
COUNTING SHELLINGS OF COMPLETE BIPARTITE GRAPHS AND TREES

SPUR FINAL PAPER, SUMMER 2018

JUNYAO PENG
MENTOR: YIBO GAO

PROJECT SUGGESTED BY RICHARD STANLEY

Abstract. A shelling of a graph, viewed as an abstract simplicial complex that is pure of dimen-
sion 1, is an ordering of its edges such that every edge is adjacent to some other edges appeared
previously. In this paper, we focus on complete bipartite graphs and trees. For complete bipartite
graphs, we obtain an exact formula for their shelling numbers. And for trees, we propose a simple
method to count shellings and bound shelling numbers using vertex degrees and diameter.
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1. Introduction

In combinatorial topology, shelling of a simplicial complex is a very useful and important notion
that has been well-studied.

Definition 1.1. An (abstract) simplicial complex ∆ is called pure if all of its maximal simplicies
have the same dimension. Given a finite (or countably infinite) simplicial complex ∆ that is pure
of dimension d, a shelling is a total ordering of its maximal simplicies C1, C2, . . . such that for every

k > 1, Ck ∩
(⋃k−1

i=1 Ci

)
is pure of dimension d − 1. A simplicial complex that admits a shelling is

called shellable.

Shellable complexes enjoy many strong algebraic and topological properties. For example, a
shellable complex is homotopy equivalent to a wedge sum of spheres, thus not allowing torsion in
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its homology. The study of shellability in its combinatorial aspects has turned out to be very fruitful
as well. The arguably earliest notable result that polytopes are shellable is due to Brugesser and
Mani (Section 8 of [5]). Later on, Bjorner and Wachs developed theories on lexicographic shellability
(Section 12 of [2]). In particular, shellable posets, which are posets whose order complexes are
shellable, are studied and powerful notions such as EL-shellability and CL-shellability are invented.
In a recent work, testing shellability is proved to be NP-complete [1].

As there is rich literature on shellability, little work has been done on counting the number of
shellings for a specific simplicial complex. It is generally believed that if a simplicial complex is
shellable, then it usually admits a lot of shellings, but no precise arguments are given.

In this paper, we investigate the problem of counting shellings, aiming to start a new line of
research. We restrict our attentions to finite simplicial complexes that are pure of dimension 1,
namely, undirected graphs, where interesting combinatorial arguments are already taking place.
Let’s first reformulate Definition 1.1 in the language of graph theory.

Definition 1.2 (Graph Shelling). Given an undirected graph G = (V,E), where V is the vertex
set of G and E is the edge set of G, a shelling of G is a total ordering of the edge set σ ∈ SE ,
where S stands for symmetric group, such that σ(1), . . . , σ(k) form a connected subgraph of G for
all k = 1, . . . , |E|.

We will adopt the following notation throughout the paper.

Definition 1.3. For a graph G, let F (G) denote the number of shellings of G.

Clearly, a graph admits a shelling if and only if it is connected, which is equivalent to F (G) > 0.
A few results are already known.

Theorem 1.4 ([3]). Let Kn be the complete graph on n vertices. Then

F (Kn) =
2n−2

Cn−1

(
n

2

)
!

where Cn−1 =
(

2n−2
n−1

)
/n is the (n− 1)th Catalan number.

As an overview for the paper, in Section 2, we will give an explicit formula for the number of
shellings of complete bipartite graphs, resolving a MathOverflow question [4]; in Section 3, we will
provide methods to compute the number of shellings of trees and obtain some upper and lower
bounds for them.

2. Complete Bipartite Graphs

Denote Km,n as the complete bipartite graph with part sizes m and n. The following is our main
theorem.

Theorem 2.1.

F (Km,n) =
m!n!(mn)!

(m+ n− 1)!
.

The formula in Theorem 2.1 is conjectured in the MathOverflow post [4]. Partial progress has
been made. In particular, Lemma 2.2, given by Richard Stanley, serves as an important tool for
our computation.



Lemma 2.2. F (Km,n) is equal to the following expression:

m!n!(mn− 1)!
∑
α

b1b2 · · · bm+n−2

bm+n−2(bm+n−2 + bm+n−3) · · · (bm+n−2 + bm+n−3 + . . .+ b1)
,

where the sum is over all sequences α = (a1, a2, . . . , am+n−2) of (m− 1) 0’s and (n− 1) 1’s, and

bi = 1 + |{1 ≤ j ≤ i : aj 6= ai}|.

Proof. Let σ be a shelling of Km,n. In each part of Km,n, consider the order of the appearance
of the vertices. Here, we say that vertex v appears in σ at time t if t is the first index such that
v ∈ σ(t). There are m! ways to choose such order in the part of size m and n! ways in the part of
size n. Fix the order of vertex appearance in each part to be (u0, u1, . . . , um−1), (v0, v1, . . . , vn−1),
respectively.

Consider a fixed order of appearance of all (m + n) vertices w = w−1w0 . . . wm+n−2. Note that
σ(1) must be the edge e0 = (u0, v0), so {w−1, w0} = {u0, v0}. For 1 ≤ i ≤ m+ n− 2, define

ai =

{
0, if wi = uj for some j,

1, if wi = vk for some k,

and

bi = 1 + |{1 ≤ j ≤ i : aj 6= ai}|.

