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Abstract

We study two separate combinatorial problems. First, we look at the problem of partitioning
the edges of the complete graph Kn into the minimum possible number of complete bipartite
graphs (bicliques) such that every edge is covered exactly k times. It is known that at least
n− 1 bicliques are required. The previously best-known upper bound was O(kn), but de Caen,
Gregory, and Pritikin showed that for k ≤ 18, merely n − 1 bicliques are sufficient for all
sufficiently large n, and conjectured that the same holds for every k. We make progress towards
this conjecture by showing that n + o(n) bicliques suffice for every fixed k.

We then turn to the Ramsey theory of ordered graphs. For ordered graphs G and H, the
ordered Ramsey number r<(G,H) is the smallest N such that every bicoloring of the complete
graph on [N ] contains either a blue copy of G or a red copy of H, where the embedding must
preserve the relative order of vertices. One number of interest, first studied by Conlon, Fox, Lee,
and Sudakov, is the “off-diagonal” ordered Ramsey number r<(M,K3), where M is an ordered
matching on N vertices. The best-known upper bound is a trivial bound O(N2/ logN), but
there is no known family of arbitrarily large matchings with r<(M,K3) = ω(N4/3), and Conlon
et al. hypothesize that r<(M,K3) = O(N2−ε) for every ordered matching M . We resolve two
special cases of this conjecture. We show that the off-diagonal ordered Ramsey numbers for
matchings in which edges do not cross are nearly linear. We also prove a truly sub-quadratic
upper bound for random matchings with interval chromatic number 2.

1 Introduction

1.1 Biclique Partitions

Let L be a list of positive integers, and let G be a graph. The L-biclique covering number of a graph
G, which we refer to as bpL(G), is the size of the smallest collection of complete bipartite subgraphs
of G so that every edge of G is covered exactly li times by this collection, for some li ∈ L. The special
cases which have received the most attention are bp{1}(G), known as the biclique partition number,
and bp{1,2,3,... }(G), known as the biclique covering number of graph G, or alternatively the bipartite
dimension. From an algorithmic standpoint, even approximating the biclique partition/covering
number of general graphs is NP hard. Both problems have connections to many other areas of
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computer science such as communication complexity, and we refer the reader to [9] for more on
these connections.

Since Graham and Pollak [7] showed in 1971 that

bp{1}(Kn) = n− 1,

determining and estimating the L-biclique covering numbers of specific graphs has been an active
area of combinatorics. In particular there has been interest in determining the L-biclique covering
numbers of the complete graph Kn for various lists L [5, 1, 11]. See [5] for a more comprehensive
survey on this line of work.

In this paper, we look at the list L = {k}. By a generalization of the Graham-Pollak theorem, it is
known that bp{k}(Kn) ≥ n− 1 for all n and k. It has been conjectured that this is essentially tight:

Conjecture 1.1 (de Caen et al. [3]). For every positive integer k,

bp{k}(Kn) = n− 1

for all sufficiently large n.

The same authors resolve the conjecture for k ≤ 18 by constructions related to design theory [3].
However, to our knowledge, the previously best-known upper bound for general k is bp{k}(Kn) =
O(kn), obtained by compounding a small-k construction.

We will show that Conjecture 1.1 is true to leading order. More precisely, we construct a family of
designs (inspired by classical ideas of Nisan and Wigderson [10]), which in turn yields a {k}-covering
of Kn by at most n+ k

√
n+ 2kn3/4 bicliques.

Theorem 2.5. Let k be a positive integer. For all sufficiently large n,

bp{k}(Kn) ≤ n+ k
√
n+ 2kn3/4.

1.2 Ordered Ramsey numbers

A classical area of extremal combinatorics is Ramsey theory. Introduced by Ramsey [12] and pop-
ularized by Erdos and Szekeres [6], the Ramsey number of a graph G, commonly denoted by r(G),
is the smallest n so that every edge bicoloring of the complete graph Kn contains a monochromatic
copy of G. Shrinking the sizable gap between the asymptotic upper/lower bounds on r(Kn) has
been a major open problem for decades, spurring extensive work on a plethora of related questions
in Ramsey theory.

One variant of Ramsey numbers which has recently received attention is the analogue for ordered
graphs. An ordered graph on [n] is a graph on n vertices which are given distinct labels in {1, . . . , n}.
Given an ordered graph G, the ordered Ramsey number of G, denoted by r<(G), is the smallest n
so that every edge bicoloring of the ordered complete graph on n vertices contains a monochromatic
copy of G which preserves the relative vertex ordering of G. As with the unordered case, one can
define the off-diagonal ordered Ramsey number of two graphs G and H, denoted by r<(G,H), as
the smallest n so that every edge bicoloring of the ordered complete graph on n vertices contains
either an order preserving red copy of G or an order preserving blue copy of H.

The first systematic studies of ordered Ramsey numbers were conducted by Conlon, Fox, Lee, and
Sudakov [4] and by Balko, Cibulka, Král, and Kynčl [2]. However, as pointed out by the authors of
[4], a number of classic results in extremal combinatorics can be reinterpreted as statements about
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ordered Ramsey numbers. For instance, Erdos and Szekeres proved [6] that every sequence of at least
(n− 1)2 + 1 distinct numbers contains either an increasing subsequence of length n or a decreasing
subsequence of length n. This result is implied by the bound r<(Pn,Kn) ≤ (n− 1)2 + 1, where Pn
is the n-vertex path imbued with the natural monotonic ordering: for any sequence of n distinct
numbers x1, . . . , xn, color (i, j) red if xi < xj and blue otherwise.

Perhaps the simplest nontrivial family of ordered graphs from the perspective of ordered Ramsey
theory is matchings, in which every vertex has degree 1. Conlon, Fox, Lee, and Sudakov provide
a number of bounds for general matchings, for matchings satisfying certain properties, and for off-
diagonal ordered Ramsey numbers involving matchings. Relevant to this paper is their work on
bounding the largest possible value of r<(M,K3), where M is a matching. They have the following
result:

Theorem 1.2 (Conlon, Fox, Lee, and Sudakov [4]). There are positive constants c1 and c2 such
that for all positive integers n,

c1

(
n

log n

)4/3

≤ max
M

r<(M,K3) ≤ c2
n2

log n

where the maximum is taken over all ordered matchings M on n vertices.

