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Abstract

A well-known problem in enumerative geometry is to calculate the number of smooth conics tangent
to a general set of five conics in a projective plane. This count is known in all characteristics, and differs
from characteristic 2 (where it is 51) to characteristic 0 (where it is 3264) by a factor of 26. Following in
the lines of Pacini and Testa, we give a new proof of the characteristic 2 count, dependent on the count
in characteristic 0, that explains this factor. In particular, we show that half of the 3264 conics, when
taken modulo 2, merge into 51 groups of 25, while the other half degenerate. By considering the flat
limit of the scheme of complete conics into characteristic 2, we interpret these degenerate conics to be
inside a dual space, which explains this split.



1 Problem and History

The problem of counting conics tangent to a general set of 5 conics was first formulated by Steiner in 1848.
Since tangency to an arbitrary conic can be written directly as a degree 6 equation, Steiner [Ste48] first
thought that this number should be 65 = 7776 via Bézout’s Theorem. However, the five degree 6 equations
defined by tangency to 5 general conics are not general enough (in addition to some smooth conics, they are
also satisfied by an infinite family of degenerate conics), and the true count was first shown to be 3264 by
Chasles in 1864 [EH16, p. 290].

This count can also be computed over fields with finite characteristic. Using methods similar to those
used for the characteristic 0 case, Vainsencher showed that the answer is 3264 in all characteristics besides
2, and 51 in characteristic 2 [Vai78]. It is not immediately clear from these computations why these two
answers should differ a factor of a power of 2. Our results give an alternative computation in characteristic
2 that sheds more light on why one might expect the answers in characteristics 2 and 0 to be so related,
based on the ideas in a recent paper of Pacini and Testa [PT20].

2 Methods and Intuition

In this section, we give an informal description of our strategy and some intuition for why one should expect
there to be 1/64 as many conics tangent to five arbitrary conics in characteristic 2 as in characteristic 0. We
also give some useful results about conic–line tangency in characteristic 2 that will be important intuition
for the details of the latter stages of this paper. In most of this section, the word “multiplicity” will be used
rather loosely to denote a concept that will be made rigorous in later sections. We will first describe the
technique of Pacini and Testa, off of which we have based our arguments, then discuss a related example
from the field of numerical computation, and finally give an outline of our proof.

2.1 The method of Pacini and Testa

It is a classical result that the number of inflection points of a general degree d plane curve is 3d(d− 2) over
all characteristics besides 3, and d(d− 2) over characteristic 3. In their recent paper, Pacini and Testa give
an alternative proof of the result for characteristic 3 assuming the result for characteristic 0. To do this,
they show that, in some precise sense, each inflection point in the characteristic 3 case has a multiplicity
of 3. Specifically, one may consider each inflection point as an element of a fiber of a morphism between
projective schemes over Spec(Z), so that restricting to the fibers of the target scheme over Spec(Z) is the
same as choosing to work in a particular characteristic.

2.2 Conics over reals

The motivation for some of our steps comes from Sottile’s exposition in [Sot08] of a construction for Steiner’s
conic problem in which all 3264 conics are real [BST19]. In this section, we describe the background behind
this approach and apply it to our setting.

When defining schemes with tangency conditions, the conditions for two schemes X and Y to be tangent
at a point p is that X∩Y has multiplicity at least 2 at p. As a result, a conic C is tangent to a singular conic
`1 t `2 if and only if it is tangent to `1, is tangent to `2, or passes through `1 ∩ `2. So, if `1 and p = `1 ∩ `2
are kept constant, and `2 approaches `1, the result is a pair (p, `1) with p a point on `1, so that a conic C is
tangent if and only if it passes through p or is tangent to `1. For a suitable definition of multiplicity, each
of these occurs with multiplicity 2. This can also be viewed as the limiting case of hyperbolas with a fixed
center and asymptotes approaching a fixed line; this is important as it allows five real smooth conics to be
chosen.

To this end, Breiding, Sturmfels, and Timme choose five lines `1, . . . , `5 forming a convex pentagon and
five points p1, . . . , p5 so that pi lies on `i for each i, and determine how many conics are tangent to each of
these point–line flags. We reproduce these calculations, as they will form the baseline for ours. The following
preliminary lemma is required, for which we will should provide some general intuition.
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Lemma 2.1. Given a generic set P of i points in P2
C and a set L of 5− i lines over P2

C, there exist 2min(i,5−i)

smooth conics passing through all points in P and tangent to all lines in L.

Proof Sketch. Let P5 denote the moduli space of conics over P2 where the point (a00, a11, a22, a01, a02, a12)
corresponds to the conic

∑
i,j aijxixj = 0. For a point p ∈ P2, the condition p ∈ C is cut out by an equation

of degree 1 in P5, while for a line ` over P2, the condition that ` is tangent to C is cut out by an equation of
degree 2. Thus, Bézout’s Theorem suggests that we should expect there to be 25−i conics passing through
every point in P and tangent to every line in L.

However, for i ∈ {0, 1, 2}, taking the dual gives a different picture. Since the dual of a smooth conic over
C is another smooth conic over C, the dual of a point is a line, and the dual of a line is a point, we expect
there to be exactly as many smooth conics passing through all points in

L∨ =
{
`∨ : ` ∈ L

}
and tangent to all lines in

P∨ =
{
p∨ : p ∈ P

}
as there are conics passing through all points in P and tangent to all lines in L, which tells us that it should
be at most 2i, and thus at most 2min(i,5−i) in general. It is not too hard to see that this is achievable in
some cases for i ∈ {3, 4, 5} and thus for i ∈ {0, 1, 2} as well by taking the dual.

Using this, we have that, if we pick a subset T ⊂ {1, 2, 3, 4, 5}, we have 2min(|T |,5−|T |) conics through pi
for i ∈ T and tangent to li for i /∈ T . Thus, in total, we have∑

T⊂{1,2,3,4,5}

2min(|T |,5−|T |) =

5∑
i=0

(
5

i

)
2min(i,5−i) = 1 + 10 + 40 + 40 + 10 + 1 = 102

conics. Now, each point–line flag (p, `) may be pulled apart into a hyperbola centered at p and whose
asymptotes are very close to `. As these asymptotes approach `, the conics tangent to such a hyperbola
approach conics that are either tangent to ` or pass through p, and each such case becomes two separate
conics tangent to the 5 hyperbolas. As a result, the total number of conics is multiplied by 25 = 32 for a
final result of 3264.

