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1. Introduction

In this paper we examine the number of 1
N

-integral points on a fixed curve Γ. That is, we

start with a fixed curve Γ and consider the set Λ = Γ ∩ ( 1
N
Z)2. It turns out that a higher

regularity of the curve, under an additional analytic condition, implies a significantly better
upper bound for |Λ|. Throughout the paper, we will write A .ε B to denote A ≤ CB for an
implicit constant that depends on the parameter ε.

Let s be the smallest positive integer such that n ≤ 1
2
(s + 1)(s + 2) − 1, and define

∆n = n − (1
2
s(s + 1) − 1). Let us denote by M the set of all monomials with a positive

degree about two variables x and y. Then for each finite subset M ⊂ M, we can define
its total degree deg(M) as the sum

∑
m∈M deg(m). We denote by m(n) the minimal value

possible for a total degree of n distinct monomials. For example, if n = 1
2
(s+ 1)(s+ 2)− 1,

then m(n) = s(s+1)(s+2)
3

. We call Mn ⊂M a minimal collection of n monomials if it satisfies
|Mn| = n and deg(Mn) = m(n).

Given a planar curve Γ parameterized by Γ(t) = (γ1(t), γ2(t)) for t ∈ [0, 1] and a minimal
collection of n monomials, Mn = {m1, · · · ,mn}, we can consider the n × n Wronskian
determinant, which we denote by WMn(Γ)(t),

W (m1(γ1, γ2)′, · · · ,mn(γ1, γ2)′)(t) =

∣∣∣∣∣∣
m1(γ1, γ2)′(t) · · · mn(γ1, γ2)′(t)

...
. . .

...
m1(γ1, γ2)(n)(t) · · · mn(γ1, γ2)(n)(t)

∣∣∣∣∣∣
where we take derivatives about t. Now we can state our main result.

Theorem 1. Suppose that Γ is a compact Cn,α curve such that WMn(Γ) is nonvanishing for
some minimal collection Mn of n monomials. Then we have

|Λ| . N e1(n)+ε

for each ε > 0, where the exponent e1(n) is given by e1(n) = 2
n(n+1)

( (s−1)s(s+1)
3

+ s ·∆n).

The statement with n = 2 can be thought of as a weak version of Jarńık’s result [10]. The
original theorem by Jarńık states that a strictly convex curve Γ of length ` contains at most
3(4π)−1/3`2/3 +O(`1/3) integral points. In Section 2 we prove Theorem 1 for n = 2 in detail
using a decoupling inequality for strictly convex curves.

Another interesting case is n = 1
2
(s + 1)(s + 2) − 1, when there is a unique minimal

collection of n monomials, that is M≤s = {xiyj : 1 ≤ i + j ≤ s}. In such cases we have a
much simpler expression for the exponent.

Corollary 1. Let n be an integer of the form 1
2
(s+1)(s+2)−1. Suppose that Γ is a compact

Cn,α planar curve such that WM≤s(Γ) is nonvanishing. Then we have

|Λ| . N
8

3(s+3)
+ε.

It is worth noting that Bombieri and Pila [2] obtained the same upper bound, with ex-
clusion of ε, for these values of n. They obtained the result by evaluating the number of
lattice points that an algebraic curve of degree s can contain. Pila furthered the study in
this direction [12] and found a similar Wronskian condition to the one in Theorem 1. On
the other hand, our approach does not restrict ourselves to special values of n.

Schmidt [14] conjectured that |Λ| . N
1
2

+ε is true for any C2 curve Γ ⊂ [0, N ]2 given as
y = f(x), provided that f ′′ is weakly monotonic and vanishs at most one value of x. An
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interesting case in the light of this conjecture is n = 7, when Theorem 1 implies upper
bound |Λ| . N1/2+ε under a certain analytic condition. For instance, if we choose M7 =
{x, y, x2, xy, y2, x3, x2y}, then we impose the analytic condition that the determinant

W (x) =

∣∣∣∣∣∣∣∣
f (4) 4f (3) 12f (2) (f 2)(4)

f (5) 5f (4) 20f (3) (f 2)(5)

f (6) 6f (5) 30f (4) (f 2)(6)

f (7) 7f (6) 42f (5) (f 2)(7)

∣∣∣∣∣∣∣∣
is nonvanishing. This provides a simpler, alternative condition on the curve, while Pila [12]
gave a condition Γ ∈ C104 and a nonvanishing condition of a determinant.