The upper bound in this theorem is in some sense trivial, in that it does not make use of any
properties of matchings; rather, it bounds r<(M,K3) by the well-studied unordered Ramsey number
r(Kn,K3) (whose asymptotics are known), only making use of the fact that every graph on n vertices
can be embedded in Kn. For this reason and perhaps other reasons, Conlon, Fox, Lee, and Sudakov
hypothesize [4] that the upper bound can be improved to r<(M,K3) ≤ n2−ε for some ε > 0.

We contribute two results in the direction of this conjecture. We first look at the special case of
ordered matchings where the edges do not cross. That is, for any two edges (i, j) and (k, l) with
i < j and k < l, the intervals [i, j] and [k, l] are either disjoint or nested one inside the other. We
call the matchings which satisfy this condition “parenthesis matchings”, after the useful fact that
these matchings correspond with balanced parenthesis sequences. Indeed, it is this correspondence
which partially motivates our proof of the following theorem.

Theorem 3.8. For any ε > 0 there is a constant c such that every parenthesis matching M on n
vertices has

r<(M,K3) ≤ cn1+ε.

To state our second result, we must define the interval chromatic number of an ordered graph.
Analogous to the chromatic number of an unordered graph, the interval chromatic number χ<(G)
of a graph G is the minimum number of contiguous intervals into which the vertex set must be split
so that each interval is an independent set in G.

Conlon, Fox, Lee, and Sudakov present a number of general results accompanied by much stronger
specific results for matchings with small interval chromatic number [4]. In a similar spirit, we prove
a sub-quadratic bound on r<(M,K3) for random matchings with interval chromatic number 2.

Theorem 3.15. There is a constant c such that, if an ordered matching M on n vertices with
interval chromatic number 2 is picked uniformly at random, then

r<(M,K3) ≤ cn 24
13

with high probability.

Observe that the statement is not probabilistic over bicolorings; rather, it is a true Ramsey-type
result which applies to almost all matchings.
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1.3 Roadmap

We outline the remainder of this paper. In Section 2, we describe and prove our results on {k}-
biclique partitions of the complete graph. Subsequently, in Section 3, we move on to ordered Ramsey
numbers, achieving new upper bounds for the off-diagonal ordered Ramsey numbers of parenthesis
matchings and random matchings with interval chromatic number 2. Finally, in Section 4 we outline
possible directions for future research, describing a few of the many interesting questions about
biclique partitions and ordered Ramsey numbers which remain open.

2 A {k}-biclique partition of Kn

Our biclique construction is by means of a combinatorial design in the sense used by Nisan and
Wigderson [10] in their classical paper on pseudorandom generators.

Definition 2.1. A family of sets {S1, . . . , Sn} with S1, . . . , Sn ⊆ [d] is a (n, d, t,m)-design if:

1. |Si| = m for all i ∈ [n];

2. |Si ∩ Sj | ≤ t for all i, j ∈ [n] with i 6= j.

We construct our designs differently, though, in order to achieve better bounds for our specific
choices of parameters:

Lemma 2.2. For any positive integers m and t, there exists some N such that an (n, d, t,m)-design
with d ≤ 2mn1/(t+1) exists for all n ≥ N .

Proof. LetN be large enough that there are at leastm prime numbers in the interval [n1/(t+1), 2n1/(t+1)]
for every n ≥ N ; this is possible by the Prime Number Theorem. Fix some n ≥ N , and choose
distinct primes p1, . . . , pm ∈ [n1/(t+1), 2n1/(t+1)]. We will pick sets S1, . . . , Sn from the disjoint union

U =

m⋃
j=1

Z/pjZ.

For i ∈ [n], let Si consist of m elements from U , one from each group. Specifically, for j ∈ [m], pick
element i (mod pj) from group Z/pjZ.

It is clear that |Si| = m for all i. Furthermore, suppose that |Si ∩Sj | > t for some distinct i, j ∈ [n].
Then among the chosen primes, there are t + 1 primes pi1 , . . . , pit+1 with i ≡ j (mod pik) for each
k ∈ [t+ 1]. But then

t+1∏
k=1

pik
∣∣ (i− j).

Since i 6= j, it follows that

|i− j| ≥
t+1∏
k=1

pik ≥ n,

a contradiction.

To complete the proof, note that the sets are chosen from a universe of size |U | =
∑m
j=1 pj , which

does not exceed 2mn1/(t+1).
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Remark 2.3. The above design is in fact optimal up to constant factors. Consider any (n, d, t,m)-
design, where the sets are contained in a universe U of size d. For every (t+ 1)-element subset of U ,
there is at most one set among S1, . . . , Sn which contains the subset; since each Si contains

(
m
t+1

)
subsets of size t+ 1, we must have

(
d
t+1

)
≥ n

(
m
t+1

)
, so

d ≥
(
n

(
m

t+ 1

)
(t+ 1)!

)1/(t+1)

≥ 1

e
n1/(t+1)m.

We will only use the special case (n, k
√
n, 1, bk/2c) of Lemma 2.2, which we state explicitly below

as a corollary.

Corollary 2.4. For any integer k and all n sufficiently large, there are sets S1, . . . , Sn ∈ [k
√
n] with

|Si| = bk/2c for all i and |Si ∩ Sj | ≤ 1 for all i 6= j.

Now we make use of this design to construct a {k}-biclique covering of Kn.

Theorem 2.5. Let k be a positive integer. Then for all sufficiently large n,

bp{k}(Kn) ≤ n+ k
√
n+ 2kn3/4.

Proof. Let S1, . . . , Sn be the sets from Corollary 2.4. Define bicliques B1, . . . , Bk
√
n on Kn by letting

Bi be the biclique between {j ∈ [n] | i ∈ Sj} and {j ∈ [n] | i 6∈ Sj}. Then any edge (i, j) is covered
exactly |Si|+|Sj |−2|Si∩Sj | times, and this number is equal to either 2bk/2c−2 or 2bk/2c (depending
on whether |Si ∩ Sj | = 0 or 1).

If k is odd, every edge needs to be covered 1 or 3 more times. Call the latter edges “triple-edges”.
An edge (i, j) is a triple-edge if and only if there exists some index l and remainder r such that
i ≡ j ≡ r (mod pl). We can define a clique Cl,r consisting of all vertices i with i ≡ r (mod pl).
Observe that every triple-edge is contained in exactly one clique, and every clique contains only
triple-edges. To make progress, we’ll construct a {1, 2}-biclique covering of each clique. It is known
[5] that bp{1,2}(Kn) ≤ 2

√
n for any n. The number of cliques Cl,r is at most k

√
n, and each clique

has size at most
√
n, so 2kn3/4 biclique are needed to {1, 2}-cover every clique. Now every edge

needs to be covered 1 or 2 more times.