2.3 Transferring to characteristic 2

Now, we investigate what happens when this informal argument is transferred into characteristic 2. The
main issue is that of the dual, which looks very different in characteristic 2 than in characteristic 0. This is
shown by the following proposition.

Definition-Proposition 2.2. Let F be a field of characteristic 2 and C be a smooth conic in P5
F represented

by the point (c00, c11, c22, c01, c02, c12). The strange point st(C) ∈ P2
F is defined to be (c12, c02, c01). A line `

is tangent to C if and only if st(C) ∈ `.

Proof. This can be found in Vainsencher [Vai78].

Algebraically, this means that the equation for a conic to be tangent to a line, when written in charac-
teristic 2, is the square of a degree 1 equation, and thus gives only one solution with multiplicity 2. This
concept gives us the following analogue of Lemma 2.1, for which we offer a rigorous proof.

Proposition 2.3. Let F be a field with characteristic 2. Given a generic set P of i points in P2
F and a set L

of 5− i lines over P2
F , the number of smooth conics passing through all points in P and tangent to all lines

in L is 1 (with multiplicity 2i) if i ≤ 2 and 0 otherwise.

Proof. First, we note that there is no smooth conic C tangent to 3 generic lines, since this would require the
three lines to concur at st(C). This resolves the i ≥ 3 case. Now, in characteristic 2, being tangent to a line
is equivalent to the strange point lying on the line. So the equation for tangency is c12`0 + c02`1 + c01`2 = 0,
which is a linear condition in the coefficients of the conic. Therefore, in characteristic 2, we always have
5 linear conditions on the coefficients of the conic, and thus 1 conic satisfying all 5 tangency and point
conditions. With each tangency condition, the point of tangency gives a multiplicity of 2.
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When these point–line flags are pulled apart to hyperbolas, the above multiplicities of 2i split apart,
and give us 51 conics tangent to 5 fixed hyperbolas. Since conic–line tangency is a “multiplicity 2 concept”
(in that the degree 2 equation for a conic to be tangent to a line in characteristic 0 factors as a square in
characteristic 2), we get the factor of 32 that Pacini and Testa predicted in [PT20, 4.1].

Furthermore, we see from this example that exactly half of the conics in the above construction of 3264
real conics disappear. However, taking the dual, which swaps lines and points, would make these conics
reappear but hide away our original conics. This leads us to suspect that half of the conics are “hiding in
the dual space;” much of this paper is dedicated to making this notion precise.

2.4 Proof Outline

We prove that there are 51 smooth conics tangent to 5 general smooth conics in characteristic 2 using the
method of Pacini and Testa [PT20]. First, we define a moduli space Γ which naturally extends the scheme
of complete conics over Q from [EH16] into characteristic 2. This natural extension is seen by flatness over
Spec(Z), which will guarantee that our counts should be the same across different characteristics. The fiber
of Γ in characteristic 2 has 2 isomorphic irreducible components, and the scheme of the usual smooth conics
is a dense open subset of one component. We will see from an example that the 3264 tangent conics split
evenly along the two irreducible components, although the scheme structure in both components are very
different (in the dual component, there are generally 1632 tangent “conics,” each with multiplicity 1). We
then show, using a method similar to [PT20, 3.2] that in the component containing the smooth conics, the
multiplicity of each tangent conic is at least 32. We then use an example and upper-semicontinuity of length
to conclude that there are, in general, 1632

32 = 51 smooth conics tangent to 5 given conics.

3 The proof

All schemes and rings we consider in this paper are Noetherian.

Definition 3.1. If X is a scheme over Spec(Z), and R be an arbitrary ring, we’ll use XR to denote the base
change X ×Spec(Z) Spec(R). In particular, XFp(or XQ) are the fibers of X over p ∈ Spec(Z) (or 0).

Definition 3.2. If XR is a scheme over Spec(R), we’ll use Xn
R to denote the fibered product of XR with

itself n times over Spec(R).

We now define an important concept that will be central to our discussion: the length of a point in the
domain of a morphism.

Definition 3.3. Given a morphism π : X → Y of finite type k-schemes, let x ∈ Xk̄(k̄) be a geometric point.
Suppose the scheme-theoretic fiber Xk̄,πk̄(x) has dimension 0. Then the π-length λπ(x) of x is defined as

λπ(x) = dimk̄

(
OXk̄,π

k̄
(x),x

)
.

We see that π-length is multiplicative under fibered products and preserved under base change. In absolute
terms, the length of a point x in a zero-dimensional scheme is defined as λ(x) = dimk(x)(OX,x), then the
relative length of x is simply the length of the geometric fiber containing x.

Proposition 3.4. Let σ1 : X → S, σ2 : Y → S be two morphisms. Let Z = X ×S Y with projections π1

and π2 X and Y . Then, for all z ∈ Z, letting x = π1(z) and y = π2(z), we have that

λσ1◦π1
(z) = λσ1

(x)λσ2
(y)

and
λπ1

(z) = λσ2
(y),

as desired.
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Proof. By base change, we may assume S = Spec(k). We may further assume without loss of generality that
X and Y are the connected components at x and y and contain only x and y, respectively. Let X = Spec(A)
and Y = Spec(B). Then, considering vector space dimensions over k,

dimk(OZ(Z)) = dimk(A⊗k B) = dimk(A) dimk(B)

and
dimk(OZxZx) = dimk(B ⊗k A⊗A k(x)) = dimk(B).

Unfortunately, π-length is not multiplicative under composition, but we can prove some basic facts about
π-lengths of compositions.

Proposition 3.5. Let π : X → Y and σ : Y → Z be two morphisms, and let x ∈ Xk̄(k̄) be a geometric
point of X. We have that λσ◦π(x) ≥ λπ(x). Furthermore, if λσ(x) = 1, equality holds.