Now, for each wi (i ≥ 1), consider the first edge ei incident to wi in σ. This edge must be of the
form (wi, wj) where j < i and wi, wj are in different parts of Km,n. There are bi choices for this
edge. Thus, there are b1b2 · · · bm+n−2 ways to choose e1, e2, . . . , em+n−2.

We further fix the edges e0, e1, . . . , em+n−2. Note that the rest of the bm+n−2 edges incident to
wm+n−2 must appear after em+n−2 in σ, so there are (bm+n−2 − 1)! ways to arrange these edges.
After making this arrangement, the edges which are incident to wm+n−3 and not yet arranged must
appear after em+n−3, so there are

(bm+n−2 + 1)(bm+n−2 + 2) · · · (bm+n−2 + bm+n−3 + 1) =
(bm+n−2 + bm+n−3 + 1)!

bm+n−2!

ways to arrange them (since there are already bm+n−2 edges arranged after em+n−3). Similarly, for
each i, after making the arrangement of all edges incident to vertices appearing after wi, there are

(bm+n−2 + bm+n−3 + . . .+ bi + 1)!

(bm+n−2 + bm+n−3 + . . .+ bi+1)!

ways to arrange all the edges which are incident to wi and not yet arranged. Therefore, after fixing
e0, e1, . . . , em+n−2, the number of shellings is

m+n−2∏
i=1

(bm+n−2 + . . .+ bi + 1)!

(bm+n−2 + . . .+ bi+1)!
=

(mn− 1)!

bm+n−2(bm+n−2 + bm+n−3) · · · (bm+n−2 + . . .+ b1)
.

Combining all discussions above, we obtain Lemma 2.2. �



We first prove a few lemmas which are essential to Theorem 2.1. These lemmas involve binomial
coefficients whose entries are not necessarily integers. For this reason, in the rest of this section,
we will use the generalized binomial coefficient(

x

y

)
=

Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
,

where Γ is the Gamma function that extends the factorial function. In particular, if y is a positive
integer, (

x

y

)
=
x(x− 1) · · · (x− y + 1)

y!
.

Lemma 2.3. For positive integers x, y and positive real numbers z, w such that w − z ≥ x is a
postive integer,

w−z∑
j=x

(
j

y

)(
w − j
z

)
=

y∑
i=max{0,x+y+z−w}

(
x

i

)(
w − x+ 1

z + y − i+ 1

)
.

Proof. We first prove this lemma assuming that z, w are both integers. Consider the following
problem: we want to arrange (y+ z+ 1) letter A’s in (w+ 1) positions, such that each position has
at most one A and there are at most y A’s in the first x positions. The number of such arrangements
is

y∑
i=0

(
x

i

)(
w − x+ 1

z + y − i+ 1

)
=

y∑
i=max{0,x+y+z−w}

(
x

i

)(
w − x+ 1

z + y − i+ 1

)
by considering the number of A’s in the first x positions.

On the other hand, consider the position of the (y + 1)th A. It must be at some position p > x.

For a fixed p, there are
(
p−1
y

)
ways to arrange the first y A’s and

(
w−p+1

z

)
ways to arrange the last

z A’s, so the total number of such arrangements is

w−z+1∑
p=x+1

(
p− 1

y

)(
w − p+ 1

z

)
=

w−z∑
j=x

(
j

y

)(
w − j
z

)
.

Thus, Lemma 2.3 follows under additional assumption.
For the general case, we fix z′ = w − z ∈ N. Lemma 2.3 is equivalent to

(1)
z′∑
j=x

(
j

y

)(
w − j
z′ − j

)
=

y∑
i=max{0,x+y−z′}

(
x

i

)(
w − x+ 1

z′ − x− y + i

)
.

Both sides of Equation (1) are polynomials in w of degree at most z′. From our previous discussion,
every positive integer greater than z′ is a root of (1). Thus, the two sides of (1) agree as polynomials
in w and the proof is complete. �

Lemma 2.3 serves to prove the following lemma, which will be crucial in calculating the sum in
Lemma 2.2.



Lemma 2.4. For positive integers k < n and s < m+ n− k − 1,

m+n−k−1∑
t=s+1

(t− n+ k + 1)(t+ 2)(t+ 3) · · · (t+ k)

( mn
n−k + n− k − t− 2

mk
n−k − 1

)

=
m

m+ n− k
(s+ 2)(s+ 3) · · · (s+ k + 1)

( mn
n−k + n− k − s− 2

mk
n−k

)
,

(2)

where general binomial coefficients are used.

Proof. First, note that

(t− n+ k + 1)(t+ 2)(t+ 3) · · · (t+ k) = k!

[(
t+ k

k

)
+
k − n
k

(
t+ k

k − 1

)]
.

We shall split the sum in the left hand side of (2) based on the equation above. Applying Lemma 2.3
with replacements x = s+k+1, y = k, z = mk

n−k −1, w = mn
n−k +n−2 (notice that w−z = m+n−1

is a positive integer), we obtain

m+n−1∑
j=s+k+1

(
j

k

)( mn
n−k + n− 2− j

mk
n−k − 1

)
=

k∑
i=i0

(
s+ k + 1

i

)( mn
n−k + n− k − s− 2

mk
n−k + k − i

)
,

where i0 = max{0, s+ 2k + 2−m− n}. Writing t = j − k, we have

m+n−k−1∑
t=s+1

(
t+ k

k

)( mn
n−k + n− k − t− 2

mk
n−k − 1

)
=

k∑
i=i0

(
s+ k + 1

i

)( mn
n−k + n− k − s− 2

mk
n−k + k − i

)
.