There are, however, some earlier upper estimates that Theorem 1 does not imply. For
example, Swinnerton-Dyer [15] proved the upper bound |Λ| . N3/5+ε for any C3 strictly
convex curve.

We introduce decoupling inequalities for curves in a higher dimensional space in Section
3 and prove the main theorem in Section 4.

In Section 5, we explore the upper estimate of lattice points on a hypersurface S ⊂ Rd+1

with use of the `pLp decoupling theorem due to Guo and Zhang [9]. Setting Λ = S∩( 1
N
Z)d+1,

we prove the upper bound for any Ck+1 hypersurface Sd which satisfies a certain analytic
condition

|Λ| . N ed(k)+ε

where ed(k) = d
2

+O(k−
1
d+1 ).

It is known that one can construct a uniform Jarńık curve which is strictly convex that
satisfies |Λ| ≤ N

2
3
−ε for infinitely many N for any given ε > 0. (See [13] for the proof) But

the curve is not constructed to be C1. In Appendix we construct a C1, strictly convex curve
C such that |C ∩ ( 1

N
)2| ≥ 1

2
N log3 2 for infinitely many N .
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2. Weak Jarnik’s theorem via decoupling for parabolas

In this section we prove Theorem 1 for n = 2. More precisely, we can prove a slightly
stronger statement in this case. Recalling the notation Λ = Γ ∩ ( 1

N
Z)2, we aim at the

following upper bound for |Λ|.

Proposition 1. For a C2, strictly convex curve Γ, we have |Λ| . N2/3+ε for each ε > 0.

We first state the decoupling inequality for curves and see how it implies weak Jarńık’s
theorem.

2.1. Decoupling theory for parabolas. Throughout this paper, we use the notation
e(α) = exp(2πiα).

We recall the following corollary of decoupling theory for the parabola [3], [4].
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Theorem 2. Let Γ be a C2, strictly convex curve, and suppose we are given a δ-separated
set Λ on Γ. Then we have

(
1

|BR|

∫
BR

|
∑
ξ∈Λ

aξe(ξ · x)|6dx)
1
6 . δ−ε‖aξ‖`2

for each ε > 0, each aξ ∈ C and each ball BR of radius R & δ−2.

Remark 1. As we take R very large, the left hand side in Theorem 2 tends to a combi-
natorial quantity called p

2
-energy. We define the k-energy of a discrete set Λ by Ek(Λ) =

|{(λ1, · · · , λk, λ′1, · · · , λ′k) ∈ Λ2k : λ1 + · · ·+ λk = λ′1 + · · ·+ λ′k}|.

2.2. Proof of weak Jarńık’s theorem. We provide the proof of Proposition 1 using the
decoupling inequality.

Proof of Proposition 1. We denote by F (x) the sum of exponential functions
∑

ξ∈Λ e(ξ · x).

Since any two distinct 1
N

-integral points are separated by at least 1
N

, the set Λ satisfies the

separation condition with δ = 1
N

. Therefore, we can apply Theorem 2 with aξ = 1 and δ = 1
N

then we obtain

(
1

|BR|

∫
BR

|F (x)|6)
1
6 . N ε|Λ|

1
2

for each ball BR of radius R & N2.
Since the curve is compact, we can assume Γ is inside the unit square. The value e(α) has

its real part at least 1
2

for each α ∈ B 1
6
, so each exponential e(ξ · x) where ξ ∈ Λ has its real

part at least 1
2

for every point x in the ball of radius 1
6
√

2
. Therefore, in this range of x we

have |F (x)| ≥ 1
2
|Λ|.