Proof. Assume without loss of generality that Z = Spec(k). Furthermore, we may assume that X and Y
each only have 1 point by restricting to the connected components at x and y, respectively. Let Y = Spec(B),
and let my be the maximal ideal of B at y. Let k(y) = B/my and X = Spec(A). Then Xy = A/myA, so we
have dim(A) ≥ dim(A/myA) and equality if B = k(y).

Remark 3.6. When π is a finite morphism, π-length is uppersemicontinuous due to a result in [LJT74].
Similarly, the total fiber length µπ(y), defined as µπ(y) =

∑
f(x)=y λπ(x) = dim(π∗OX ⊗OY k(y)) is up-

persemicontinuous on Y [Har77, 3.12.7.2].

Furthermore, we have the following result on the general π-length of some morphisms.

Lemma 3.7. Given integral schemes X and Y over Fp with X normal and a finite, dominant morphism
π : X → Y , there exist d ∈ N and a dense open set U ⊂ X such that λπ(x) = pd for all x ∈ U .

Proof. Let K and L be the function fields on X and Y , respectively. Let Ks be the separable closure of K,
and take J = L ∩Ks. Then J/L is separable extension, and K/L is purely inseparable of degree pd. Now,
we may assume that Y = Spec(B) is affine by taking an open subset; then, since finite morphisms are affine,
X = Spec(A) is also affine.

Now, take σ : Y # = Spec(C) → Y to be the normalization of Y in J ; since X is normal, we have a
morphism τ : X → Y #. Since τ is dominant and closed, it is surjective. Since C is integrally closed and A

is integral over C, the minimal polynomial of elements in A has coefficients in C, so Ap
d ⊂ C. Let p be a

prime ideal in A, and p ∩ C = q. Since pp
d ∈ q,

pp
d

=
√

qA,

and so the fibers of X → Y # always consist of 1 point. Now, the fiber of the generic point is

A⊗C J = AC\0 = K,

of degree pd over L. By [Liu02, 5.1.25a], the length over each point is at least pd, with equality on an open
set containing the generic point of X. The morphism Y # → Y is étale at the generic point, since the field
extension is separable. By [Liu02, 4.4.12], we thus know that it is étale on a dense open set. This implies
that all fibers are reduced, and so the lengths are all 1. It follows from Proposition 3.5 that the length of
X → Y is pd on some dense open set, and no less elsewhere.

Let P5
Z denote the moduli space of conics over P2

Z where the point (a00, a11, a22, a01, a02, a12) corresponds

to the conic
∑
i,j aijxixj = 0. Similarly, let P5

Z
∨

denote the moduli space of conics over P2
Z
∨

, the dual space

of P2
Z. The open subset S ⊂ P5

Z given by the equation

a00a
2
12 + a11a

2
02 + a22a

2
01 − a01a02a12 − 4a00a11a22 6= 0

parametrizes the smooth conics. S is flat over P5
Z, and thus over SpecZ as well.

We now define a particular subset of conics which will be useful to our discussions.

4



Definition 3.8. The double lines is the closed subscheme LF ∈ P5
F given by equations

a01 = a02 = a12 = 0.

We define similarly L∨F ∈ P5
F
∨

.

When trying to calculate the number of conics tangent to 5 given conics, one runs into the problem that
the double lines will be tangent to every conic, since its intersections all have multiplicity at least 2. We may
not remove the double lines solely by considering S, since it is not proper. Instead, we eliminate these extra
tangencies by blowing up P5 along the subscheme of double lines. This works well in fixed characteristic,
but the closed subscheme of P5

Z corresponding to the double lines has a nonreduced fiber over 2 ∈ SpecZ.
Furthermore, this blowup fails to be flat over SpecZ. Instead, we consider the following scheme, which will
allow us to properly deal with these double lines, and is consistent across characteristics.

Definition 3.9. The scheme of complete conics is the closed subscheme Γ ⊂ P5
Z × P5

Z
∨

, where the first P5
Z

is parametrized by (aij) and the second P5
Z
∨

is parametrized by (bij) given by the equations

2biiaij + 2ajjbij + ajkbik = 0 (3.9.1)

4aiibii + aikbik − 4ajjbjj − ajkbjk = 0 (3.9.2)

bjj
(
a2
jk − 4ajjakk

)
− bii

(
a2
ik − 4aiiakk

)
= 0 (3.9.3)

ajj
(
b2jk − 4bjjbkk

)
− aii

(
b2ik − 4biibkk

)
= 0 (3.9.4)

where i, j, k is any permutation of the indices 0, 1, 2. A point in Γ is written as (C,D(∨)); in general, we use
the notation D(∨) to denote a conic in a dual space which is not necessarily the dual of any conic.

There is a canonical open immersion S → Γ which sends a smooth conic C = (c00, c11, c22, c01, c02, c12)
to (C,C∨), where C∨ is the dual conic of C, given by(

c212 − 4c11c22, c
2
02 − 4c00c22, c

2
01 − 4c00c11,

4c01c22 − 2c02c12, 4c02c11 − 2c01c12, 4c00c12 − 2c01c02

)
. (3.9.5)

The image of this open immersion, as an open subset of Γ, will be denoted S ′.

Example 3.10. The scheme of complete conics over Q is the fiber ΓQ of Γ over 0 ∈ SpecZ (see Defini-
tion 3.1). It is the closure of

{(C,C∨) : C smooth} ⊂ P5
Q × P5

Q
∨

This scheme is isomorphic to the blowup of P5
Q along the (reduced subvariety of) double lines. In particular,

ΓQ is independent of coordinates of P2
Q [EH16, p. 301].

Example 3.10 is true for all fields with characteristic distinct from 2. However, it fails in characteristic 2,
since the equations determining the double lines are different. Over a field F of characteristic 2 (for example
F = F2), we will work with the corresponding scheme ΓF .