If k is even, every edge needs to be covered only 0 or 2 more times, so we skip the above step.
Finally, in either case, we “pad” the covering so that every edge is covered exactly k times. Define
bicliques D1, . . . , Dn where Di is the star centered at vertex i and containing edges to all vertices
j < i such that (i, j) needs to be covered 1 or 2 more times, and all vertices j > i such that (i, j)
needs to be covered 2 more times.

This completes the construction, and the total number of bicliques used is at most n + k
√
n +

2kn3/4.

Remark 2.6. The main ingredient of the above theorem is the {2k − 2, 2k}-biclique covering of Kn

using 2k
√
n bicliques. A bound in [5] shows that

√
n/2 bicliques are necessary for this list covering,

so the asymptotic dependence on n cannot be decreased.

3 Off-diagonal ordered Ramsey numbers

In this section we leave behind biclique partitions, and investigate the ordered Ramsey number
r<(M,K3), where M is a matching. Since every graph on N vertices embeds in the complete graph
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Figure 1: The parenthesis matching corresponding to the parenthesis sequence (()())().

KN , and the ordered Ramsey number r<(KN ,K3) is equal to the Ramsey number r(N, 3), which
has been asymptotically determined to be Θ(N2/ logN), it follows (as pointed out in [4]) that
r<(M,K3) = O(N2/ logN) for a matching M on N vertices. However, this bound does not make
use of any properties of matching graphs.

In Section 3.1, we achieve a nearly linear bound for matchings whose edges do not cross. In Sec-
tion 3.2, we obtain a slightly sub-quadratic bound for random matchings with interval chromatic
number 2.

Throughout the remainder of this paper, we make no serious attempts to optimize constants.

3.1 Parenthesis Matchings

Earlier we defined “parenthesis matchings” as matchings for which the edges do not cross. We claim
without proof that every parenthesis matching corresponds uniquely with a balanced parenthesis
sequence—that is, a sequence of correctly matched open and close parentheses. The bijection is
straightforward; each matched pair of parentheses corresponds with an edge in the matching. See
Figure 1 for an example.

We start with perhaps the simplest nontrivial parenthesis matching, and work our way up to general
parenthesis matchings. Define the nested matching graph NMk of size k to be the graph on [2k]
where (i, j) is an edge if and only if i + j = 2k + 1. We establish the off-diagonal ordered Ramsey
number of NMk up to constant factors:

Proposition 3.1. For any positive integer k,

4k − 2 < r<(NMk,K3) ≤ 6k.

Proof. The lower bound follows from a simple construction: color the ordered complete graph K4k−2
such that {1, . . . , 2k − 1} and {2k, . . . , 4k − 2} form two red cliques, and all remaining edges are
blue. Then there are no blue triangles, and no red edge (i, j) has |i − j| > 2k − 2, so there cannot
be a red matching on 2k vertices.

For the upper bound, pick an arbitrary bicoloring of K6k. Suppose the graph contains no blue copies
of K3. If any vertex has blue degree at least 2k, then there is a red clique of size 2k, which must
contain M . Otherwise, the number of blue edges is at most 6k2. Hence, the number of red edges
is at least 12k2 − 3k. Let ER be the set of red edges, and define a strict partial order on ER by
(i, j) < (l,m) if l < i < j < m. We wish to show that there is a “chain” of edges e1, . . . , ek with
e1 < · · · < ek. Suppose not; define a function L : ER → {1, . . . , k − 1} where L(e) is the longest
chain ending at e. Observe that L−1(n) is an “anti-chain” for each n ∈ [k − 1]. That is, for any
e1, e2 ∈ L−1(n), we cannot have e1 < e2 nor e2 < e1.

Applying the pigeonhole principle, fix some n such that |L−1(n)| ≥ 12k. For 1 ≤ i ≤ 6k let ai be
the minimum index j such that (i, j) ∈ |L−1(n)|, and let bi be the maximum such index. Then∑6k
i=1(bi+1−ai) ≥ 12k, so

∑6k
i=1(bi−ai) ≥ 6k. It follows that there exist indices i < j with bi > aj .

But then i < j < aj < bj , so edges (i, ai) and (j, bj) are comparable. This contradicts our claim
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that L−1(n) is an anti-chain, so there must be a chain of length at least k. The edges in the chain
comprise the red embedding of NMk into the graph.

We believe that the upper bound is far from optimal. In particular, we make the following conjecture.

Conjecture 3.2. For any positive integer k,

r<(NMk,K3) = 4k − 1.

The nested matching can be used to bound the corresponding ordered Ramsey numbers for a more
general class of matchings. As we will build up more complex parenthesis matchings from simpler
ones, we need a way to keep track of the growth of r<(M,K3). One approach is the following lemma:

Lemma 3.3. Let A1, . . . , A2k−1 be (possibly empty) balanced parenthesis sequences inducing match-
ings M1, . . . ,M2k−1. Then

(A1(A2(· · · (Ak−1(Ak)Ak+1) · · · )A2k−2)A2k−1)

is a balanced parenthesis sequence which induces some matching M , with

r<(M,K3) ≤ r<(NMk+t,K3),

where t =
∑k
i=1 max(r<(Mi,K3), r<(M2k−i,K3)).

Proof. Pick an arbitrary bicoloring of the complete graph on r<(NMk+t,K3) vertices. Assume that
there is no blue copy of K3. Then there is a red copy of NMk+t. Starting with the innermost edge of
the matching and working outwards, delete as many matched pairs as necessary until there is space
for a red copy of Mk. Every deletion increases the number of inner vertices by at least one, so there
will be space after at most r<(Mk,K3) steps. Save the current innermost matched pair (which will
correspond to the parentheses around Ak), and continue deleting subsequent matches until there is
space for a red copy of Mk−1 (to the left of the saved match) and a red copy of Mk+1 (to the right
of the saved match). The number of deletions is at most max(r<(Mk−1,K3), r<(Mk+1,K3)); save
the new innermost match.

Repeating the above process k − 2 more times yields a complete red copy of M . Note that the
process does not run out of matches, since only k matches are saved, and at most t matches are
deleted.