Similarly, replacing x = s+ k + 1, y = k − 1, z = mk
n−k − 1, w = mn

n−k + n− 2 in Lemma 2.3,

m+n−k−1∑
t=s+1

(
t+ k

k − 1

)( mn
n−k + n− k − t− 2

mk
n−k − 1

)
=

k−1∑
i=i1

(
s+ k + 1

i

)( mn
n−k + n− k − s− 2

mk
n−k + k − i− 1

)

=

k∑
i=i1+1

(
s+ k + 1

i− 1

)( mn
n−k + n− k − s− 2

mk
n−k + k − i

)
,

where i1 = max{0, s+ 2k + 1−m− n}. Therefore, the left hand side of (2)

1

k!

m+n−k−1∑
t=s+1

(t− n+ k + 1)(t+ 2)(t+ 3) · · · (t+ k)

( mn
n−k + n− k − t− 2

mk
n−k − 1

)

=
k∑

i=i0

(
s+ k + 1

i

)( mn
n−k + n− k − s− 2

mk
n−k + k − i

)
+
k − n
k

k∑
i=i1+1

(
s+ k + 1

i− 1

)( mn
n−k + n− k − s− 2

mk
n−k + k − i

)
.



We claim that the following identity (3) holds for all i0 ≤ ` ≤ k.

∑̀
i=i0

(
s+ k + 1

i

)( mn
n−k + n− k − s− 2

mk
n−k + k − i

)
+
k − n
k

∑̀
i=i1+1

(
s+ k + 1

i− 1

)( mn
n−k + n− k − s− 2

mk
n−k + k − i

)

=
mk
n−k + k − `
mk
n−k + k

(
s+ k + 1

`

)( mn
n−k + n− k − s− 2

mk
n−k + k − `

)
.

(3)

There are two cases: i0 = 0 and i0 > 0.
Case 1. i0 = i1 = 0.

In this case, the left hand side of (3) is

( mn
n−k + n− k − s− 2

mk
n−k + k

)
+
∑̀
i=1

[(
s+ k + 1

i

)
+
k − n
k

(
s+ k + 1

i− 1

)]( mn
n−k + n− k − s− 2

mk
n−k + k − i

)
.

Induct on `. When ` = 0, both sides of (3) are equal to
( mn

n−k
+n−k−s−2
mk
n−k

+k

)
. Assume that (3) holds

for `− 1 and consider ` case. Then, the formula above becomes[(
s+ k + 1

`

)
+
k − n
k

(
s+ k + 1

`− 1

)]( mn
n−k + n− k − s− 2

mk
n−k + k − `

)
+

mk
n−k + k − `+ 1

mk
n−k + k

(
s+ k + 1

`− 1

)( mn
n−k + n− k − s− 2

mk
n−k + k − `+ 1

)
=

[(
s+ k + 1

`

)
+
k − n
k
· `

s+ k + 2− `

(
s+ k + 1

`

)]( mn
n−k + n− k − s− 2

mk
n−k + k − `

)
+

mk
n−k + k − `+ 1

mk
n−k + k

`

s+ k + 2− `

(
s+ k + 1

`

)
m+ n+ `− 2k − s− 2

mk
n−k + k − `+ 1

( mn
n−k + n− k − s− 2

mk
n−k + k − `

)

=

(
1 +

(k − n)`

k(s+ k + 2− `)
+

(m+ n+ `− 2k − s− 2)`

( mkn−k + k)(s+ k + 2− `)

)(
s+ k + 1

`

)( mn
n−k + n− k − s− 2

mk
n−k + k − `

)

=
mk
n−k + k − `
mk
n−k + k

(
s+ k + 1

`

)( mn
n−k + n− k − s− 2

mk
n−k + k − `

)
.

Thus, (3) follows by induction.
Case 2. i0 = s+ 2k + 2−m− n > 0 and i1 = i0 − 1.

We can simplify the left hand side of (3) as

∑̀
i=i0

[(
s+ k + 1

i

)
+
k − n
k

(
s+ k + 1

i− 1

)]( mn
n−k + n− k − s− 2

mk
n−k + k − i

)
.



Induct on `. When ` = i0,[(
s+ k + 1

i0

)
+
k − n
k
· i0
s+ k + 2− i0

(
s+ k + 1

i0

)]( mn
n−k + n− k − s− 2

mk
n−k + k − i0

)

=
mk
n−k + k − i0

mk
n−k + k

(
s+ k + 1

i0

)( mn
n−k + n− k − s− 2

mk
n−k + k − i0

)
,

as desired. The inductive step (`−1)⇒ ` holds by the same calculation as the previous case i0 = 0.
Thus, the claim follows by induction.

In particular, when ` = k, (3) becomes

k∑
i=i0

(
s+ k + 1

i

)( mn
n−k + n− k − s− 2

mk
n−k + k − i

)
+
k − n
k

k∑
i=i1+1

(
s+ k + 1

i− 1

)( mn
n−k + n− k − s− 2

mk
n−k + k − i

)

=
1

k!
· m

m+ n− k
(s+ 2)(s+ 3) · · · (s+ k + 1)

( mn
n−k + n− k − s− 2

mk
n−k

)
.

