Now we use the Gauss-Codazzi equations to write∫
Σρ

G(ρν, ν)dσρ = ρ

∫
Σρ

[
1

2
R− Ric(ν, ν)

]
dσρ =

ρ

2

∫
Σρ

[
RΣρ −

1

2
H2
ρ +

(
‖Aρ‖2 −

1

2
H2
ρ

)
︸ ︷︷ ︸

≥0

]
dσρ,

(3.17)
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where RΣρ and Hρ are the scalar and mean curvatures on Σρ respectively, and Aρ is the second
fundamental form on Σρ. Finally, the area estimate in (3.2) yields

lim
ρ→∞

1

8π

∫
Σρ

G(ρν, ν)dσρ ≥ lim
ρ→∞

√
area(Σρ)

16π

∫
Σρ

[
RΣρ −

1

2
H2
ρ

]
dσρ = lim

ρ→∞
mH(Σρ), (3.18)

so the conclusion follows.

Note that the second condition in (3.2) will not be necessary for our purposes; it will suffice to
only show the first and the third conditions hold, along with the weaker condition area(Σρ) = O(ρ2),
which gives

lim
ρ→∞

1

16π

∫
Σρ

ρ

[
RΣρ −

1

2
H2
ρ

]
dσρ ≤ mADM(M, g). (3.19)

In our setting however, the second condition can be shown to follow from the third, so (3.4) still
holds.

3.1. Level Sets of a p-Harmonic Function

Consider the function r(x) = τ0 · u(x)
p−1
p−3 , where u ∈ W 1, p

δ (Mext) ∩ C1,α
loc (Mext) is a solution to the

p-Laplace equation satisfying the boundary conditions in (2.1), and τ0 > 0 is some undetermined
constant. Then by (2.9), r is smooth outside some compact set K ⊇Mext \Mend. It follows that t
is a regular value of r for t > tmax = supK r. We wish to show that for a particular value of τ0, the
family of surfaces {Σt}t>tmax approximates S2

t , where Σt = r−1({t}).
In general, let Σt≥t0 = r−1({t ≥ t0}), and Σt≤t0 = r−1({t ≤ t0}), and define Σt>t0 and Σt<t0

similarly.

Lemma 3.5. There exists c1, c2 > 0 such that c1r(x) ≤ |x| ≤ c2r(x) for all x ∈ Σt>tmax .

Lemma 3.6. Suppose lim|x|→∞|∇r| = 1. Then area(Σt) = area(S2
t )(1 +O(t−τ )).

Lemma 3.7. Suppose lim|x|→∞|∇r| = 1. Then supΣt |X − tν| = O(t1−τ ), where X = xi∂i and ν is
the unit normal vector to Σt.

In view of these lemmas, we choose τ0 = (lim|x|→∞|∇r|)−1, which is possible by (2.11). Now,
define for regular values t > tmin

W (t) =
1

16π

∫
Σt

t

[(
RΣt −

1

2
H2

)
+

1

2

(
H − 2|∇r|

t

)2
]

dσt. (3.20)

As noted in the Introduction, we seek to relate this quantity to the Hawking quasi-local mass or
ADM mass and afterwards produce a monotonicity formula.

Lemma 3.8. Let f : M → R be a smooth function on a Riemannian manifoldM . Define s = λf
p−1
p−3

for some constant λ > 0, and set ν = ∇s/|∇s|, ϕ = 1/|∇s|. Let Σ be a regular level set of s. Then
on Σ,

∇ϕν |∇s| =
1

p− 1

[
2|∇s|
s
−H

]
+

1

p− 3
· s2

|∇s|p−1 ·∆pf, (3.21)

where H is the mean curvature of Σ.
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Proof. Assume at first that λ = 1. We may calculate ∇f = ∇s
p−3
p−1 = p−3

p−1 · s
−2
p−1∇s. Now by the

product rule

∆pf = div(|∇f |p−2∇f) = p−3
p−1

[ (
|∇s|p−2s−2

)
div(∇s) +

〈
grad(|∇s|p−2s−2),∇s

〉]
. (3.22)

Now div(∇s) = ∆2s is the usual 2-Laplacian and

grad(|∇s|p−2s−2) = −2s−3|∇s|p−2∇s+ (p− 2)s−2|∇s|p−3 grad|∇s|. (3.23)

This yields

∆pf =
|∇s|p−1

s2

(
p− 3

p− 1

)[
(p− 2)∇φν |∇s|+

∆2s

|∇s|
− 2|∇s|

s

]
. (3.24)

Now the mean curvature of Σ is given by

H = trA =
tr HessMs −HessMs (ν, ν)

|∇s|
=

∆2s

|∇s|
− ∇ϕν |∇s|. (3.25)

Substituting into (3.24) and rearrangment yields the conclusion for λ = 1. Now one verifies that
(3.21) is invariant under the scaling s 7→ λs.