We notice the periodic relation e(ξ · x) = e(ξ · x′) for each pair such that x− x′ ∈ (NZ)2

because Λ ⊂ ( 1
N
Z)2. Therefore, the local estimate above applies around each point x0 ∈

(NZ)2. This leads to the following lower bound for the weighted Lp norm of F (x) up to an
absolute constant:

c0 (N−2|Λ|6)
1
6 ≤ (

1

|BR|

∫
BR

|F (x)|6dx)
1
6 .

Combining the estimate of the weighted Lp norm of F (x) from two sides, we obtain

(N−2|Λ|6)
1
6 . N ε|Λ|

1
2 .

This completes the proof. �

Remark 2. By taking the ball BR of radius R = CN2 with a constant C independent of N ,
which is allowed by Theorem 2, we can see that the same upper bound holds when we replace
Λ by a set of 1

N
-integral points which are of distance at most c0

1
N2 to the curve Γ.

3. More results of `2 decoupling theory for curves

3.1. The case with moment curves. We fix the dimension n > 1. The moment curve
M ⊂ Rn is defined as the curve parameterized by

Φ(t) = (t, t2, · · · , tn)
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for t ∈ [0, 1]. Given g : [0, 1]→ C and an interval J ⊂ [0, 1] we define the extension operator
in Rn as

EJg(x) =

∫
J

g(t)e(x · Φ(t))dt.

The decoupling constant Vp,2(δ) is the smallest constant such that

‖E[0,1]g‖Lp(ωB) ≤ Vp,2(δ)(
∑

J : interval in [0, 1]
ι(J)=δ

‖EJg‖2
Lp(ωB))

1
2

for each ball B ⊂ Rn of radius δ−n.
Bourgain, Demeter and Guth gave the following estimate of V(2,p)(δ) for the critical value

p = n(n+ 1). See [6] and [8] for the proof.

Theorem 3. Let p = n(n+ 1). Then for every ε > 0 there exists a constant Cε such that

V(p,2)(δ) ≤ Cεδ
−ε

for every δ ∈ (0, 1).

3.2. Equivalent formulation of decoupling. We can state the `2 decoupling theorem in
terms of Fourier restrictions instead of extension operators. For the detail on the equivalence
of these formulations, we refer to [5]. For each f : Rn → C and R ⊂ Rn we denote by fR the
Fourier restriction of f to R

fR(x) =

∫
R

f̂(ξ)e(x · ξ)dξ.

Let Nδ(M) be the union of the δ-neighborhoods of all δ
1
n -arcs of M . (See [8] for a precise

formulation) For δ ∈ (0, 1), we denote by D(p,2)(δ) the smallest constant such that

‖f‖2
Lp ≤ D(p,2)(δ) ·

∑
‖fθ‖2

Lp .

In this definition, we have the same upper estimate D(p,2)(δ) . δ−ε for p = n(n+ 1).
It has been observed in [3] that the above upper estimate implies the following result by

a limiting procedure that we replace f with a sum of Dirac deltas.

Theorem 4. Let p = n(n+ 1). Then for each δ-separated set Λ of points on M , we have

(
1

|BR|

∫
BR

|
∑
ξ∈Λ

aξe(ξ · x)|pdx)
1
p . δ−ε‖aξ‖`2

for each ε > 0, each aξ ∈ C and each ball BR of radius R & δ−n.

3.3. The case with more general curves. Consider a compact curve C ⊂ Rn parame-
terized by

Γ(t) = (γ1(t), · · · , γn(t))

for t ∈ [0, 1] with γi ∈ Cn,α([0, 1]) and such that the Wronskian W (γ′1, · · · , γ′n)(t) is nonvan-
ishing.

Theorem 5. Let C be a curve as above. For p = n(n+ 1), we have

VC (p,2)(δ) . δ−ε.