In the above lemma, the Ramsey number of each matching Mi is multiplied by a constant factor
arising from the Ramsey number of a nested matching NMn. It is possible to decrease the depen-
dence on the central matching Mk, in exchange for larger constants on the remaining matchings and
on the length of the matching.

Lemma 3.4. Let A1, . . . , A2k−1 be balanced parenthesis sequences inducing matchings M1, . . . ,M2k−1.
Let M be the parenthesis matching induced by the expression

(A1(A2(· · · (Ak−1(Ak)Ak+1) · · · )A2k−2)A2k−1).

If l =
∑
i 6=k r<(Mi,K3) and t = r<(Mk,K3), then

r<(M,K3) ≤ t+ 20(k + l + |Ak|).
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Proof. Pick an arbitrary bicoloring of the ordered complete graph on t + 20(k + l + |Ak|) vertices.
Assume that there is no blue copy of K3. Let X denote the first 10(k + l + |Ak|) vertices; let Y
denote the next t vertices; and let Z denote the remaining 10(k+ l+ |Ak|) vertices. Observe that Y
contains a red copy of Ak.

Suppose that there is a red copy of NMk+l in X ∪ Z, where the first k + l vertices are in X and
the remaining k + l vertices are in Z. Then, just as in Lemma 3.3, we can start with the innermost
matching and work outwards, deleting matchings to make space for red copies of A1, . . . , Ak−1 and
Ak+1, . . . , A2k. Only l matchings need be deleted, and by the end, the graph X ∪ Y ∪ Z contains a
red copy of M .

Now suppose the converse, so the maximum number of nested matchings from X to Z is less than
k + l. As in Proposition 3.1, define the natural strict partial order on the red edges between X
and Z. A set of nested edges forms a “chain”, and the largest anti-chain contains no more than
|X|+ |Z| = 20(k+ l+ |Ak|) red edges. We know that the red edges can be partitioned into less than
k + l anti-chains, so the number of red edges between X and Z is at most 20(k + l + |Ak|)(k + l),
which we upper bound by 20(k + l + |Ak|)2.

Thus, the number of blue edges between X and Z is at least 80(k+ l+ |Ak|)2. Hence there must be
a vertex v ∈ X with at least 8(k + l + |Ak|) blue edges into Z. Since the graph was assumed to be
blue K3-free, it follows that the set of blue neighbors of v forms a red clique of size 8(k + l + |Ak|).
As |M | ≤ 8(k + l + |Ak|), we conclude that the bicoloring contains a red copy of M .

Every parenthesis matching is in a bijection with an ordered, rooted tree. The above lemma allows us
to bound the off-diagonal Ramsey number of the tree by the Ramsey numbers of all the branches off
any path. Intuitively (and we will formalize the intuition later), this bound is strong on unbalanced
trees and weak on well-balanced trees. For the latter case, we have the following simple lemma.
While it is a special case of the above lemma aside from unimportant constant factors, we will use
it for a different purpose (namely, well-balanced trees), so we state it separately for clarity.

Lemma 3.5. Let A be a balanced parenthesis sequence inducing the matching M . Then (A) is a
balanced parenthesis sequence inducing some matching M ′, and

r<(M ′,K3) ≤ r<(M,K3) + |M ′|+ 1.

Proof. Let t = r<(M,K3) and let n be the number of vertices in matching M ′. Pick an arbitrary
bicoloring of the ordered complete graph on [t+ n+ 1]. Suppose there are no blue triangles. Then
there is a red copy of M in {2, . . . , t+1}. So if there is a red edge from 1 to any of {t+2, . . . , t+n+1},
we have found a red copy of M ′. Otherwise, every edge from 1 to {t + 2, . . . , t + n + 1} is blue, so
{t+ 2, . . . , t+ n+ 1} form a red clique of size n, which must contain the matching M ′.

With the above lemmas, we can prove a subquadratic bound on the Ramsey numbers of all balanced
parenthesis matchings. Two convexity results are needed; we postpone their proofs to Appendix A.

Lemma 3.6. Let a0, a1, a2, . . . , ak ≥ 0 and δ > 1 and m > 0 be real numbers. Let r = m−1/(δ−1).
If s =

∑k
i=0 ai ≥ 1 and ai ≤ rs for all 1 ≤ i ≤ k, then

m(a0 + caδ1 + · · ·+ caδk) ≤ csδ

for any c ≥ m.

Lemma 3.7. Let a1, . . . ak ≥ 0 and δ ≥ 1 be real numbers. Let r ∈ (0, 1). If s =
∑k
i=1 ai and

ai ≤ rs for all 1 ≤ i ≤ k, then
aδ1 + · · ·+ aδk ≤ rδ−1sδ.
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In the following proof we’ll use the bijection between parenthesis matchings on n vertices and ordered
rooted trees of size s = n/2 + 1. The basic idea is to induct on tree size and decompose the tree into
smaller trees by one of two methods, depending on the relative weights of the root’s child subtrees.

Call an edge r-heavy if schild ≥ r · sparent, where schild is the size of the child subtree and sparent is
the size of the parent subtree. If the inequality does not hold, call the edge r-light. Similarly call a
vertex r-heavy or r-light if its parent edge is r-heavy or r-light, respectively.

If all children of the root are r-light for an appropriate choice of r (slightly less than 1), we apply
the inductive hypothesis to each child separately, and use Lemma 3.5 to obtain a bound for the
entire tree. Since every child subtree is a constant factor smaller than the entire tree, the lemma
intuitively yields a sufficiently good recurrence.

If however the root has an r-heavy child, Lemma 3.5 does not suffice. Instead we trace a path of
heavy edges from the root down, decomposing the tree into a number of branches, as well as possibly
some subtrees at the tail end of the path. Here we use Lemma 3.4. We know that every branch is
(1 − r)-light, so can afford to multiply the sum of Ramsey numbers of the branches by 20 in the
lemma. We only know the tail subtrees to be r-light, which is why they are treated differently in
the lemma.

Formalizing the above proof sketch requires some manipulation of inequalities and applications of
Lemma 3.6 and Lemma 3.7. We work through these below.

Theorem 3.8. For any ε > 0 there is a constant c such that every parenthesis matching M on n
vertices has r<(M,K3) ≤ cn1+ε.