Remark 3.11. Due to Remark 3.6, the most natural choice of Γ is to make it flat over Spec(Z). In fact,
the construction in Example 3.10 is natural in any characteristic different from 2, and fails in characteristic
2 since the dual of a smooth conic is no longer smooth. Hence there exists a unique scheme Γf = ΓQ ∈ P5

that is flat over Spec(Z) and is the scheme of complete conics in other characteristics.

Unfortunately, we were unable to determine Γf . On the other hand, we clearly have Γf ⊂ ΓF2
by universal

property of the closure. We will see that Γf ⊃ (ΓF2)red in Lemma 3.13. In other words, Γf is very close to
what we have right now, and may only differ on the component of double lines LF2 .

By considering the points in P2
F as lines over P2

F
∨

, we obtain a canonical isomorphism P2
F
∼= LF . Thus

it makes sense to speak of the strange point of a conic as a degenerate conic in the moduli space P5
F
∨

. We’ll
call this the double line dual. Lines lying on the double line dual are exactly the lines tangent to a conic,
thus the double line dual has the same properties (and equations) of the dual conic in other characteristics.
As a result, the structure of ΓF is somewhat different in characteristic 2 than in other characteristics, as
encapsulated in the following proposition.
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Proposition 3.12. When F is a field of characteristic 2, ΓF has two (geometrically) irreducible components.
The reduced structure of each component is isomorphic to the blowup of P5

F along LF , and we call these

Γ
(1)
F and Γ

(2)
F . Furthermore, the reduced structure at the intersection of the two components is LF × L∨F .

ΓF is reduced outside of this intersection.

Proof. We verify this by using Sage to calculate the embedded points of ΓF . Our code can be found in the
appendix.

The component, Γ
(1)
F represents pairs

(
C,D(∨)

)
where C is a conic and D(∨) is the double line dual

(i.e. the strange point considered as a double line in the dual space) to C. Similarly, Γ
(2)
F represents pairs

(C,D(∨)) where D(∨) is some conic and C is the double line dual to D(∨). Using Proposition 3.12, we can
now prove that Γf and ΓF2 have the same reduced structure.

Lemma 3.13. (ΓF2
)red ⊂ ΓQ inside P5

Z × P5
Z
∨

. In particular, Γred is flat over Spec(Z).

Proof. It follows from Example 3.10 and [Hol17, 2.1] that ΓZ[ 1
2 ] is flat over Spec(Z[ 1

2 ]). So, we only need to

show that (ΓF2
)red ⊂ ΓQ. Let S ′ be the open subset of Γ that is isomorphic to S. Then S ′F2

is a dense open

subset of the reduced Γ
(1)
F2

. Since S ′ ∼= S is flat over SpecZ, its generic points are in S ′Q ⊂ ΓQ, which implies
that

Γ
(1)
F2

= S ′F2
⊂ ΓQ.

Any isomorphism P2 ∼= (P2)∨ induces an automorphism of Γ which swaps Γ
(1)
F2

and Γ
(2)
F2

and sends ΓQ to
itself. The result follows.

We now define the main scheme we will consider that encapsulates our tangency conditions.

Definition 3.14. The scheme of flags is the scheme F ⊂ P2
Z×P2

Z
∨

of lines passing through a point; in other
words, it is the closed subscheme given by the equation

x0`0 + x1`1 + x2`2 = 0.

A point in F is written as (p, `), where ` is a line through p.

To define the scheme that we’d like to consider, we first define what we mean by conics being tangent to
a point-line flag.

Definition 3.15. The universal tangency flag (over any ring) is the scheme

T ⊂ Γ×F

defined by the equations 
(
(C,C∨), (p, `)

)
p ∈ C, ` ∈ C∨
` tangent to C at p,
p tangent to C∨ at `


where a line ` is tangent to a conic C with equation f at a point p if all 2× 2 minors of the matrix(

∇f(p)0 ∇f(p)1 ∇f(p)2

`0 `1 `2

)
(3.15.1)

are zero.

Over smooth conics, our definition is scheme-theoretically equivalent to the usual definition which does
not invoke the dual.

Proposition 3.16. The subscheme of S × F defined by the equations{ (
C, (p, `)

)
p ∈ C
` tangent to C at p

}
is isomorphic to T ∩ S ′ ×F through the canonical isomorphism S ∼= S ′.
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Proof. It suffices to check that the tangency conditions are equivalent. This is verified by Sage code, which
can be found in the appendix.

Definition 3.17. The universal tangency scheme over a ring R is the scheme

ΛR ⊂ Γ6
R ×R F5

R

defined as intersection of the base change of the relevant tangency flags. More specifically, we label the
6 factors of ΓR as ΓR,i, 1 ≤ i ≤ 6 and the 5 factors of FR as FR,i, 1 ≤ i ≤ 5. For each 1 ≤ i ≤ 5, we
consider the tangency flags Ti,1 ⊂ ΓR,i × FR,i and Ti,2 ⊂ ΓR,6 × FR,i. Then we may use a fibered product
to base change each Ti,j to be a closed subset of Γ6

R ×R F5
R (for example, the base change of T1,1 would be

T1,1 × ΓR,2 × . . . × ΓR,6 × FR,2 × . . . ). We define ΛR is the scheme-theoretic intersection of all these base
changes of tangency flags.

We have a canonical morphism πΛ,R : ΛR → Γ5
R defined by the projection to the space of the first 5

conics. When R is an algebraically closed field (e.g. Fp or Q), the fibers of πΛ,R correspond set-theoretically
to the complete conics tangent to 5 given conics. When R = Q, the fiber generally lies in the dense open
set SR ⊂ P5

R, in which case we have the usual count of smooth conics tangent to 5 given smooth conics

(which is 3264). However, with R = F2, the image P5
R is only dense in the irreducible component Γ

(1)
R

(Proposition 3.12), and we will see that there are, when counted with appropriate multiplicity, only 1632
smooth conics tangent to 5 given smooth conics in characteristic 2.

4 An Example

To simplify our future computations, we introduce some notations which will simplify our formula for the
tangency conditions. We will be working with multilinear algebra, in the vector space of homogeneous
polynomials over projective space or of polynomials over affine space.