Here we provide a proof for Theorem 5. A similar argument for Cn+1 curves can be found
in [8]. The key assumption we have impose on the curve is that we have a good control over
the remainder term when we conduct the Taylor expansion to coordinate functions γi.
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Proof. In the proof, we adopt the formulation of decoupling mentioned in Section 3.2. The
condition f ∈ Cn,α implies that the remainder term Rn(t0 + ∆t) in the n-th Taylor series
at to satisfies ‖Rn(t0 + ∆t)‖ ≤ M‖∆t‖n+α with a constant M independent of the choice of
to. Denote by T a curve with parameterization T (t) = (m1(t), · · · ,mn(t)) where mi(t) is the
n-th Taylor series of γi(t) at the point t0 for each 1 ≤ i ≤ n. Then we have |T (t0 + ∆t) −
Γ(to + ∆t)| < δ for ‖∆t‖ ≤ δ

1
n+α . By the Wronskian condition on C, the curve T defined as

above for to in an δ
1

n+α -arc maps to the moment curve M under a linear change of variables.

Denoting by τ a δ-neightborhood of a δ
1

n+α -arc of C, we obtain

‖f‖2
Lp ≤ VC (p,2)(δ

n
n+α ) ·

∑
τ

‖fτ‖2
Lp

≤ VC (p,2)(δ
n

n+α ) · V(p,2)(δ) ·
∑
τ

∑
θ⊂τ

‖fθ‖2
Lp

By Theorem 3, we obtain VC (p,2)(δ) . δ−ε·VC (p,2)(δ
n

n+α ). By iteration, we conclude VC (p,2)(δ) .
δ−ε �

By the same procedure with moment curves, Theorem 5 leads to the following result.

Theorem 6. Fix C as above, and let p = n(n+1). Then for each δ-separated set Λ of points
on C. we have

(
1

|BR|

∫
BR

|
∑
ξ∈Λ

aξe(ξ · x)|pdx)
1
p . δ−ε‖aξ‖`2

for each ε > 0, each aξ ∈ C and each ball BR ⊂ Rn of radius R & δ−n.

4. Proof of the main theorem

4.1. Skewed lattice points on a curve. Suppose that we have a curve Γ inside Rn. Given
an n-tuple s = (s1, · · · , sn) of positive integers, we can define the set of skewed 1

N
-integral

points on the curve as Λs(N) = Γ∩ ( 1
Ns1

Z× · · · × 1
NsnZ). With notation |s| = s1 + · · ·+ sn,

we have the following result:

Theorem 7. For any Cn,α curve Γ with a nonvanishing Wronskian, we have

|Λs(N)| . N
2|s|

n(n+1)
+ε.

Proof. Define again F (x) =
∑

ξ∈Λ e(x · ξ). By the assumption on Γ, we can apply Theorem

6 with δ = 1
N

and obtain

(
1

|BR|

∫
BR

|F (x)|p)
1
p . N ε|Λ|

1
2

for p = n(n + 1) and each ball BR ⊂ Rn of radius R & Nn. We observe that F (x) is a
periodic function of period (N s1 , · · · , N sn) since each point ξ ∈ Λ lies in 1

Ns1
Z× · · · × 1

NsnZ.
Therefore we can apply the local estimate around every point in N s1Z × · · · × N snZ and
obtain the lower bound for the weighted Lp norm

(N−(s1+···+sn)|Λ|p)
1
p ≤ (

1

|BR|

∫
BR

|F (x)|p)
1
p .

Combining these inequalities finishes the proof. �



6

4.2. Proof of Theorem 1. Suppose that we are given a planar curve Γ parameterized by
Γ(t) = (γ1(t), γ2(t)).

Definition 1. A lift-up of Γ into Rn is a curve Γ̃ ⊂ Rn parameterized by

Γ̃(t) = (m1(γ1, γ2)(t), · · · ,mn(γ1, γ2)(t))

for some minimal collection of n monomials Mn = {m1, · · · ,mn}.

For instance, a lift-up of Γ into R5 is unique up to an order of coordinates, and it is

given by Γ̃(t) = (γ1(t), γ2(t), γ1(t)2, γ1(t)γ2(t), γ2(t)2). Now we are ready to prove the main
theorem.