Proof. Let ε > 0. Set r = 1− 23−2/ε, and set c = 23/(1− rε). A parenthesis matching on n vertices
uniquely corresponds with an ordered rooted tree of size s = n/2 + 1. We induct on the tree size
s. If s = 1, the corresponding matching is the empty matching on 0 vertices, for which the claim is
trivially true. Fix an ordered rooted tree of size s > 1, corresponding to a matching M . There are
two cases which we will treat separately; either the tree root has an r-heavy child, or not.

Suppose that the tree root does not have an r-heavy child. Let s1, . . . , sk be the sizes of the child
subtrees of the root. Let M1, . . . ,Mk be the matchings corresponding to the respective subtrees,
and let ti = r<(Mi,K3) for each i ∈ [k]. With a slight abuse of notation, identifying the matchings
with their parenthesis sequences, we have

M = (M1)(M2) . . . (Mk).

Lemma 3.5 provides the bound r<((Mi),K3) ≤ ti + 2si + 1. Since the Ramsey number of a union
of ordered graphs on disjoint intervals of vertices is subadditive, it follows that

r<(M,K3) ≤
k∑
i=1

(ti + 2si + 1) ≤ 3s+

k∑
i=1

ti.

By the inductive hypothesis and Lemma 3.7 (using the assumption that every subtree is r-light), we
have

r<(M,K3) ≤ 3s+

k∑
i=1

cs1+εi ≤ 3s+ crεs1+ε ≤ cs1+ε.

The last step follows since c was chosen to be sufficiently large.

The remaining case to consider is if the tree root has a heavy child. Then there is some path which
starts at the root and consists entirely of heavy edges (possibly only one edge, or possibly more). Let
sb1, . . . , s

b
k be the sizes of all subtrees which branch off the heavy path, and let sh be the (vertex) size

9



of the heavy path. Let M b
1 , . . . ,M

b
k be the corresponding matchings, and let tbi = r<(M b

i ,K3) for
each i ∈ [k]. For ease of notation, suppose that the deepest vertex in the heavy path has k′ children,
and its child subtrees are indexed 1 . . . k′. The whole matching M can be decomposed into a nested
matching along with embedded matchings (M b

1), . . . , (M b
k). For instance, if k = 3 and k′ = 1 then

one possibility is M = ((M b
2)(()(M b

1))(M b
3)). By Lemma 3.5, the following bound holds for every

matching M b
i :

r<((M b
i ),K3) ≤ tbi + 3sbi .

So by Lemma 3.4, we have

r<(M,K3) ≤
k′∑
i=1

(
tbi + 3sbi

)
+ 20

sh +

k∑
i=k′+1

(
tbi + 3sbi

)
+

k′∑
i=1

sbi

 .

By the inductive hypothesis, it follows that

r<(M,K3) ≤
k′∑
i=1

(
c
(
sbi
)1+ε

+ 3sbi

)

+ 20

sh +

k∑
i=k′+1

(
c
(
sbi
)1+ε

+ 3sbi

)
+

k′∑
i=1

sbi

 .

Reordering terms and absorbing the term 3
∑k
i=k′+1 s

b
i into the outer constant factor through the

bound c ≥ 20, we get

r<(M,K3) ≤ c

k′∑
i=1

(
sbi
)1+ε

+ 23

k′∑
i=1

sbi

+ 23

(
sh + c

k∑
i=k′+1

(
sbi
)1+ε)

. (1)

To bound the first two terms of Equation 1, we observe that for each i ≤ k′, subtree i is r-light, and
therefore sbi ≤ rs. An application of Lemma 3.7, along with the bound crε + 23 ≤ c, gives

c

k′∑
i=1

(
sbi
)1+ε

+ 23

k′∑
i=1

sbi ≤ crε
 k′∑
i=1

sbi

1+ε

+ 23

k′∑
i=1

sbi

≤ c

 k′∑
i=1

sbi

1+ε

. (2)

For the remaining terms of Equation 1, observe that for any i > k′, subtree i has an r-heavy sibling,
so sbi is at most 1 − r times the parent’s subtree size, and therefore at most (1 − r)s. We will use
one of two approaches (below, A and B) depending on the cumulative weight of these subtrees.

A. If sh +
∑k
j=k′+1 s

b
j ≥ 23−1/εs, then we can bound sbi ≤ 231/ε(1− r)

(
sh +

∑k
j=k′ s

b
j

)
for all i > k′.

We know that c ≥ 23 and 231/ε(1− r) ≤ 23−1/ε, so an application of Lemma 3.6 yields

23

(
sh + c

k∑
i=k′+1

(
sbi
)1+ε) ≤ c(sh +

k∑
i=k′+1

sbi

)1+ε

. (3)

10



Figure 2: A matching M with interval chromatic number 2, and corresponding permutation π(M) =
(2, 4, 1, 3).

Summing together the bounds from Equation 2 and Equation 3 and applying the most basic
convexity bound, we get the desired bound

r<(M,K3) ≤ c

 k′∑
i=1

sbi

1+ε

+ c

(
sh +

k∑
i=k′+1

sbi

)1+ε

≤ cs1+ε.

B. If sh +
∑k
j=k′+1 s

b
j < 23−1/εs, then we are unable to bound sbi against sh +

∑k
j=k′+1 s

b
j , but we

know that the latter quantity is much smaller than s. So we instead use the weak bound

23

(
sh + c

k∑
i=k′+1

(
sbi
)1+ε) ≤ 23c

(
sh +

k∑
i=k′+1

sbi

)1+ε

. (4)

Now we combine Equation 2 with Equation 4, using the simple inequality (1−x)1+ε+ 23x1+ε ≤ 1
for x ∈ (0, 23−1/ε), and obtain

r<(M,K3) ≤ c

 k′∑
i=1

sbi

1+ε

+ 23c

(
sh +

k∑
i=k′+1

sbi

)1+ε

≤ cs1+ε.

This completes the induction.

3.2 Random Matchings with χ<(M) = 2

Recall that the interval chromatic number χ<(G) of an ordered graph G is the minimum number of
contiguous intervals into which the vertex set must be split so that each interval is an independent
set in G.

In this section, we show that for almost every matching M with interval chromatic number 2, the
bound of Õ(n2) on r<(M,K3) can be beaten. More specifically, we exhibit a condition on M which
is sufficient to guarantee an improved bound on r<(M,K3), and then prove that a random matching
with interval chromatic number 2 satisfies this condition with high probability.

The set of matchings on 2n vertices with interval chromatic number 2 is in bijection with the permu-
tation group Sn, and it is often notationally convenient to examine the permutation corresponding
to a given matching. See Figure 2 for an example.