Notation 4.1. When we work with a closed subscheme Spec(R/I) of an affine space Spec(R) where R is
a polynomial ring, equations of the form f = g where f, g ∈ R are some polynomial will mean that f ∈ I,
where I is assumed.

Notation 4.2. Let k be a field. Most of the definitions in this section are defined for vectors up to
nonzero/invertible scaling (i.e. elements of kn/k× for some n). They may also be defined analogously for
vectors in kn.

i) If p, q are two points in k3/k×, we let the cross product p× q be the triple

det

 î ĵ k̂
p0 p1 p2

q0 q1 q2

 ∈ k3/k×.

We can see that, if p× q = 0 and both p and q are nonzero, then p = q in k3/k×.

ii) Similarly, we define the dot product p·q = p0q0 +p1q1 +p2q2. A point p lies on the line with coordinates
q if and only if p · q = 0.

iii) For a point p ∈ k3/k×, define

sq(p) = (p2
0, p

2
1, p

2
2, p0p1, p0p2, p1p2) ∈ k6/k×.

Given a conic C with 6 coordinates representing its coefficients, we can express the relation p ∈ C as
sq(p) · C = 0.

iv) Similarly to the cross product, if we have any six vectors p1, . . . , p6 in k6/k×, we let p1 ∧ · · · ∧ p5 and
p1 ∧ · · · ∧ p6 = (p1 ∧ · · · ∧ p5) · p6 denote exterior products.
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v) If C is any conic over P2
k, we let st(C) ∈ k3/k× denote the strange ‘point’ of C. If C is not a double

line, its strange point is not 0, and can thus be interpreted as a geometric point of P2
k. The equations

for a line ` to be tangent to C (Definition 3.15) are equivalent to ` · st(C) = 0.

vi) Given a line ` = (`0, `1, `2) over P2, we let s(`) = (0, 0, 0, `2, `1, `0). The above tangency condition can
also be written as s(`) · C = 0.

vii) If p ∈ k3/k×, we let

t(p) =

0 0 0 p1 p2 0
0 0 0 p0 0 p2

0 0 0 0 p0 p1

 ∈ k3×6/k×,

so that t(p)C = p × st(C) is the tangent line of C at p. We have the identities pt(p) = 0 and
∇p sq(p) = t(p).

We now introduce the following proposition, which will be useful for our computations to deal with
nonreduced points.

Proposition 4.3. Let R be a ring. Given p1, p2 ∈ R and q1, q2 ∈ R[q1, q2], write p = (1, p1, p2), q = (1, q1, q2).
Suppose all terms in (p× q)(p× q)ᵀ are contained in some ideal I of R[q1, q2]. Then, for any homogeneous
polynomial f of degree n with 3 variables (say x0, x1, x2), we have

f(q)− ((1− n)f(p) + q · ∇xf(p)) ∈ I.

Proof. We have (p1 − q1)2 = (p2 − q2)2 = (p1 − q1)(p2 − q2) = 0 in Spec(R/I), so within our ideal I,

f(p) = f(q) + p · ∇p1,p2
f(q) = (1− n)f(q) + p · ∇pf(q)

as desired.

Now, we may move on to our example.

Example 4.4. Consider five general singular conics C1, . . . , C5 ∈ Γ
(1)

F2
over F2 so that Ci is composed of the

two lines `
(1)
i and `

(2)
i which intersect at pi. The fiber of πΛ,F2

over these 5 singular conics will corresponds
to complete conics that are tangent to these 5 given conics. Then pi is the strange point st(Ci) of Ci. We
will count, in this specific example, that there are exactly 1632 conics in the fiber whose tangent conic lie

inside Γ
(1)

F2
, and furthermore this count generally arise from 51 smooth tangent conics with multiplicity 32

each. In other words, we partly determine the scheme-theoretic structure of the fiber of ΛF2
over the five

given singular conics. We’ll use this example, along with the upper-semicontinuity from Remark 3.6, for our
final proof.

We were unfortunately unable to determine the scheme-theoretic structure of the part of the fiber whose

tangent conic lies inside Γ
(2)

F2
, and thus were unable to independently prove that there are generally 51 smooth

conics tangent to 5 given smooth conics. We note that to show this count independently, we only needed to
compute an upper bound on the multiplicities at each point, due to semi-uppercontinuity arguments.

We do show that, set-theoretically, the part of the fiber in Γ
(2)

F2
consists of 32 + 80 + 80 = 192 conics in

general, and that 32 conics in the fiber have length 1. We believe that the remaining sets of 80 conics have

lengths 4 and 16, which would add up to our 1632 = 31 + 80 × 4 + 80 × 16 conics in the fiber inside Γ
(1)

F2
.

Due to the upper-semicontinuity of multiplicity Remark 3.6, this implies that the multiplicity of conics in

the fiber in Γ
(2)

F2
is generally 1. In particular, the two parts of the fiber, although having the same count,

have non-isomorphic scheme-theoretic structures.

First, we’ll count the case that the tangent conic is smooth (i.e. inside Γ
(1)

F2
). We let the C be the

coordinates for the tangent conic. Let qi, ki be the coordinates for the tangency points and lines, for each
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1 ≤ i ≤ 5. Then the ideal cutting out the the fiber of the tangency scheme over C1, . . . , C5 is generated by
the following equations, for all 1 ≤ i ≤ 5:

qi · ki = 0 (Tangent point lies on tangency line) (4.4.1)(
qi · `(1)

i

)(
qi · `(2)

i

)
= 0 (Tangent point lies on singular conic) (4.4.2)

pi · ki = 0 (Tangent line tangent to singular conic) (4.4.3)

sq(qi) · C = 0 (Tangent point lies on the special conic) (4.4.4)

s(ki) · C = 0 (Tangent line tangent to the special conic) (4.4.5)

To find the multiplicity at some conic and flags (C, (qi, ki)) in the fiber, we work with the local ring of this
scheme at this point. In the rest of the calculations with this example, we implicitly work in the open set
where the first coordinate of each of pi and qi is 1 (i.e. pi,0 = 1 where pi = (pi,0, pi,1, pi,2)). Because of this,
qi,0 is invertible in the local ring for all i, and we assume it equals 1. As a result, it will make sense to talk
about non-homogeneous equations in qi.