Therefore, the proof of this lemma is complete. �

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. According to Lemma 2.2, it suffices to show that

(mn− 1)!
∑
α

b1b2 · · · bm+n−2

bm+n−2(bm+n−2 + bm+n−3) · · · (bm+n−2 + bm+n−3 + . . .+ b1)
=

(mn)!

(m+ n− 1)!
.

where the sum is over all sequences α = (a1, a2, . . . , am+n−2) consisting of (m− 1) 0’s and (n− 1)
1’s. Suppose ar1 = ar2 = . . . = arn−1 = 1 where 1 ≤ r1 < r2 < . . . < rn−1 ≤ m + n − 2. Denote
r0 = 0. Then for k = 1, 2, . . . , n− 1,

brk−1+1 = brk−1+2 = · · · = brk−1 = k, brk = rk − k + 1

and

brn−1+1 = · · · = bm+n−2 = n.

Therefore,
m+n−2∏
i=1

bi = nm+n−2−rn−1

n−1∏
j=1

(rj − j + 1)jrj−rj−1−1.

For 1 ≤ i ≤ m+ n− 2, write ci = bm+n−2 + . . .+ bi, then

cm+n−2 = n, cm+n−3 = 2n, . . . , crn−1+1 = mn+ n(n− 2− rn−1)

=⇒ cm+n−2cm+n−3 · · · crn−1+1 = nm+n−2−rn−1Γ(m+ n− 1− rn−1)

For k = 1, 2, . . . , n− 1, we have

crk = mn+ k(k − 1− rk), . . . , crk−1+1 = mn+ k(k − 2− rk−1)



=⇒ crk · · · crk−1+1 = krk−rk−1

rk∏
i=rk−1+1

(
mn

k
+ k − 1− i)

= krk−rk−1
Γ(mnk + k − 1− rk−1)

Γ(mnk + k − 1− rk)
.

Denote rn = m+ n− 2, we have

m+n−2∏
i=1

ci =
n∏
j=1

jrj−rj−1
Γ(mnj + j − 1− rj−1)

Γ(mnj + j − 1− rj)

= (mn− 1)!

( n∏
j=1

jrj−rj−1

)( n−1∏
k=1

Γ( mnk+1 + k − rk)
Γ(mnk + k − 1− rk)

)
Comparing the product of bi’s and ci’s, we obtain

(mn− 1)!
m+n−2∏
i=1

bi
ci

=
1

(n− 1)!

n−1∏
k=1

(rk − k + 1)
Γ(mnk + k − 1− rk)

Γ( mnk+1 + k − rk)
.

=⇒ (mn− 1)!
∑
α

m+n−2∏
i=1

bi
ci

=
1

(n− 1)!

∑
1≤r1<...<rn−1≤m+n−2

n−1∏
j=1

(rj − j + 1)
Γ(mnj + j − 1− rj)

Γ( mnj+1 + j − rj)

=
1

(n− 1)!

∑
1≤r1<...<rn−1≤m+n−2

n−1∏
j=1

Rj ,

where Rj = (rj − j + 1)
Γ(mn

j
+j−1−rj)

Γ( mn
j+1

+j−rj) .

We claim that the sum

1

(n− 1)!

∑
1≤r1<...<rn−1≤m+n−2

n−1∏
j=1

Rj

=
(m+ k)!Γ(m(n−k)

k )

(m+ n− 1)!k!(n− k − 1)!

∑
1≤r1<...<rk≤m+k−1

(rk − k + 1)
(rk + n− k)!

(rk + 1)!

(mn
k + k − 2− rk
m(n−k)

k − 1

) k−1∏
j=1

Rj

(4)

for all 1 ≤ k ≤ n− 1.
To prove this claim, we reversely induct on k. When k = n− 1, the right hand side of (4)

Γ( m
n−1)

(n− 1)!

∑
1≤r1<...<rn−1≤m+n−2

(rn−1 − n+ 2)
Γ( mnn−1 + n− 2− rn−1)

Γ( m
n−1)Γ(m+ n− 1− rn−1)

n−2∏
j=1

Rj

=
1

(n− 1)!

∑
1≤r1<...<rn−1≤m+n−2

n−1∏
j=1

Rj ,

as desired.



Assume that the claim holds for k + 1, then the left hand side of (4) becomes
(5)

(m+ k + 1)!Γ(m(n−k−1)
k+1 )

(m+ n− 1)!(k + 1)!(n− k − 2)!

∑
1≤r1<...<rk+1≤m+k

(rk+1−k)
(rk+1 + n− k − 1)!

(rk+1 + 1)!

( mn
k+1 + k − 1− rk+1

m(n−k−1)
k+1 − 1

) k∏
j=1

Rj

Setting t = rk+1, s = rk, k → n− k − 1 in Lemma 2.4, we have

∑
1≤r1<...<rk+1≤m+k

(rk+1 − k)
(rk+1 + n− k − 1)!

(rk+1 + 1)!

( mn
k+1 + k − 1− rk+1

m(n−k−1)
k+1 − 1

) k∏
j=1

Rj

=
∑

1≤r1<...<rk≤m+k−1

[( k∏
j=1

Rj

) m+k∑
rk+1=rk+1

(rk+1 − k)
(rk+1 + n− k − 1)!

(rk+1 + 1)!