Definition 3.9. Let M be an ordered matching on [2n] with interval chromatic number 2. Then
its “corresponding permutation” π(M) is the permutation on [n] which maps i to j − n for every
edge (i, j) ∈M .

11



Figure 3: One possibility for the set of segments F (1) in the blue adjacency matrix, if π(m) =
(2, 4, 1, 3).

Definition 3.10. We say that a given permutation π ∈ Sn contains an “exact pattern” ρ if ρ is
an ordered subset of [n] and there are indices 1 ≤ i1 < · · · < ik ≤ n, where k = |ρ|, such that
π(ij) = ρ(j) for all j. For instance, the permutation π = (3, 5, 6, 1, 2, 4) contains the exact pattern
(6, 1, 4) but does not contain the exact pattern (1, 2, 3).

We are interested in using exact patterns as a metric for the “intersection” of two permutations.
Specifically, we make the following definition.

Definition 3.11. Let π, σ ∈ Sn be permutations. Define the “ordered intersection” of π and σ,
denoted Int(π, σ), to be the largest k such that both π and σ share an exact pattern of length k.

In the theorem below, we do something slightly stronger than bounding on the Ramsey number
r<(M,K3) for certain matchings M . Rather, we show that in a blue K3-free graph on 2n vertices,
there is a tradeoff between finding a red copy of the matching M in the bipartite subgraph [1, n] ∪
[n + 1, 2n] and finding a large red clique (which of course contains every matching of that size) in
[1, n] or symmetrically in [n+ 1, 2n].

Theorem 3.12. Fix ε ∈ (0, 1) and α, β > 0 with α + β ≤ ε/4. Let M be an ordered matching
on 2n1/2+α vertices with interval chromatic number 2, such that the corresponding permutation
π = π(M) satisfies Int(π(M), π(M) + h) ≤ n(1−ε)(1/2+α) for every h ∈ [n1/2+α]. Then every
red/blue coloring of the ordered complete graph on [2n] contains either:

• a blue copy of K3,

• a red copy of Kn1/2+β/4−nε/4/2, or

• a red copy of M within the bipartite subgraph [1, n] ∪ [n+ 1, 2n].

Proof. Fix a bicoloring C of the ordered complete graph on [2n], and suppose that it contains none
of the hypothesized blue or red structures. Then in particular, for 1 ≤ i ≤ n+ 1− n1/2+α, we know
that there are no red copies of M between [1, n] and [n+ i, n+ i+ n1/2+α).

Fix some i ≤ nε/4. Let v1(i) be the first vertex in [n] such that C(v1(i), i+π(1)) is red (or v1(i) =∞
if no such vertex exists). Let b2(i) be the first vertex in [n] after v1(i) such that C(v2(i), i + π(2))
is red (or, again, v2(i) = ∞ if no such vertex exists). Iteratively define v3(i), . . . , vn1/2+α(i) in
the same way. Also let f(i) be the first index at which vf(i)(i) = ∞. By our assumption that

[1, n] ∪ [n+ i, n+ i+ n1/2+α) is red M -free, this index exists.

The vertices v1(i), . . . , vf(i)−1(i) demarcate f(i) blue segments in the adjacency matrix of [1, n] ∪
[n+1, n+2n1/2+α]. That is, for 1 ≤ j ≤ f(i) we have C(k, i+π(j)) is blue for all vj−1(i) < k < vj(i)
(where for convenience we set v0(i) = 0 and vf(i)(i) = n+ 1). Treating C as an n× 2n1/2+α matrix,
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each segment is in a distinct row, and the segments occupy distinct intervals of columns, covering a
total of at least n − n1/2+α columns. If any segment had length at least n1/2+β , then some vertex
would have n1/2+β blue edges, so the coloring would contain either a blue triangle or a red Kn1/2+β .
So henceforth we assume that every segment has length at most n1/2+β .

For each i ≤ nε/4 let F (i) be the set of f(i) blue segments as defined above (see Figure 3 for an
example). We seek to lower bound the number of blue edges in F (i) which are not contained in any
F (i′) for i′ < i. So fix i′ < i ≤ nε/4. Suppose that there are k segments in F (i) which intersect with
segments in F (i′).

Since each segment in F (i) is in a different row, as is each segment of F (i′), each of the k intersecting
segments in F (i) intersects with a unique segment in F (i′). Suppose that s1, s2 ∈ F (i) and t1, t2 ∈
F (i′) where s1 intersects t1 and s2 intersects t2. Then row(s1) = row(t1), and row(s2) = row(t2).
And since the segments F (i) hit disjoint intervals of columns, as do the segments F (i′), we have
columns(s1) is “left” of columns(s2) in the adjacency matrix if and only if columns(t1) is “left” of
columns(t2). So the k intersecting segments define an exact pattern in both π + i′, which describes
the row indices of the segments F (i′), and π + i, which describes the row indices of the segments
F (i). It follows that k is at most Int(π, π + i − i′), which is by assumption at most n(1−ε)(1/2+α).
Summing over all i′ < i, at most in(1−ε)(1/2+α) segments in F (i) intersect with previous segments.

Every segment has length at most n1/2+β by assumption. Thus, for each i ≤ nε/4, the blue segments
in F (i) contribute at least

n− n1/2+α − in(1−ε)(1/2+α)n1/2+β = n− n1/2+α − in1−ε/2+β+(1−ε)α

new blue edges. When i = 1 the contribution is n−n1/2+α; when i = nε/4, the contribution is at least
−n1/2+α. The contributions decrease linearly, so in total there are at least n1+ε/4/2 − n1/2+α+ε/4
blue edges in the bipartite graph [1, n] ∪ [n + 1, n + 2nα+1/2]. So some vertex has blue degree
at least n1/2+β/4 − nε/4/2, implying that there is either a blue triangle or a red clique of size
n1/2+β/4− nε/4/2.

We seek to show that for random permutations π and for any integer h, the intersection of π with
the shifted permutation π + h is sublinear in the length of π with high probability. The general
outline of the proof is as follows. We bound the expected number of long exact patterns contained in
both π and π+h. To do so, we of course sum over all long exact patterns, splitting into two cases. If
the exact pattern ρ has small intersection with ρ+h, we can straightforwardly obtain a good bound
on the probability that ρ embeds into both permutations. However, if ρ has large intersection with
ρ+h, we cannot do so. Instead we show that the number of such exact patterns is extremely small.