(Proof of Theorem 1). Let Γ̃ be any lift-up of the planar curve Γ with the given minimal
collection of n monomials Mn. For simplicity, we list m1, · · · ,mn in the order such that the
sequence of degrees si = deg(mi) is weakly decreasing. In particular, we can take m1 = x
and m2 = y. Then we observe that the point (γ1(t), γ2(t)) on Γ is an 1

N
-integral point if

and only if the corresponding point Γ̃(t) = (γ1(t), γ2(t), · · · ,mn(γ1, γ2)(t)) on the lift-up Γ̃
is a skewed 1

N
-integral point with degree s = (s1, s2, · · · , sn). The assumption on Γ implies

that the Wronskian W (Γ̃) is nonvanishing, so Theorem 7 applies to the lift-up Γ̃ and yields

|Γ̃| . N
2|s|

n(n+1)
+ε where |s| is the total degree of Mn.

By definition, a minimal collection of n monomials attains the minimal total degree m(n)
among the choices of n distinct monomials, so it must consist of all monomials with degree
up to some positive integer d and monomials with degree d + 1 if allowed. The number of
monomials with degree at most d is given by 1

2
(d+1)(d+2)−1 because there are i+1 distinct

monomials with degree i for each i ≥ 1. By our choice of s, it is clear that d = s−1 and hence
Mn consists of all monomials with degree up to s−1 and ∆n = n−(1

2
s(s+1)−1) monomials

with degree s. We finally obtain the formula for m(n) by m(n) = (
∑s−1

i=1 i(i+ 1)) + s ·∆n =
1
3
(s− 1)s(s+ 1) + s ·∆n, which completes the proof. �

5. Extension of the results to surfaces

5.1. Preliminary estimates of lattice points on a hypersurface. The decoupling
approach to lattice points extends to the case when we are given a fixed hypersurface.
Suppose that we are given a hypersurface S in Rn. Abusing notation, we use Λ = ( 1

N
Z)2 ∩

S. The decoupling inequalities for hypersurfaces have been settled in [3] and [4]. using
decoupling inequalities for paraboloids.

Proposition 2. Let S be a compact C2 hypersurface in Rn with positive definite second

fundamental form, and let Λ ⊂ S be a δ-separated set. For p = 2(n+1)
n−1

we have

(
1

|BR|

∫
BR

|
∑
ξ∈Λ

aξe(ξ · x)|p)
1
p . δ−ε‖aξ‖`2

for each ε > 0, each aξ ∈ C and each ball BR of radius R & δ−2.

The lower estimate for the weighted Lp norm using local estimates and the periodicity
immediately leads to the following result.
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Proposition 3. Let C as above. Then we have

|Λ| . N
n(n−1)
n+1

+ε.

For example if we set n = 3 then we obtain |Λ| . N3/2+ε. One can also derive Proposition
2 using the main theorem in [1].

5.2. `pLp decoupling for Sd,k. Before we further the upper estimate of lattice points on a
hypersurface, we prepare `pLp decoupling inequalities for d-dimensional manifolds.

For each d ≤ 1 and k ≤ 2, we define a compact d-manifold Sd,k by

Sd,k = {Φd,k(t1, · · · , td) = (t1, · · · , td, · · · , td1, · · · , tdk) : (t1, · · · , td) ∈ [0, 1]d}

where the entries consist of all monomias ts11 · · · t
sk
k with 1 ≤ s1 + · · ·+sk ≤ k. The dimension

of space Rn in which Sd,k lies is given in the formula n =
(
k+d
d

)
− 1. Following the notation

in [11], we denote by Kd,k the number d·k
d+1

(
d+k
d

)
. Then we can see that Kd,k gives the total

degree of the monomials used as the coordinate functions for Sd,k.
As with the case of moment curves, we can define the decoupling constant for Sd,k. For

R ⊂ [0, 1]d, we define the extension operator associated to the set R

E
(d,k)
R g(x) =

∫
R

g(t)e(x · Φd,k(t))dt.