( mn
k+1 + k − 1− rk+1

m(n−k−1)
k+1 − 1

)]

=
∑

1≤r1<...<rk≤m+k−1

[( k∏
j=1

Rj

)
m

m+ k + 1
(rk + 2)(rk + 3) · · · (rk + n− k)

( mn
k+1 + k − rk − 1

m(n−k−1)
k+1

)]

=
∑

1≤r1<...<rk≤m+k−1

m

m+ k + 1
· (rk + n− k)!

(rk + 1)!

( mn
k+1 + k − rk − 1

m(n−k−1)
k+1

) k∏
j=1

Rj .

Thus,

(5) =
(m+ k + 1)!Γ(m(n−k−1)

k+1 )

(m+ n− 1)!(k + 1)!(n− k − 2)!

∑
1≤r1<...<rk≤m+k−1

m(rk + n− k)!

(m+ k + 1)(rk + 1)!

( mn
k+1 + k − rk − 1

m(n−k−1)
k+1

) k∏
j=1

Rj

=
(m+ k)!Γ(m(n−k−1)

k+1 )

(m+ n− 1)!(k + 1)!(n− k − 2)!

∑
1≤r1<...<rk≤m+k−1

m(rk + n− k)!

(rk + 1)!

Γ( mnk+1 + k − rk)

Γ(m(n−k−1)
k+1 + 1)Γ(m+ k − rk)

k∏
j=1

Rj

=
(m+ k)!

(m+ n− 1)!k!(n− k − 1)!
·

∑
1≤r1<...<rk≤m+k−1

(rk + n− k)!

(rk + 1)!

Γ( mnk+1 + k − rk)
Γ(m+ k − rk)

(rk − k + 1)
Γ(mnk + k − 1− rk)

Γ( mnk+1 + k − rk)

k−1∏
j=1

Rj

=
(m+ k)!Γ(m(n−k)

k )

(m+ n− 1)!k!(n− k − 1)!

∑
1≤r1<...<rk≤m+k−1

(rk − k + 1)
(rk + n− k)!

(rk + 1)!

(mn
k + k − 2− rk
m(n−k)

k − 1

) k−1∏
j=1

Rj .

and the claim follows by (reverse) induction.
In particular, when k = 1, (4) becomes

(m+ 1)!(mn−m− 1)!

(m+ n− 1)!(n− 2)!

m∑
r1=1

r1
(r1 + n− 1)!

(r1 + 1)!

(
mn− r1 − 1

mn−m− 1

)
.



Again, setting t = r1, s = 0, k = n− 1 in Lemma 2.4,

m∑
r1=1

r1
(r1 + n− 1)!

(r1 + 1)!

(
mn− r1 − 1

mn−m− 1

)
=

m

m+ 1
· n!

(
mn− 1

mn−m

)
.

Therefore,

(4) =
(m+ 1)!(mn−m− 1)!

(m+ n− 1)!(n− 2)!
· m

m+ 1
· n!

(
mn− 1

mn−m

)
=

(mn)!

(m+ n− 1)!
.

Therefore, the proof of Theorem 2.1 is complete. �

3. Trees

3.1. Tree Shelling Number Computation.
Trees are one of the most fundamental type of graphs. However, unlike the complete bipartite

graph case, there is no simple formula for tree shelling numbers. The goal of this section is to give
a relatively easy method to compute the number of shellings of a tree.

Throughout this section, let T be a tree with n vertices and n − 1 edges. We first focus on
computing the number of shellings of rooted trees, whose definition is given below.

Definition 3.1. Let v be a vertex of T . The rooted tree induced by T and rooted at v is denoted
as Tv. A shelling of rooted tree Tv is a shelling σ of T such that σ(1) is an edge incident to v.

The following definitions are used to efficiently describe structures in a (rooted) tree.

Definition 3.2. Let Tv be a tree rooted at vertex v. We say a vertex u is a parent of vertex w
(and w is a child of u) if (w, u) is an edge and u lies closer to the root than w. A descending path
from u to w in the rooted tree Tv is a structure

u− v1 − v2 − · · · − vr − w

where each vertex is a parent of the subsequent vertex. We say u is an ancestor of w (and w is a
descendant of u) if there exists a descending path from u to w.

Definition 3.3. Let u, v ∈ T. The (rooted) subtree of Tv rooted at u, denoted as Tv(u), is a
subgraph of T rooted at u and induced by the set of vertices

{w ∈ T : w is a descendant of u in Tv}.

See Figure 1 for an example.

For a tree T , the edge set of T is denoted as E(T ). The vertex set of T is denoted as V (T ), or
T for simplicity. Accordingly, |T | is the number of vertices in T . The same notations are used for
rooted trees.

The following proposition provides a way to calculate the number of shellings of a rooted tree
Tv based on the size of its rooted subtrees.
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v

u
Tv(u)

Figure 1. Definition of Tv(u).

Proposition 3.4.

F (Tv) =
n!∏

u∈T |Tv(u)|
.

Proof. The proposition holds for n = 2 by regular check. Assume that it holds for n − 1 and
consider a tree T with n vertices.

Suppose the neighbors of v are u1, u2, . . . , ur. For 1 ≤ i ≤ r, define T (i) to be the tree Tv(ui)

with an additional edge (ui, v). Given fixed shellings σi of T
(i)
v for all 1 ≤ i ≤ r, we can construct

shellings of Tv by merging σi’s together while preserving the order of each σi. Every shelling of Tv
can be uniquely constructed in this way. Therefore,

F (Tv) =

(
|E(T )|

|E(T (1))|, |E(T (2))|, . . . , |E(T (r))|

) r∏
i=1

F (T (i)
v )

By induction hypothesis,

F (T (i)
v ) =

|T (i)|!∏
w∈T (i) |T (i)

v (w)|
=

|T (i)|!
|T (i)
v (v)|

∏
w 6=v,w∈T (i) |Tv(w)|

=
|E(T (i))|!∏

w 6=v,w∈T (i) |Tv(w)|
.