In the next part, we’ll show that the multiplicity of each point in the scheme determined by (4.4.1)—
(4.4.5) is 32. We do this by first analyzing conditions (4.4.2) and (4.4.3) for the tangency to the singular
conics. Then we solve for the tangent conics in terms of the tangency flag, and use linear algebra to finish.

To avoid complications with dehomogenizing the coordinates, we’ll leave ki, C to be determined only up

to an invertible scalar. Thus our equations such as ki = `
(1)
i will actually mean that ki = c`

(1)
i for some

invertible scalar c in the local ring (for example, we might have c =
ki,0

`
(1)
i,0

).

Begin by working with some fixed i. We note that, when the singular conics are in general position, we
must have that either

a) qi · `(j)i 6= 0 for some j, or

b) ki 6= `
(1)
i , `

(2)
i .

The first case gives that qi · `(j)i is invertible in the local ring, so qi 6= pi, and thus happens when C is tangent
to one of the lines. The second happens when C passes through the singular point pi.

Case a). Here, we assume without loss of generality that j = 2. Then (4.4.2) gives that qi · `(1)
i = 0, which

implies that

0 =
(
`
(1)
i · qi

)
pi −

(
`
(1)
i · pi

)
qi = `

(1)
i × (pi × qi),

and thus
`
(1)
i = pi × qi. (4.4.6)

In addition, (4.4.1), (4.4.3), and (4.4.5) combine to give that

ki = `
(1)
i =⇒ s

(
`
(1)
i

)
· C = 0. (4.4.7)

Case b). Here, we have from (4.4.3) that

pi = `
(1)
i × ki = `

(2)
i × ki,

which implies via (4.4.1) and (4.4.2) that

(pi × qi)(pi × qi)ᵀ = 03×3, (4.4.8)

where 0m×n denotes the m× n zero matrix. This equation enables us to utilize Proposition 4.3.
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Now, we must have case a) for at most two values of i, since otherwise the point st(C) would lie on 3
general lines. We will move forward in the example when case b) occurs for 1 ≤ i ≤ 4 and case a) occurs for
i = 5; the computation for other conics are completely analogous.

First, we solve for the conic C. By (4.4.4) and (4.4.7),

C = sq (q1) ∧ · · · ∧ sq (q4) ∧ s
(
`
(1)
5

)
. (4.4.9)

In addition, for each 1 ≤ i ≤ 4, (4.4.1), (4.4.3), and (4.4.5) give that

0 = pi · ki = pi · (qi × st(C)) = qi · (pi × st(C)) = qit(pi)
(

sq (q1) ∧ · · · ∧ sq (q4) ∧ s
(
`
(1)
5

))
. (4.4.10)

For simplicity, we’ll assume i = 1; the other indices are symmetric. Then since ∇q1 sq(q1) = t(q1), we can
simplify using Proposition 4.3 for q1, using that (4.4.10) is homogeneous of degree 3 in q1, to get

0 = q1 · ∇q1
(
q1t(p1)(sq(q1) ∧ · · · ∧ sq(q4) ∧ s

(
`
(1)
5

)) ∣∣∣∣
q1=p1

= q1t(p1)
(

sq(p1) ∧ sq(q2) ∧ sq(q3) ∧ sq(q4) ∧ s
(
`
(1)
5

))
+
((
q1t(p1)

)
∧
(
p1t(p1)

)
∧ sq(q2) ∧ sq(q3) ∧ sq(q4) ∧ s

(
`
(1)
5

))
= sq(p1) ∧

(
q1t(p1) + sq(p1)

)
∧ sq(q2) ∧ sq(q3) ∧ sq(q4) ∧ s

(
`
(1)
5

)
(4.4.11)

For simplicity, we let fi = qit(pi) + sq(pi) and f = f1 ∧ · · · ∧ f4 ∧ s
(
`
(1)
5

)
. Then again simplifying using

Proposition 4.3 for q2, q3, q4, we get

0 = sq(pi) ∧ f1 ∧ · · · ∧ f4 ∧ s
(
`
(1)
5

)
= sq(pi) · f (4.4.12)

which is true for all 1 ≤ i ≤ 4 by symmetry. We also have, for all 1 ≤ i ≤ 4,

s
(
`
(1)
5

)
· f = fi · f = 0 (4.4.13)

To make equations (4.4.12) and (4.4.13) useful, we only need that f is nonzero. If we substitute qi = qi = pi
for 1 ≤ i ≤ 4, we have

f |qi=qi = sq(p1) ∧ · · · ∧ sq(p4) ∧ s
(
`
(1)
5

)
= C 6= 0,

so at least one coefficient of f is invertible in the local ring. So, (4.4.12) and (4.4.13) imply that

f
(
fi ∧ sq(p1) ∧ · · · ∧ sq(p4) ∧ s

(
`
(1)
5

))
= (f · fi)

(
sq(p1) ∧ · · · ∧ sq(p4) ∧ s

(
`
(1)
5

))
+ · · · = 0,

which gives that

0 = fi ∧ sq(p1) ∧ · · · ∧ sq(p4) ∧ s
(
`
(1)
5

)
= (qit(pi) + sq(pi)) · C = qi · ki. (4.4.14)

Since we also know that ki · pi = 0, we have for each 1 ≤ i ≤ 5 that

ki = pi × qi = ki. (4.4.15)

We see from equations (4.4.8) and (4.4.14) that each qi has multiplicity 2 for 1 ≤ i ≤ 4. Then by (4.4.3),
(4.4.5), and (4.4.10), we may express C and ki for 1 ≤ i ≤ 4 as polynomials in our q1, . . . , q5. Finally,

k5 = `
(1)
5 , and q5 is given by equations (4.4.1) and (4.4.4) only and has multiplicity 2. Hence our local ring

is generated by independent generators q1, ..., q5, each with multiplicity 2, which gives a total multiplicity of
32, as desired.