The following lemma formalizes the last step of the above outline.

Lemma 3.13. Fix positive integers n, k ≤ n, and h. Pick an exact pattern ρ of length k from [n]
uniformly at random. Then the probability that the set intersection ρ ∩ (ρ + h) has size at least t,
and there exists some permutation π ∈ Sn such that ρ and ρ+ h are both exact patterns in π, does
not exceed

22k−tkk−t

k!
.

Proof. Observe that it is possible to pick an exact pattern uniformly at random by two independent
choices: first, pick an unordered subset of [n] with size k. Second, pick some ordering for the subset.
We will show that for any unordered subset U ⊆ [n] with size k such that |U ∩(U+h)| ≥ t, if we pick
an ordering on U uniformly at random and thereby induce an exact pattern ρ, then the probability
that ρ and ρ+h are both exact patterns in some permutation π does not exceed 22k−tkk−t/k!. This
will prove the lemma.
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Fix any U ⊆ [n] with |U | = k and |U ∩ (U + h)| ≥ t. The number of elements a ∈ U such that
a − h 6∈ U does not exceed k − t, so U can be partitioned into k − t arithmetic progressions, each
with common difference h.

Pick some permutation σ ∈ Sk. This yields an ordering of U , in which the smallest element of U
is placed in position σ(1), and so forth. Hence, an exact pattern ρ is induced. Suppose that the
ordering is “compatible”: that is, ρ and ρ+h are both exact patterns in some permutation π. Since
ρ and ρ + h fix the order in π of the sets of elements U and U + h respectively, it must hold that
U ∩ (U + h) has the same order in ρ and ρ + h. Pick any arithmetic progression {a + ih}mi=0 ⊆ U .
We have that a+ ih precedes a + (i+ 1)h in ρ if and only if a+ ih precedes a+ (i+ 1)h in ρ + h,
or equivalently a + (i − 1)h precedes a + ih in ρ. So the arithmetic progression must either have a
monotone increasing order or a monotone decreasing order in ρ.

The key observation was that for any a, b ∈ U where neither a nor b is the first term in its arithmetic
progression, a precedes b in ρ if and only if a − h precedes b − h. We use this observation to
bound the total number of compatible orderings. There are 2k−t ways to assign a direction to
each progression, either monotone increasing or monotone decreasing. Fix one such assignment,
and suppose that minc progressions are monotone increasing. There are at most 2k ways to pick
the subset of locations Linc ⊆ [k] to which the increasing-ordered progressions are assigned. It
remains to pick an embedding of the increasing-ordered progressions in Linc, and an embedding of
the decreasing-ordered progressions in [k] \ Linc. The two cases are symmetric, so we consider the
increasing-ordered progressions.

For notational convenience, arbitrarily index the increasing-ordered progressions A1, . . . , Aminc
. Now

define a map Φ : S|Linc| → Lminc

inc from embeddings of the increasing-ordered progressions into Linc

(which are in bijection with the permutations S|Linc|) to tuples (v1, . . . , vminc
), where vi is the index

assigned to the first element of progression Ai.

We claim that the restriction of Φ to compatible embeddings is injective. Pick two different com-
patible orderings of U , inducing exact patterns ρ1 and ρ2, and assume for the sake of contradiction
that Φ(ρ1) = Φ(ρ2). Suppose that j is the first index at which ρ1 and ρ2 differ. By assumption,
the first term of each arithmetic progression has the same index in ρ1 and ρ2. Therefore neither
ρ1(j) nor ρ2(j) is a first term in its progression. Now observe that ρ1(j) precedes ρ2(j) in ρ1, but
ρ2(j) precedes ρ1(j) in ρ2. Hence, ρ1(j)− h precedes ρ2(j)− h in ρ1, and in ρ2 the opposite holds.
However, ρ1(j)− h and ρ2(j)− h are both in the first j − 1 terms of ρ1, which are equal to the first
j − 1 terms of ρ2. So one of the relative orderings is impossible! Contradiction, so the restriction of
Φ is injective.

Thus, there are at most |Linc|minc ways to compatibly embed the increasing-ordered progressions
into Linc, and similarly there are at most (k− |Linc|)k−t−minc ways to embed the decreasing-ordered
progressions into [k] \ Linc. So the total number of compatible orderings is at most 2k−t2kkk−t.
Since the total number of orderings is k!, the result follows.

Now we can prove our desired result on random permutations.

Lemma 3.14. Fix some α > 0 and some positive integers n and h. If π ∈ Sn is a permutation
chosen uniformly at random, then

Pr
[
Int(π, π + h) ≥ n2/3+α

]
≤
(
e5n−3α/2

)n2/3+α

.

Proof. We proceed by bounding the expected value of Int(π, π + h). Let k = n3/4. Pick any exact
pattern ρ of size k in [n]. Then ρ is contained in both π and π + h, for any permutation π ∈ Sn, if
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and only if ρ and ρ− h are both contained in π. If the smallest element of ρ is less than h+ 1, then
ρ− h cannot be contained in any permutation, so assume the contrary.

The probability that ρ and ρ−h are both exact patterns in a random permutation π ∈ Sn is at most
the probability that ρ∩ (ρ− h) and ρ \ (ρ− h) and (ρ− h) \ ρ are all exact patterns in π. Here, the
intersection/difference of two exact patterns is taken to be the set-theoretic intersection/difference,
ordered according to whichever exact pattern contains the set (and picking either pattern if both
contain the set). But these three exact patterns are disjoint, so the corresponding events are inde-
pendent. Suppose that m(ρ) = |ρ ∩ (ρ − h)|. Since an exact pattern of length r is contained in a
random permutation with probability 1/r!, we have that ρ and ρ − h are contained in a random
π ∈ Sn with probability at most

1

m(ρ)!
· 1

(k −m(ρ))!2
.

Observe that as a function of m, the above fraction is largest when m(ρ) ≈ k−
√
k, and is increasing

on [1, k −
√
k] and decreasing on [k −

√
k, k]. Hence, the bound is strong for m(ρ) small. Summing

over all exact patterns ρ with m(ρ) ≤ k/2, and using the trivial bound that the number of exact
patterns is n!/(n− k)!, we have that

E [# contained patterns ρ with m(ρ) ≤ k/2] ≤ n!

(n− k)!(k/2)!3
.