Therefore,

F (Tv) =
|E(T )|!

|E(T (1))|! · · · |E(T (r))|!

r∏
i=1

|E(T (i))|!∏
w 6=v,w∈T (i) |Tv(w)|

=
|E(T )|!∏

w 6=v,w∈T |Tv(w)|

=
n!∏

w∈T |Tv(w)|
.

and the induction is complete. �



Corollary 3.5. Suppose that (u, v) is an edge of T , then

F (Tv)

F (Tu)
=
|Tu(v)|
|Tv(u)|

=
|Tu(v)|

n− |Tu(v)|
.

Proof. For any vertex w 6= u, v, Tu(w) and Tv(w) are the same subtree of Tv. Therefore, by
Proposition 3.4,

F (Tv)

F (Tu)
=

∏
w∈T |Tu(w)|∏
w∈T |Tv(w)|

=
|Tu(v)| · |Tu(u)|
|Tv(u)| · |Tv(v)|

=
|Tu(v)|
|Tv(u)|

=
|Tu(v)|

n− |Tu(v)|
.

�

Corollary 3.5 establishes a simple relationship between the number of shellings of T rooted at
adjacent edges. In this way, by only calculating F (Tv) for a single vertex v, one can quickly derive
F (Tu) for all u ∈ T. For example, suppose T is a path of length n− 1, as shown in figure 2. Then
F (Tv1) = 1, and

F (Tvi+1) =
|Tvi(vi+1)|

n− |Tvi(vi+1)|
F (Tvi) =

n− i
i

F (Tvi)

by corollary 3.5. This gives F (Tvi) =
(
n−1
i−1

)
for all i = 1, 2, . . . , n.

• • • • ••· · ·
v1 v2 v3 v4 vn−1 vn

Figure 2. A path of length n− 1. The shelling number is 2n−2.

Finally, the following proposition relates the number of shellings of T with that of its rooted
trees.

Proposition 3.6.

F (T ) =
1

2

∑
v∈T

F (Tv).

Proof. Note that any shelling of T beginning with edge (u, v) is counted as a shelling of both Tu
and Tv. Thus, Proposition 3.6 follows. �

Example 3.7. By Proposition 3.6 and the discussion under Corollary 3.5, the number of shellings
of a path of length n− 1 is

1

2

n∑
i=1

(
n− 1

i− 1

)
= 2n−2.



3.2. Bounds on Tree Shelling Number.
The goal of this section is to give several bounds of tree shelling numbers based on various

parameters of a graph, such as vertex degree and diameter. A trivial upper bound is (n− 1)!, since
every shelling is also a permutation of edges. The upper bound is achieved when T is a star, in
which every two edges are adjacent to each other.

Here are the main theorems of the section.

Theorem 3.8.

F (T ) ≥
∏
v∈T

d(v)!,

where d(v) is the degree of a vertex v in T . The equality holds if and only if T is a path of length
n− 1 or a star.

Remark 3.9. A weaker lower bound F (T ) ≥
∏
v∈T

(
d(v)−1

)
! can be shown easily by observation.

However, an extra factor of
∏
v∈T d(v) in Theorem 3.8 requires much more efforts.

Theorem 3.10. Suppose the diameter of T is `. When ` is even,

F (T ) ≤
2(n− 1− `

2)!

( `2)!

[(
n− 2
`
2

)
+

`
2
−1∑
i=0

(
n− 1

i

)]
.

When ` is odd,

F (T ) ≤
(n− `+3

2 )!

( `+1
2 )!

[
(n− 1− `)

(
n− 2
`−1

2

)
+ n

`−1
2∑
i=0

(
n− 1

i

)]
.

The equality holds if and only if T has the following form: there exists a path

v0 − v1 − · · · − v`
such that every edge not in this path is adjacent to vb `

2
c.

Before proving Theorem 3.8, it is worth noticing the following inequality, which relates the
number of shellings of T and Tv.

Lemma 3.11. Let v be a vertex in T and ` be the length of the longest descending path in Tv.
Then

F (T ) ≤
[ `−1∑
k=0

(
n− 2

k

)]
F (Tv).

In particular, F (T ) ≤ 2n−2F (Tv).

Proof. Let L = v − v1 − v2 − · · · − v` be the longest descending path in Tv. Consider the following
operations on T :

1. Suppose i ≤ ` − 2 is the first index such that vi has a children v′ 6= vi+1 in Tv. Remove
Tv(v

′) and attach it on vi+1 (i.e., children of v′ become children of vi+1). Furthermore,
remove edge (v′, vi) and add a new edge (v′, vi+1). This operation is illustrated in Figure 3.

2. Repeat step 1 until no further operations can be performed.
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v v1 vi vi+1

v′

Tv(v
′)

v`

Figure 3. Operation on T : moving edges away from root.

Such operations preserve the length of the longest descending path in Tv and would eventually
stop within finite steps. Let T (k) be the tree after kth operation. For u ∈ T , define the weight of
u in T (k)

Wk(u) =
F (T

(k)
u )

F (T
(k)
v )

.