We now consider the case of a smooth dual conic D(∨) ∈ (P5)
∨

. We’ll use the same notation for the

singular conic and tangent flag, and let D(∨) be the coordinates of the dual conic. Again, we use D(∨), qi, ki
to denote the actual values at which we will compute the multiplicity.
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We still have equations (4.4.1), (4.4.2), and (4.4.3) in this setting, but the analogues of (4.4.4) and (4.4.5)
are slightly different. We see that

sq(ki) ·D(∨) = 0 (Tangent line lies on dual conic) (4.4.16)

s(qi) ·D(∨) = 0 (Tangent point tangent to dual conic) (4.4.17)

So, our classification into cases still applies, and so we have either (4.4.6) or (4.4.8), whence we may use
Proposition 4.3. Since we have a smooth dual conic, and a double line conic over P2, we can only have the
second case for at most 2 of the 5 singular conics, as otherwise the double line would pass through 3 of the
singular points.

We aim to show that the multiplicity is 4m when we have the second case for m singular conics. We again
pick a value of m; here we assume case a) for 1 ≤ i ≤ 3, and case b) for i = 4, 5. We expect a multiplicity of
42 = 16 here, and, again, the other cases are analogous.

We note that the other variables can be solved by the given equations: (4.4.16) and (4.4.17)

D(∨) = sq(l
(1)
1 ) ∧ sq(l

(1)
2 ) ∧ sq(l

(1)
3 ) ∧ s(q4) ∧ s(q5) (4.4.18)

Again, we were unable to finish these calculations. The calculations for m = 1 can be done essentially
“by hand” by restricting to an affine subset and setting p5 = q5 = (1, 0, 0), and k5 = (0, 1, 0). It seems that
similar calculations can be done in the m = 2 case, but we were unable to complete them.

5 Main Result

Let F be an algebraically closed field of characteristic 2. Let

Λ
(1)
F = ΛF ∩ ((Γ

(1)
F )6 ×F5

F )

be the scheme Λ on the first component of each complete conic. We will first calculate the length of πΛ,F at

points x ∈ Λ
(1)
F .

First, we see that the morphism π
(1)
Λ,F = πΛ,F |Λ(1)

F

factors through the morphism σΛ,F : Λ
(1)
F → (Γ

(1)
F )6 of

projection to the first factor. To calculate the length of σΛ,F , we write it as the fibered product of simpler
morphisms. The following remark is motivated by arguments of Pacini and Testa [PT20, 3.2].

Remark 5.1. Define for each 1 ≤ i ≤ 5 the scheme ΛF,i ⊂ (Γ
(1)
F )2 × FF by setting the flag to be tangent

to both smooth conics. Then the equations for ΛF,i are given by Proposition 3.16. We let the morphisms

σΛ,i,F be the projections onto (Γ
(1)
F )2. Then from Definition 3.17, we have that

Λ
(1)
F =

5⋂
i=1

(ΛF,i × (Γ
(1)
F )4 ×F4

F )

is the intersection (or fibered product) of the closed subschemes cut out by the tangency conditions for each
of the 5 flags. Furthermore, the projection morphism σΛ,F is the canonical fibered product morphism from
the projection morphisms σΛ,i,F .

Since length is multiplicative with fibered products and preserved under pullbacks (Proposition 3.4), it
suffices to calculate the length of σΛ,i,F .

Proposition 5.2. The length of σΛ,i,F is 2 over a dense open set in (Γ
(1)
F )2.

Proof. We have 2 fixed smooth conics C1, C2, and the scheme

U =


p ∈ `

(p, `) ∈ P2 × P2∨ : p ∈ Ci
` tangent to Ci at p

 ,
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where we precisely define each of our equations below. We want to calculate the length of each point in this
scheme.

Take one such point (p, `), and choose coordinates so p = (1, 0, 0), ` = (0, 1, 0). In addition, we may work

in the affine open subset of P2 × P2∨ given by p0 = `1 = 1. We now calculate what must be true about the
conics for this (p, `) to be in U . The conics Ci have equations

a
(i)
00 + a

(i)
11 p

2
1 + a

(i)
22 p

2
2 + a

(i)
01 p1 + a

(i)
02 p2 + a

(i)
12 p1p2 = 0. (5.2.1)

As p ∈ Ci, each must be 0 at p, so a
(i)
00 = 0 for each i ∈ {1, 2}. In addition, for ` to be tangent to Ci at

p, the gradient
(
a

(i)
01 , a

(i)
02

)
must be parallel to (1, 0). This gives that a

(i)
02 = 0 for each i. These are the only

conditions necessary for p ∈ Ci and ` to be tangent to Ci.

Now, we calculate the scheme U in (p, `). In addition to (5.2.1), and the condition

`0 + p1 + p2`2 = 0, (5.2.2)

which says that p ∈ `, we have the tangency conditions: all 2× 2 minors of(
`0 1 `2

a
(i)
01 p1 a

(i)
01 + a

(i)
12 p2 a

(i)
12 p1

)
(5.2.3)

must be 0. The last minor of this is

a
(i)
12 p1 + a

(i)
01 `2 + a

(i)
12 p2`2 = 0;

we may use (5.2.2) to reduce this to

a
(i)
01 `2 + a

(i)
12 `0 = 0. (5.2.4)

In general,

det

(
a

(1)
01 a

(1)
12

a
(2)
01 a

(2)
12

)
6= 0,

since the strange points of C1 and C2 should be in general distinct (we can verify this using the example of
5 singular conic, in which case forcing the strange point to equal a singular point results in too many linear
conditions on the coefficients of the conic), so some linear combination of (5.2.4) gives that `0 = `2 = 0,

which gives via (5.2.2) that p1 = 0. Finally, we have in general that a
(1)
22 6= 0, so (5.2.1) at i = 1 gives that

p2
2 = 0. We can check that the ideal (`0, `2, p1, p

2
2) generates the equations (5.2.1), (5.2.2), and (5.2.3) and

defines a scheme of length 2, so we are done.

We are now ready to present the final proof. This proof partially explains why 3264 = 51 × 64, and is,
assuming the existence of an example, independent of Vainsencher’s result [Vai78].