Our main result in this subsection is:

Lemma 3.9. limt→∞W (t) ≤ mADM(M, g).

4. Morse Approximations to a p-Harmonic Function

In this section we study approximations by Morse functions to the function r defined in the
previous section. Following the program detailed in the Introduction, we introduce modifications
to W and show an approximate monotonicty formula.

Lemma 4.1. Let f : M → R be a smooth function on a Riemannian n-manifold M where n > 2.
Suppose p0 ∈ M is a nondegenerate critical point of f with value t0, and that there exists ε > 0
such that f−1([t0 − ε, t0 + ε]) is compact and contains no critical point of f other than p. Let
Ωt = f−1({t}) and ωt be the volume form on Ωt for t ∈ [t0− ε, t0 + ε]−{t0}. For a smooth function
η : f−1([t0 − ε, t0 + ε])− {p0} → R, define

Iη(t) =

∫
Ωt

η · ωt, (4.1)

for t ∈ (t0− ε, t0 + ε)−{t0}. Let (U,ψ) be a Morse chart around p0. If η = O(|ψ|2−n) as ψ(x)→ 0,
then Iη is continuous at t.

Proof. Without loss of generality, let t0 = 0, assume that B1 ⊂ ψ(U), and give f the form

f = t0 − |x|2 + |y|2; x = (ψ1, . . . , ψk), y = (ψk+1, . . . , ψn). (4.2)

Let µ : [0,∞)→ R be a smooth function satisfying the properties:
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1. µ(0) > 0 and µ(j)(0) = 0 for all j ≥ 1.

2. µ(x) = 0 for all x ≥ 1.

3. −1 < µ′(x) ≤ 0 for all x ≥ 0.

Using this we define the family of functions µδ(x) = δµ(x/δ) for δ ∈ (0, 1]. Define Fδ : M → R
by

Fδ(p) =

{
f(x,y) + µδ(|x|2 + |y|2) on U
f(p) on M − U.

(4.3)

One checks easily that Fδ is smooth. We calculate that on U ,

∂Fδ
∂ψi

= 2ψi ·
[
µ′δ(|x|

2 + |y|2)± 1
]
,

which only vanishes when ψi = 0. It follows that the only critical point of Fδ in U is p0. Since
Fδ ≡ f on M − U , the critical points of Fδ and f coincide. Since F1(p0) > f(p0) = 0, it follows
that 0 is not a critical value of F1, and thus lies in some interval [−ε1, ε1] of regular values. Since
on B√δ,

Fδ(x,y) = δ · F1

(
x√
δ
,
y√
δ

)
, (4.4)

and Fδ ≡ f outside of B√δ, it follows that [−δε1, δε1] is an interval of regular values of Fδ. Using
these intervals we define Iδη : [−ε1, ε1]→ R for δ ∈ [0, 1] by

Iδη(τ) =


∫

Ωδτ

η · ωδτ if δ > 0

limt→0− Iη(t) if δ = 0 and τ ≤ 0

limt→0+ Iη(t) if δ = 0 and τ > 0

(4.5)

where Ωδ
τ = F−1

δ ({τδ}) and ωδτ is the volume form on Ωδ
τ . Now one has Ωδ

τ −B√δ = Ωτδ −B√δ for
τ ∈ [−ε1, ε1] and δ ∈ (0, 1], which implies for τ 6= 0,∣∣∣Iδη(τ)− Iη(τδ)

∣∣∣ ≤ ∫
Ωδτ∩B√δ

|η| · ωδτ +

∫
Ωτδ∩B√δ

|η| · ωτδ. (4.6)

Let Sδτ = Ωδ
τ ∩B√δ and T

δ
τ = Ωτδ ∩B√δ. Then by the scaling properties of Fδ and f ,

Fδ(x,y) = δ · F1

(
x√
δ
,
y√
δ

)
for (x,y) ∈ B√δ =⇒ Sδτ =

√
δ · S1

τ , (4.7)

f(x,y) = δ · f
(

x√
δ
,
y√
δ

)
for (x,y) ∈ B√δ =⇒ T δτ =

√
δ · T 1

τ . (4.8)
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Thus we may write for some constant c(τ) > 0,∣∣∣Iδη(τ)− Iη(τδ)
∣∣∣ ≤ ∫