Also for a ball B ⊂ Rn of radius rB centered at cB we will use the weight ωB(x) = (1 +
|x−cB |
rB

)−C with an unspecified large constant C. Let V
(d,k)

(p,p) (δ) be the smallest constant such

that

‖E(d,k)

[0,1]d
g‖Lp(ωB) . V

(d,k)
(p,p) (δ)(

∑
∆: cube inside [0, 1]d

ι(∆)=δ

‖E(d,k)
∆ g‖pLp(ωB))

1
p

for each ball B ⊂ Rn of radius δ−k. For each p ≥ 2 define Γd,k(p)

Γd,k(p) = max{d(
1

2
− 1

p
), max

1≤i≤d
{(1− 1

p
)i− Ki,k

p
}}.

Now we can state the `pLp decoupling inequality for Sd,k [9]:

Theorem 8. We have

V
(d,k)

(p,p) (δ) . δ−Γd,k(p)−ε.

5.3. `pLp decoupling for more general d-dimensional manifolds. We start with the
definition of the decoupling constant for d-manifolds which lie in the same Euclidean space as
Sd,k. Let S be compact d-manifold inside Rn where n =

(
k+d
d

)
− 1. We define the decoupling

constant VS
(d,k)
(p,p) for S inside Rn where n =

(
k+d
d

)
− 1 by the same inequality as with Sd,k, but

now the constant V
(d,k)

(p,p) (δ) must work for all of the local coordinates if there are multiple

ones defining S.
Let S be a compact, Ck d-manifold inside Rn where n =

(
k+d
d

)
− 1. For each local

coordinate system Γ : U ⊂ Rd → Rn

Γ(x) = (γ1(x), · · · , γn(x))
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we define the n× n determinant Wd(Γ)(x)

Wd(Γ)(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂
∂x1

(γ1)(x) ∂
∂x1

(γ2)(x) · · · ∂
∂x1

(γn)(x)
...

...
. . .

...
∂
∂xd

(γ1)(x) ∂
∂xd

(γ2)(x) · · · ∂
∂xd

(mn)(x)
...

...
. . .

...
∂k

∂x1k
(γ1)(x) ∂k

∂x1k
(γ1)(x) · · · ∂k

∂x1k
(γn)(x)

...
...

. . .
...

∂k

∂xdk
(γ1)(x) ∂k

∂xdk
(γ2)(x) · · · ∂k

∂xdk
(γn)(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where we take all partial derivatives ∂i

∂x1i1 ···∂xdid
for 1 ≤ i1 + · · ·+ id ≤ k.

Let C be a compact, Ck+1 d-manifold in Rn where n =
(
k+d
d

)
− 1 such that for each local

coordinate system Γ : U ∈ Rn the function Wd(Γ) is nonvanishing on U .
By the assumption each coordinate function γi is Ck+1, and so we have an upper estimate
|Rn(x)| . ‖x‖k+1 for the remainder Rn(x1, · · · , xd) in the k-th Taylor series of γi. The same
argument as in Section 3 works by replacing the moment curves by the d-manifolds Sd,k,

and we obtain the inequality VC
(d,k)
(p,p)(δ) . V

(d,k)
(p,p) (δ)VC

(d,k)
(p,p)(δ

k
k+1 ). By iteration, this leads to

VC
(d,k)
(p,p)(δ) . δ−Γd,k(p). Thus we obtain the following result.

Corollary 2. Let C be a compact, Ck+1 d-manifold inside Rn where n =
(
k+d
d

)
−1 such that

for each local coordinate system Γ : U ⊂ Rd → Rn the function Wd(Γ) is nonvanishing on
U . Then we have

VC
(d,k)
(p,p)(δ) . δ−Γd,k(p).

Remark 3. Here we impose the condition that S is Ck+1 in order to have a control over
the remainder of coordinate functions when we take k-th Taylor series. It is possible that a
weaker condition than Ck+1 is sufficient,

Now apply the decoupling inequality with the critical value p =
2Kd,k
d

(See [GZ] for a
detail) and we obtain the following result.

Proposition 4. Let p =
2Kd,k
d

. For each δ-separated set Λ of points on S, we have

(
1

|BR|

∫
BR

|
∑
ξ∈Λ

aξe(ξ · x)|pdx)
1
p . δ−d( 1

2
− 1
p

)−ε‖aξ‖`p

for each ε > 0, each aξ ∈ C and each ball BR ⊂ RKd,k of radius R & δ−k.