We claim that the sum of weights of all vertices is non-decreasing after each operation, i.e.

(6)
∑
u∈T

Wk(u) ≤
∑
u∈T

Wk+1(u).

It suffices to prove the claim for k = 0. By Corollary 3.5, suppose (u,w) is an edge in T (k), then

(7)
Wk(u)

Wk(w)
=
|T (k)
w (u)|
|T (k)
u (w)|

=
|T (k)
w (u)|

n− |T (k)
w (u)|

.

Therefore, suppose v − u1 − u2 − · · · − ur = u is a path in T
(k)
v , then

Wk(u) =

r∏
j=1

|T (k)
v (uj)|

n− |T (k)
v (uj)|

.

Note that for all u 6= v′, vi+1, |T (1)
v (u)| = |Tv(u)|. For w 6∈ Tv(v′) ∪ Tv(vi+1), v′, vi+1 are not on the

path from v to w, so
W0(w) = W1(w).



Write |Tv(v′))| = a, |Tv(vi+1)| = b, then |T (1)
v (v′)| = 1, |T (1)

v (vi+1)| = |Tv(v′)| + |Tv(vi+1)| = a + b.
By (7),

W0(v′) =
a

n− a
W0(vi).

W0(vi+1) =
b

n− b
W0(vi).

W1(vi+1) =
a+ b

n− a− b
W1(vi).

Since W0(vi) = W1(vi),

W0(v′) +W0(vi+1) ≤W1(vi+1).

For w ∈ Tv(v′) \ {v′}, by (7),

W1(w)

W1(vi+1)
=
W0(w)

W0(v′)
=⇒ W0(w) ≤W1(w).

Similarly, for w ∈ Tv(vi+1) \ {vi+1},

W1(w)

W1(vi+1)
=

W0(w)

W0(vi+1)
=⇒ W0(w) ≤W1(w).

Therefore, we conclude that ∑
w∈T

W0(w) ≤
∑
w∈T

W1(w),

and (6) is proved.

Finally, suppose the operation stops after step M , then T (M) is the tree where all vertices not
in L are incident to v`−1. Thus, by 7,∑

u∈T
WM (u) = WM (v) +WM (v1) + · · ·+WM (v`−1) + (n− `)WM (v`)

=

`−1∑
i=0

(
n− 1

i

)
+ (n− l)

(
n−1
`−1

)
n− 1

= 2
`−1∑
i=0

(
n− 2

i

)
.

According to equation (6), Proposition 3.6,

F (T )

F (Tv)
=

1

2

∑
u∈T

W0(u) ≤ 1

2

∑
u∈T

WM (u) =

`−1∑
i=0

(
n− 2

i

)
,

so the proof is complete. �

Now we are ready to prove Theorem 3.8 and 3.10.



Proof of Theorem 3.8. Induct on |T |. When |T | = 2, F (T ) = 2 =
∏
v∈T d(v)!. The equality holds

if and only if T is a path (in this case T is also a star).
Assume that statement holds for all |T | < n, consider the case where |T | = n. If |T | is a path of

length n− 1, then by Example 3.7,

F (T ) = 2n−2 =
∏
v∈T

d(v)!,

as desired.
Suppose that T is not a single path, then there exists a vertex v of degree d ≥ 3. Let u1, u2, . . . , ud

be vertices adjacent to v and write |Tv(ui)| = si for i = 1, 2, . . . , d. Assume s1 ≤ s2 ≤ . . . ≤ sd. Let
T ′ be the subtree of T obtained by removing all vertices in Tv(u1) and all edges incident to those
vertices. Let T ′′ be the subtree of T induced by edges in E(T )\E(T ′). See Figure 4 for illustration.

• •

•

•
•

•

v u1

u2

u3

ud

T ′′T ′

Figure 4. Merging a shelling of T ′ and T ′′v to a shelling of T .

Suppose σ′ is a shelling of T ′ and σ′′ a shelling of T ′′v . Consider the following method to merge σ′

and σ′′ into σ, a permutation of E(T ), such that (i) the order of edges in σ′ and in σ′′ are preserved;
(ii) σ′′(1) = (v, u1) is not one of the first sd edges after merge. Note that σ must be a shelling of T ,
since at least one of {σ′(k) : 1 ≤ k ≤ sd} is incident to v and (v, u1) is adjacent to some previous
edges in σ.

For fixed σ′ and σ′′, the number of σ constructed by the above merging method is(
n− 1− sd
|E(T ′′)|

)
=

(
s1 + s2 + · · · sd−1

s1

)
.

Therefore,

(8) F (T ) ≥ F (T ′)F (T ′′v )

(
s1 + s2 + · · ·+ sd−1

s1

)
.

Note that the shellings of T constructed above do not include those whose first edge is (v, u1), so
we can replace “≥” with “>” in (8). Furthermore, by Lemma 3.11,

F (T ′′v ) ≥ F (T ′′)

2s1−1
.



By induction hypothesis,

F (T ′)F (T ′′) ≥ 1

d

∏
u∈T

d(u)!.

Thus, (8) implies

F (T ) >
1

2s1−1d

(
s1 + s2 + · · ·+ sd−1

s1

)∏
u∈T

d(u)!.