Sδτ

|η| · ωδτ +

∫
T δτ

|η| · ωτδ (4.9)

≤ sup
Sδτ

|η| · vol(
√
δ · S1

τ ) + sup
T δτ

|η| · vol(
√
δ · T 1

τ ) (4.10)

≤ c(τ) · δ
n−1
2

[
sup
Sδτ

ρ2−n + sup
T δτ

ρ2−n
]
. (4.11)

For τ 6= 0 we have supT δτ ρ
2−n = |τδ|2−n, and by scaling,

supSδτ ρ
2−n = δ2−n · sup⋃

τ∈[−ε,ε] S
1
τ
ρ2−n. (4.12)

Together this shows that for τ 6= 0,∣∣∣Iδη(τ)− Iη(τδ)
∣∣∣ ≤ C(τ)

(
1 + |τ |2−n

)√
δ. (4.13)

By taking a limit as δ → 0±, this implies the pointwise convergence of Iδη(τ) to I0
η (τ) for τ 6= 0. A

scaling lemma will ultimately produce a uniform c(τ), which should rely on the fact that Sδτ is a
“continuous” family of surfaces in some sense. Furthermore, a more clever way to handle the term∫
T δτ
|η| ·ωτδ, which should not blow up as τ → 0, will ultimately yield uniform convergence, implying

the conclusion.

Lemma 4.2. Let f : M → R3 be a Morse function on a Riemannian manifold M and let s = f
p−1
p−3 .

Let x0 be a critical point of f and (U,ψ) be a Morse chart around x0. Then |∇s| = O(|ψ|) and
|H| = O(|ψ|−1) as ψ(x)→ 0, where H(x) is the mean curvature of the level set of s at a point x.

Lemma 4.3. Let K ⊂ Mext be compact, and u ∈ W 1, p
δ (Mext) ∩ C1,α

loc (Mext) be a weak solution
to the p-Laplace equation satisfying (2.1). Then for any ε > 0, there exists a Morse function
uε ∈W 1, p

δ (Mext) ∩ C∞(Mext) such that u ≡ uε on Mext \K, infK uε > 1, supK‖u− uε‖ < ε, and∣∣∣∣∫
K

r2
ε

|∇rε|p−2

(
2

rε
− Hε

|∇rε|

)
∆puε dV

∣∣∣∣ < ε (4.14)

where rε = τ0 · u
p−1
p−3
ε and Hε is the mean curvature of a level set of rε at a point.

Proof.

For ε > 0, take such an approximation uε with respect to a compact setK such that Crit(f) ⊆ K
and ∂Mext = ∅, which exists by (2.9) and (2.10). Then we may define for all regular values t ≥ τ0,

Wε(t) =
1

16π

∫
Σεt

t

[(
RΣεt
− 1

2
H2

)
+

1

2

(
H − 2|∇rε|

t

)2
]

dσεt , (4.15)
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where Σε
t = r−1

ε ({t}). By the the maximum principle, u > 1 on M ◦
ext . Then since uε > 1 on K, and

u ≡ uε on Mext \K, we have uε > 1 on M ◦
ext as well. Thus Στ0 = Σε

τ0 = ∂Mext. In particular, we
may calculate

Wε(τ0) =
1

16π

∫
∂Mext

τ0

[
R∂Mext +

2|∇r|2

τ2
0

]
dστ0 =

τ0

2
+

1

8πτ0

∫
∂Mext

|∇r|2 dστ0 > 0. (4.16)

Definitionally, it is clear that Wε(t) = W (t) for t > supK r, so limt→∞Wε(t) = limt→∞W (t) ≤
m(M, g).

Lemma 4.4. Let [t0, t1] be an closed interval of regular values of rε. Then for t ∈ (t0, t1),

W ′ε(t) ≥
1

8π

∫
Σεt

[
1

p− 3
· t2

|∇rε|p−2

(
2

t
− H

|∇rε|

)
∆puε

]
dσεt . (4.17)

Proof. Note that in this interval, we may write

Wε(t) =
t

4
χ(Σε

t) +
1

8π

∫
Σεt

(
|∇rε|2

t
−H|∇rε|

)
dσεt . (4.18)