5.4. Skewed lattice points on a d-dimensional manifold. Let S be a compact, Ck+1

d-manifold in Rn where n =
(
k+d
d

)
− 1, For s = (s1, · · · , sn) be a list of degrees, denote by

Λs the set of skewed 1
N

-integral points of degree s on S. Then we have the following upper
estimate.

Theorem 9. Let Λs as above for a list of degrees s which contains 1. Then we have

|Λs| . N f(s)+ε

where f(s) =
2Kd,k

2Kd,k−d
(d

2
+ d(|s|−d)

2Kd,k
).
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Remark 4. We can see that the above upper bound is sharp for skewed 1
N

-integral points
with order (1, 1, · · · , k, · · · , k) on Sd,k.

Proof. The assumption s contains 1 implies that Λs is δ-separated with δ = 1
N

. By Proposi-
tion 4, we obtain

(
1

|BR|

∫
BR

|
∑
ξ∈Λ

aξe(ξ · x)|pdx)
1
p . Nd( 1

2
− 1
p

)+ε‖aξ‖`p

for p =
2Kd,k
d

. On the other hand we have the lower bound

(N−|s||Λ|p)
1
p . (

1

|BR|

∫
BR

|
∑
ξ∈Λ

e(ξ · x)|pdx)
1
p .

Combining these inequalities we obtain the desired result. �

5.5. Lattice points on a surface. Suppose that we are given a fixed hypersurface S ⊂
Rd+1.

Let Γ(x) = (γ1(x), γ2(x), · · · , γd+1(x)) for x ∈ U ⊂ Rd be a local chart for S.
Let Mn be a minimal collection of n monomials about d + 1 variables x1, x2, · · · , xd+1,

and define m(d+1)(n) to be the minimal total degree for a collection of distinct n monomials
about d+ 1 variables.

By definition, m(2)(n) is the function we denote by m(n). Similar to this case, m(d+1)(n)
has an explicit formula for each fixed d ≤ 2. Let k′ be the minimal positive integer such that
n ≤

(
k′+d+1
d+1

)
− 1, and denote ∆n = n −

(
k′+d
d+1

)
+ 1. Since

(
k′+d
d+1

)
− 1 counts the number of

monomals with degree at most k′ − 1 used in a minimal collection Mn of n monomials, it is
clear that ∆n counts the number of monomials with degree k′ in Mn. Then we have

m(d+1)(n) = Kd+1,k′−1 + k ·∆n.

In particular we observe that m(d+1)(n) is asymptotically n
d+2
d+1 .

For the value n =
(
k+d
d

)
−1 and each minimal collectionMn of monomials about n variables,

we can define the generalized Wronskian WMn
d (S) as the n× n determinant

WMn
d (S) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂
∂x1

(m1) ∂
∂x1

(m2) · · · ∂
∂x1

(mn)
...

...
. . .

...
∂
∂xd

(m1) ∂
∂xd

(m2) · · · ∂
∂xd

(mn)
...

...
. . .

...
∂k

∂x1k
(m1) ∂k

∂x1k
(m1) · · · ∂k

∂x1k
(mn)

...
...

. . .
...

∂k

∂xdk
(m1) ∂k

∂xdk
(m2) · · · ∂k

∂xdk
(mn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where we take all partial derivatives ∂i

∂x1i1 ···∂xdid
for 1 ≤ i1 + · · ·+ id ≤ k and mi denotes the

function mi(γ1, · · · , γd+1).

Theorem 10. Let S ⊂ Rd+1 be a Ck+1 hypersurface such that WMn
d (S) is nonvanishing for

some minimal collection Mn of n =
(
k+d
d

)
− 1 monomials about d + 1 variables. Then we

have
|Λ| . N ed(k)+ε
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where ed(k) =
2Kd,k

2Kd,k−d
(d

2
+ d(s−d)

2Kd,k
) for s = m(d+1)(

(
k+d
d

)
−1). Moreover, we have the asymptotic

expression

ed(k) =
d

2
+O(k−

1
d+1 ).