The expectation is taken over permutations π ∈ Sn, and a “contained pattern” is an exact pattern
ρ such that ρ and ρ− h are contained in π.

To bound the expectation for patterns ρ with m(ρ) > k/2, we first discard the patterns ρ for which
there is no permutation π containing both ρ and ρ− h. Now Lemma 3.13 gives that the number of
remaining patterns is only

2kkk/2

k!

n!

(n− k)!
=

(
n

k

)
2kkk/2.

Using this result and assuming the worst case that m(ρ) = k −
√
k, we get

E [# contained patterns ρ with m(ρ) > k/2] ≤
(
n

k

)
2kkk/2

(k −
√
k)!(
√
k)!2

.

Putting everything together, simplifying, and substituting k = n2/3+α,

E [# contained patterns] ≤ n!

(n− k)!(k/2)!3
+

(
n

k

)
2kkk/2

(k −
√
k)!

≤ nk(2e)3k/2

k3k/2
+

nk2ke2k

kk/2(k −
√
k)k−

√
kk
√
k

≤ nk(2e)3k/2

k3k/2
+
nk2k+2

√
ke2k

k3k/2

≤
(
e5n−3α/2

)n2/3+α

.

The above lemma and Theorem 3.12 imply the main result of this section—a subquadratic bound
on r<(M,K3) for random matchings with interval chromatic number 2—as a corollary.

Theorem 3.15. Let M be an ordered matching on 2m vertices with interval chromatic number 2,
picked uniformly at random. Then there is a constant c such that

r<(M,K3) ≤ cm24/13
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with high probability.

Proof. Setting δ = 4/ logm the statement of Lemma 3.14 becomes

Pr
π∈Sm

[
Int(π, π + h) ≥ e4m2/3

]
≤ e−e

4m2/3

.

Picking a matching M on 2m vertices with interval chromatic number 2 uniformly at random, we
have Int(π(M), π(M) + h) ≤ m2/3+4/ logm for all h ∈ [m] with high probability. Thus we can apply
Theorem 3.12 with parameters ε = 1/3− 4/ logm and α = β = 1/24− 1/(2 logm) and n = cm24/13,
where c is chosen sufficiently large that

n13/24−1/(2 logm)/4− n1/12−1/ logm/2 ≥ 2m

and
2n13/24−1/(2 logm) ≥ 2m.

So with high probability, every bicoloring of [2n] contains either a blue triangle or a red copy of M
or a red clique of size at least 2m.

4 Future Work

Our work on biclique partitions shows that bp{k}(Kn) = n + o(n) for all k. This bound is asymp-
totically tight, since there is a lower bound of bp{k}(Kn) ≥ n− 1. However, the original conjecture
of de Caen, Gregory, and Pritikin remains open: does bp{k}(Kn) = n− 1 for all sufficiently large n,
for each k? We suspect that a very different approach is necessary, since our proof seems to incur
unavoidable losses through its use of the design.

From our study of ordered Ramsey numbers, many open questions remain. Most significant, perhaps,
is the original question posed by Conlon, Fox, Lee, and Sudakov: does there exist some ε > 0 such
that r<(M,K3) ≤ n2−ε for every ordered matching M on n vertices? Based on our Theorem 3.15,
a number of natural intermediate questions arise. In particular, a reasonably modest step beyond
random matchings with χ<(M) = 2 would be the following:

Conjecture 4.1. For every χ, there is a constant ε(χ) > 0 such that

r<(M,K3) ≤ O(n2−ε(χ))

for almost every ordered matching M on n vertices with interval chromatic number χ<(M) = χ.

Conversely, we are curious how far from the truth the exponent 24
13 in our Theorem 3.15 is. It seems

plausible that our argument can be optimized to produce a significantly better bound, and we do
not know of any lower bounds for this class of matchings that come anywhere near this bound.

Regarding parenthesis matchings, we were unable to find a family for which r<(M,K3) is superlinear,
leaving a slight gap beneath our upper bound. Such a construction would be quite interesting to us.
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A Convexity Inequalities

We provide here proofs of Lemma 3.6 and Lemma 3.7.

Lemma 3.6. Let a0, a1, a2, . . . , ak ≥ 0 and δ > 1 and m > 0 be real numbers. Let r = m−1/(δ−1).
If s =

∑k
i=0 ai ≥ 1 and ai ≤ rs for all 1 ≤ i ≤ k, then

m(a0 + caδ1 + · · ·+ caδk) ≤ csδ

for any c ≥ m.

Proof. Suppose that 0 < ai ≤ aj < 2−1/(δ−1)s for some distinct indices 1 ≤ i, j ≤ k. Since f(x) = xδ

is a convex function, if we decrease ai and increase aj by a common amount min(ai, rs − aj), the
left-hand side of the inequality increases, while the right-hand side remains constant. Furthermore,
the number of values ai which are equal to neither 0 nor rs decreases. Hence, it suffices to prove
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the inequality in the case where no two such values exist. Without loss of generality, we have
a1 = · · · = an−1 = rs and an+1 = · · · = ak = 0. Observe that n− 1 = (s− a0 − an)/(rs).

Now we have

m(a0 + caδ1 + · · ·+ caδk) = ma0 +mc(n− 1)(rs)δ +mcaδn

= ma0 +mc(s− a0 − an)(rs)δ−1 +mcaδn

≤ ma0 +mc(s− a0)(rs)δ−1

≤ ca0 + c(s− a0)sδ−1

≤ csδ

where the first inequality holds since an ≤ rs, so mcaδn ≤ mcan(rs)δ−1; the second inequality holds
by the assumption r = m−1/(δ−1); and the third inequality holds since sδ−1 ≥ 1.

Lemma 3.7. Let a1, . . . ak ≥ 0 and δ ≥ 1 be real numbers. Let r ∈ (0, 1). If s =
∑k
i=1 ai and

ai ≤ rs for all 1 ≤ i ≤ k, then
aδ1 + · · ·+ aδk ≤ rδ−1sδ.

Proof. As in the previous lemma, we only need to prove the case where a1 = · · · + an−1 = rs and
an+1 = · · · = ak = 0, since all other cases can be “sharpened” into this one. As before but dropping
the a0-term, n− 1 = (s− an)/(rs). The bound is now simple:

aδ1 + · · ·+ aδk = (n− 1)(rs)δ + aδn

= (s− an)(rs)δ−1 + aδn

≤ rδ−1sδ.
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