Let ν = ∇rε/|∇rε| and ϕ = 1/|∇rε|. Since rε is proper and has no critical values in [t0, t1], there
exists a flow along the vector field φν pushing Σε

t0 diffeomorphically onto Σε
t for t ∈ [t0, t1]. Thus

the topology of Σε
t does not change in [t0, t1]. Furthermore, we may differentiate under the integral

to obtain

W ′(t) =
1

4
χ(Σε

t) +
1

8π

[∫
Σt

(
|∇r|
t
−H

)
Lν(dσt) +

∫
Σt

Lϕν

(
|∇r|2

r
−H|∇r|

)
dσt

]
. (4.19)

The variation of area is Lν(dσt) = Hdσt. Now we separately calculate using (3.8),

Lϕν

(
|∇rε|2

rε

)
=

2|∇rε|Lϕν |∇rε|
rε

− |∇rε|
2

r2
ε

(4.20)

=

(
1

p− 1
− 1

4

)
· 4|∇rε|2

r2
ε

− 1

p− 1
· 2H|∇rε|

rε
+

2

p− 3
· r

|∇rε|p−2 ·∆puε (4.21)

and

Lϕν(H|∇rε|) = Lϕν |∇rε| ·H + |∇rε| · LϕνH (4.22)

=
1

p− 1
· 2H|∇rε|

rε
− 1

p− 1
·H2 +

1

p− 3
· r2

ε

|∇rε|p−1 ·H∆puε + |∇rε| · LϕνH. (4.23)
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Together, this gives

W ′ε(t) =
1

4
χ(Σε

t)

+
1

8π

∫
Σεt

[(
1

p− 1
− 1

4

)
·H2 − 2 ·

(
1

p− 1
− 1

4

)
· 2H|∇rε|

t
+

(
1

p− 1
− 1

4

)
· 4|∇rε|2

t2

]
dσεt

− 1

8π

∫
Σεt

[
3

4
H2 + |∇rε| · LϕνH

]
dσεt

+
1

8π

∫
Σεt

[
1

p− 3
· t2

|∇rε|p−2

(
2

t
− H

|∇rε|

)
∆puε

]
dσεt . (4.24)

Simplifying and applying the traced Riccati equation yields

W ′(t) =
1

8π

∫
Σεt

[(
1

p− 1
− 1

4

)(
H2 − 2|∇rε|

t

)2

+
1

2

(
‖h‖2 − 1

2
H2

)
+

1

2
RM +

∆Σεt
ϕ

ϕ

]
dσεt

+
1

8π

∫
Σεt

[
1

p− 3
· t2

|∇rε|p−2

(
2

t
− H

|∇rε|

)
∆puε

]
dσεt . (4.25)

Since each of the terms in the first integrand are nonnegative, the inequality follows.

Define W̃ε(t) = Wε(t)− t
[

1
4χ(Σε

t)− 1
2Γ(Σε

t)
]
. Note that the additional term may be interpreted as

the number of handles of the level set(see [Ja]).

Lemma 4.5. W̃ε(τ0) = W (τ0) and limt→∞ W̃ε(t) = limt→∞W (t).

Proof. Since ∂Mext
∼= S2, it immediately follows that W̃ε(τ0) = W (τ0) > 0. Now pick t0 > tmax.

Then there exists a flow along the vector field φν yielding diffeomorphisms from Σε
t0 to Σε

t for t ≥ t0.
Thus one has a deformation retract Σε

t≥t0 → Σε
t0 which may be extended to a retract R3 → Σt≤t0 .

It follows that χ(R3) = χ(Σε
t≤t0 ∪ B3) = 1. For compact 3-manifolds N , one has χ(∂N) = 2χ(N);

in particular, χ(Σε
t0) = χ(∂(Σε

t≤t0 ∪ B3)) = 2χ(Σε
t≤t0 ∪ B3) = χ(S2).

Now let Q be a connected component of Σε
t≥t0 . Assume, for the sake of contradiction, that

Q is compact. Then there exists a point x ∈ Q such that rε(x) = supQ rε. But then the flow
starting at x yields a curve γ : [0, 1] → Σε

t≥t0 such that γ(0) = x and γ(1) = y with rε(y) > t0.
By path-connectedness, y ∈ Q and rε(y) > rε(x) = supQ rε, which is a contradiction. Thus Q
is noncompact, and in particular, unbounded as Q is closed. Now since Σε

t<t0 is bounded, there
exists a ball BR(0) such that Σε

t≤t0 ⊂ BR(0), or equivalently, R3 \ BR(0) ⊂ Σε
t≥t0 . Finally, assume

for the sake of contradiction that Q1 6= Q2 are distinct connected components of Σε
t≥t0 . Then

without loss of generality, since R3 \ BR(0) is connected, we may assume R3 \ BR(0) ⊆ Q1. Then
as Q1 ∩ Q2 = ∅, we must have Q2 ⊆ BR(0), implying Q2 is bounded and hence compact, which
is a contradiction. Thus Σε

t≥t0 is connected. By the deformation retract Σε
t≥t0 → Σε

t0 , we obtain
Γ(Σε

t0) = Γ(Σε
t≥t0) = Γ(S2). The conclusion follows.