Proof. We will write n =
(
k+d
d

)
− 1. We define a lift-up S̃ of the hypersurface S into Rn

associated with the given minimal collection of monomials Mn as

Γ̃(x) = (m1(γ1, · · · , γd+1)(x),m2(γ1, · · · , γd+1)(x), · · · ,mn(γ1, · · · , γd+1)(x))

for each local coordinate system Γ(x) = (γ1(x), · · · , γd+1(x)) of S. Then 1
N

-integral points

on S correspond to the skewed 1
N

-integral points with order (degm1, degm2, · · · , degmn) on

the lift-up S̃. By the assumption on S, we can apply Theorem 9 to the lift-up S̃. Since the
sum of degrees degm1 + degm2 + · · · + degmn is just the total degree of Mn denoted by
m(d+1)(n), we obtain the desired result.

Since the function n =
(
k+d
d

)
−1 is asymptotically kd and the functionKd,k is asymptotically

kd+1,

ed(k) =
d

2
+O(

k
d(d+2)
d+1

kd+1
)

=
d

2
+O(k−

1
d+1 ).

This completes the proof. �

Appendix: construction of a C1 curve with many lattice points

In this appendix we construct a C1 curve such that Λ contains N log3(2) integral points
for infintiely many N . A similar but less concrete construction of such curve attaining the
exponent log3(2) can be found in [7]. The construction here is purely number theoretic and
exploits the idea of sorting rational numbers. We start with the following notation:

For each nonegative integer n we construct a collection of 2n+1 points P n
0 , · · · , P n

2n . Then
we have P n

m = P n+1
2m for each n and m.

P n
m =

1

3n

m∑
i=1

v
(n)
i .

For instance, A(1) = {(1, 1)} and A(2) = {(2, 1), (1, 2)}. Let Fi be a collection of 2i+1 vectors

defined recursively by F0 = {(1, 0), (0, 1)} and Fn = {f (n)
0 , · · · , f (i)

2n }:

f
(n+1)
2i = f

(n)
i

f
(n+1)
2i+1 = f

(n)
i + f

(n)
i+1

For instance, we see that F1 = {(1, 0), (1, 1), (0, 1)} and F2 = {(1, 0), (2, 1), (1, 1), (1, 2), (0, 1)}.
Then we define the set of vectors in generation n as An = Fn \Fn−1 for each n ≥ 1. We sort

by their slope An = {v(n)
1 , · · · , v(n)

2n−1}. Now we can define the points

P (n)
m =

1

3n−1

m∑
i=1

v
(n)
i



11

for each 1 ≤ m ≤ 2n−1.

Lemma 1. The set of vertices P (n) is a subset of P (n+1) for each n.

Proof. This is straightforward from the fact v
(n+1)
2i−1 + v

(n+1)
2i = 3vni for each 1 ≤ i ≤ 2n−1. �

Denote by P the union of P (n).
The above lemma implies that there is a unique curve C0 which contains all points in P .

Consider the curve C defined as C0 ∩ [0, 2
3
]× [0, 1

3
], then it turns out that C is a C1 strictly

convex curve with many 1
N

-integral points for infinitely many N .

Proposition 5. C is a C1, strictly convex curve, and it satisfies

|Λ| ≥ 1

2
N log3 2

for infinitely many N .

The strictly convexity and C1 follow from the observation that given any point x0 ∈ (0, 2
3
)

any ε > 0 we can find vertices P1 and P2 in P on each side such that |x(P1)−x0|, |x(P2)−x0| <
ε. The last assertion is clear from the construction for each N = 3n.
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[10] V. Jarńık. Über die Gitterpunkte auf konvexen Kurven. Math. Z., 24(1):500–518, 1926.
[11] S. T. Parsell, S. M. Prendiville, and T. D. Wooley. Near-optimal mean value estimates for multidimen-

sional Weyl sums. Geom. Funct. Anal., 23(6):1962–2024, 2013.
[12] J. Pila. Geometric postulation of a smooth function and the number of rational points. Duke Math. J.,

63(2):449–463, 1991.
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