Theorem 5.3. There are generally at most 51 smooth conics tangent to 5 given smooth conics in charac-
teristic 2.

Proof. Throughout this proof, let y denote a tuple of 5 smooth conics over F2 each inside the first component

Γ
(1)
F2

of complete conics over F2, and let x be a point of ΛF2
that projects down to y via πΛ,F2

.

We know from [EH16, 8.9] that πΛ,Q generally has total fiber length 3264. It follows from Remark 3.6

that, on some open set U ⊂ (Γ
(1)
F2

)5, we have

µπΛ,F2
(y) = 3264

for all y ∈ U . By Example 4.4, this open set is nonempty, and thus it is dense. Furthermore, from this

example, we know that the total fiber length of π
(1)
Λ,F2

is generally at most 1632. Now, by uppersemicontinuity
of π-lengths (Remark 3.6) and Example 4.4, we have in general that

λ
π

(1)
Λ,F2

(x) ≤ 32.

Since π
(1)
Λ,F2

is projective and thus closed, this is true for the fiber of general y. By Remark 5.1, Proposition 5.2
and Proposition 3.5, however, the above length is always at least 32. So, for a general y, we have
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i) the total fiber length of π
(1)
Λ,F2

is ≤ 1632, and

ii) the length at each point in the fiber is 32,

so we must have at most 51 geometric points in the fiber
(
π

(1)
Λ,F2

)−1

(y). By base change, this result holds

over all fields.

Note that in the above proof, we would have shown that the total fiber length of π
(1)
Λ,F2

is generally equal

to 1632 if we had an example where the total fiber length inside the component Γ
(2)
F2

is 1632. This would
give the exact count of 51 smooth tangent conics, as opposed to our weaker result.

Using Vainsencher’s count [Vai78], we can determine more specifically the structure of the fiber of πΛ,F2 .

Corollary 5.4. The fiber of πΛ,F2
splits into 2 parts of equal total lengths by intersecting with the two

components of ΓF2
. Its intersection with Γ

(1)
F2

generally consists of 51 distinct points, each with multiplicity

32, while its intersection with Γ
(2)
F2

generally consists of 1632 distinct reduced points.

It is an interesting question to explain why the count splits in half exactly, particularly as the two parts of
the fiber are non-isomorphic. While our method of proof provides some insight to explain this phenomenon,
more work is needed to find a more intuitive explanation.
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Appendix 1

For Proposition 3.12, we use Sagemath’s .irreducible components() function to calculate the embedded points
of ΓF2 . Since the two irreducible components are isomorphic to the blow-up of P5 along the integral subscheme
of double lines, they are also geometrically irreducible. Similarly, the embedded point at the intersection is
isomorphic to P2×P2 and also geometrically irreducible. Thus we have also computed the embedded points
of ΓF2

.

We use the standard covering of P5 × P5∨ by 36 affine open subsets, and calculate the embedded points
of ΓF2

on each affine open subset.

Space.<a00,a11,a22,a01,a02,a12,b00,b11,b22,b01,b02,b12> = AffineSpace(12, GF(2))
PolyRing = Space.coordinate ring()

eq conics = [a01∗b12, a01∗b02, a12∗b01, a12∗b02, a02∗b01, a02∗b12, a01∗b01 − a02∗b02,
↪→ a01∗b01 − a12∗b12,

a01∗b01^2, a01^2∗b01, a12∗b12^2, a12^2∗b12, a02∗b02^2, a02^2∗b02,
b00∗a01^2−b22∗a12^2, b11∗a01^2−b22∗a02^2, b00∗a02^2−b11∗a12^2,
a00∗b01^2−a22∗b12^2, a11∗b01^2−a22∗b02^2, a00∗b02^2−a11∗b12^2]

list1 = [a00,a11,a22,a01,a02,a12]

list2 = [b00,b11,b22,b01,b02,b12]

for var1 in list1:
for var2 in list2:

extra eq = [var1−1, var2−1]
ideal conics = PolyRing.ideal(eq conics + extra eq)

subscheme = Space.subscheme(ideal conics)

print(subscheme.irreducible components())

For Proposition 3.16, we check over all standard affine coverings that the ideals generated by the equations
in Definition 3.15 and Proposition 3.16 are equal by showing that they contain the generators of each other.
Note that some affine coverings were excluded using symmetry.

import numpy as np
ConRing.<c00,c01,c02,c11,c12,c22,p0,p1,p2,l0,l1,l2> = PolynomialRing(QQ)
conic eq = c00∗p0∗p0+c11∗p1∗p1+c22∗p2∗p2 + c01∗p0∗p1 + c12∗p1∗p2 + c02∗p0∗p2
grad = conic eq.gradient()

matrix = np.array([[l0,l1,l2],

grad[6:9]])

minors = [matrix[:,:2].tolist(), matrix[:,1:].tolist(), matrix[:,[0,2]].tolist()]

dets = [Matrix(minor).determinant() for minor in minors]

dual = [c12^2−4∗c11∗c22, c02^2−4∗c00∗c22, c01^2−4∗c00∗c11, 4∗c01∗c22−2∗c02∗c12, 4∗c02∗
↪→ c11−2∗c01∗c12, 4∗c12∗c00−2∗c02∗c01] #d00 , d11 , d22 , d01 , d02 , d12

make dual = {p0:l0, p1:l1, p2:l2, l0:p0, l1:p1, l2:p2, c00: dual[0], c11:dual[1], c22:
↪→ dual[2], c01: dual[3], c02:dual[4], c12:dual[5]}

duals eq = conic eq.subs(make dual)

dual dets = [dets[i].subs(make dual) for i in range(3)]

for varl in [l0,l1]:
for varc in [c00,c01,c02,c11,c12,c22]:

givens = [p0∗l0+p1∗l1+p2∗l2,p0−1,varl − 1,varc−1]
van ideal = ConRing.ideal(givens + dets + [conic eq])
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for u in range(3):
if dual dets[u] not in van ideal:

print(varl, varc, u)
if duals eq not in van ideal:

print(varl, varc)
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