We think of
[

1
4χ(Σε

t)− 1
2Γ(Σε

t)
]
as a “topological” coefficient. As described in the Introduction,

we would like to better understand W ′ε by first moving the discontinuous nature of Wε into a single
term.
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Lemma 4.6. Define Vε(t) = Wε(t) − t
4χ(Σε

t). Then Vε admits a continuous extension to all of
[τ0,∞).

Proof. Let ηε = |∇rε|2/rε −H|∇rε|. Then for regular values t, write

Vε(t) =
1

8π

∫
Σεt

ηε dσεt . (4.26)

When t is contained in an interval of regular values, it is clear that Vε is continuous at t. As uε is
a Morse function, the critical values of uε are isolated and are strictly greater that τ0. Hence for
a crtical value s0 of uε, there exists δ > 0 such that u−1

ε ([s0 − δ, s0 + δ]) is compact and contains
no critical point of f other than u−1

ε ({s0}). By (4.2) and (4.1), we observe that Vε(τ0 · s(p−1)/(p−3))
may be extended continuously at s = s0. It follows that Vε may be extended continuously to all
critical values.

5. A Proof of the Positive Mass Theorem

We recall the statement of (5.1) and give its proof.

Theorem 5.1. Let (M3, g) be a complete, asymptotically flat, manifold with nonnegative scalar
curvature and a single end contained in an exterior region with boundary homeomorphic to a 2-
sphere. Then m(M, g) ≥ 0.

Proof. We have from our previous discussions that

m(M, g) ≥ lim
t→∞

W̃ε(t) = lim
t→∞

[Vε(t) + t
2Γ(Σε

t)] = lim
t→∞

[Vε(t) + t
2(Γ(Σε

≤t) + Γ(Σε
≥t)− 1)]. (5.1)

Now by (4.6) we may write

m(M, g) ≥ W̃ε(τ0) +

∫
[τ0,∞)

[
dVε
dt

+
1

2
Γ(Σε

t)

]
dt+

∑
i

ti
2

[
lim
t→t+i

Γ(Σε
≤t)− lim

t→t−i
Γ(Σε

≤t)

]

+
∑
i

ti
2

[
lim
t→t+i

Γ(Σε
≥t)− lim

t→t−i
Γ(Σε

≥t)

]
, (5.2)

where the sums are over critical values ti. Now W̃ε(τ0) = W (τ0), and wherever defined, V ′ε (t) =
W ′ε(t) − 1

4χ(Σε
t). For ease, we make the redefinitions Γ≤(t) = Γ(Σε

≤t) and Γ≥(t) = Γ(Σε
≥t). Then

we may rewrite the inequality as

m(M, g) ≥W (τ0) +

∫ ∞
τ

W ′ε(t) dt+
1

2

∫ ∞
τ

[
Γ(Σε

t)− 1
2χ(Σε

t)
]

dt+
∑
i

ti
2

[
Γ≤(ti+)− Γ≤(ti−)

]
+
∑
i

ti
2

[
Γ≥(ti+)− Γ≥(ti−)

]
.

(5.3)
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The first term is positive by (4.16), and the the third term is nonnegative since Γ(X)− 1
2χ(X) ≥ 0

for 2-surfaces. By (4.4),∫ ∞
τ

W ′ε(t) dt =
1

8π

∫ ∞
τ

∫
Σεt

[
1

p− 3
· t2

|∇rε|p−2

(
2

t
− H

|∇rε|

)
∆puε

]
dσεt dt

=
1

8π

∫
Σεt≤tmax

[
1

p− 3
· t2

|∇rε|p−3

(
2

t
− H

|∇rε|

)
∆puε

]
dV

≥ − ε

8π
. (5.4)

It remains to handle the discontinuities arising from changes in the number of connected components
of the level sets. In spirit, the core of this argument is the same “near”-maximum principle used by
Jang [Ja]. However, our formulation in terms of sublevel and superlevel sets simplifies matters.
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