If for some choices of v with degree d ≥ 3,
(
s1+s2+···+sd−1

s1

)
≥ 2s1−1d, then F (T ) >

∏
u∈T d(u)!

and equality never holds.
If not, for all choices of v,

(
s1+s2+···+sd−1

s1

)
< 2s1−1d. By Lemma A.1, s1 = s2 = · · · = sd−1 = 1.

Therefore, T must be the following type of trees: for every vertex v of degree d(v) ≥ 3, it connects
at least d(v)− 1 leaves. If T is a star, then F (T ) = (n− 1)! is an equality case. If not, T has the
form shown in Figure 5, where v0 and vm are the only two possible vertices with degree at least 3.

· · ·• •

•

•

•

• • •

•

•

•

. . . · · ·
v0 v1 vm

Figure 5. The only type of trees that satisfy case 2 condition.

Suppose d(v0) = d1, d(vm) = d2 with 2 ≤ d1 ≤ d2. If m = 1, by Proposition 3.4, 3.6, and
Lemma A.2,

F (T ) =
d2

1 + d2
2 + d1d2 − d1 − d2

d1d2
(d1 + d2 − 2)!

≥ 2 · (d1 + d2 − 2)!

≥ d1!d2! =
∏
u∈T

d(u)!.

The equality holds only if d1 = d2 = 2 and T is a single path.
Now suppose m ≥ 2. Consider the following type of shelling of T : The first m − 1 edges of σ

consist of {(vi, vi+1) : 0 ≤ i ≤ m− 2}. The number of shellings of such type is

2m−2(d1 − 1)!(d2 − 1)!

(
d1 + d2 − 1

d2

)
.

Similarly, the number of shellings whose first m− 1 edges consist of {(vi, vi+1) : 1 ≤ i ≤ m− 1} is

2m−2(d1 − 1)!(d2 − 1)!

(
d1 + d2 − 1

d1

)
.



Thus by Lemma A.3,

F (T ) ≥ 2m−2(d1 − 1)!(d2 − 1)!

[(
d1 + d2 − 1

d2

)
+

(
d1 + d2 − 1

d1

)]
= 2m−2(d1 − 1)!(d2 − 1)!

(
d1 + d2

d1

)
> 2m−1d1!d2! =

∏
u∈T

d(u)!

unless d1 = 2, d2 ≤ 4, in which cases we have:

• (d1, d2) = (2, 2). F (T ) = 2n−2 =
∏
u∈T d(u)!. In this equality case, T is a single path.

• (d1, d2) = (2, 3). F (T ) = 2n−1 − 2 > 3! · 2n−4 =
∏
u∈T d(u)!.

• (d1, d2) = (2, 4). F (T ) = 6(2n−2 − n+ 1) > 4! · 2n−5 =
∏
u∈T d(u)!.

By induction, the proof of Theorem 3.8 is complete. �

Proof of Theorem 3.10. Let v0−v1−· · ·−v` be a longest path in T . Firstly, we reduce the problem
to the case where all edges in T are incident to {v1, v2, . . . , v`−1}. If not, construct a new tree T ′

by removing every edge e not incident to {vi : 1 ≤ i ≤ ` − 1} and adding a corresponding edge
incident to vj , where vj is the closest vertex from e among L. Every shelling of T is still a shelling
of T ′ by considering the corresponding edges. Thus, F (T ) ≤ F (T ′) while the longest path remains
the same.

Under this assumption, denote V ′ = T \ {v0, v1, . . . , v`}. Consider the following operations:

1. Let i be the smallest index such that vi has degree ≥ 3. If i < `
2 , we remove all edges of the

form (vi, u) for u ∈ V ′ and add edges (u, vi+1).
2. Repeat step 1 until no further operations can be performed.
3. Let j be the largest index such that vj has degree ≥ 3. If j > `

2 , we remove all edges of the
form (vj , u) for u ∈ V ′ and add edges (u, vj−1).

4. Repeat step 3 until no further operations can be performed.

Suppose the above operations end in step M . Let T (t) be the tree after tth operation. We claim
that for all t < M ,

F (T (t+1)) ≥ F (T (t)).

It suffices to prove the case when t = 0. By symmetry, we can assume i < `
2 . Let Vi be the set of

vertices adjacent to vi in T except vi−1, vi+1. Define

ST∩T (1) := {σ is a shelling of T : ∃u ∈ Vi, (vi, u) appears after (vi, vi+1) in σ},

ST (1)∩T := {τ is a shelling of T (1) : ∃u ∈ Vi, (vi+1, u) appears after (vi, vi+1) in τ},
ST\T (1) := {σ is a shelling of T : ∃u ∈ Vi, (vi, u) appears before (vi, vi+1) in σ},

ST (1)\T := {τ is a shelling of T (1) : ∃u ∈ Vi, (vi+1, u) appears before (vi, vi+1) in τ}.

Note that there is a bijection between ST∩T (1) and ST (1)∩T by replacing edges of the form (vi, u)
in every σ ∈ ST∩T (1) with (vi+1, u), for all u ∈ Vi. Thus, |ST∩T (1) | = |ST (1)∩T | and

F (T (1))− F (T ) = |ST (1)\T | − |ST\T (1) |.
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Figure 6. An example of operation on T : moving edges towards middle. The
shellings are indicated by the number on the edges. g maps a shelling of the first
tree to a shelling of the second tree.

Consider a function g : ST\T (1) → ST (1)\T . For σ ∈ ST\T (1) , define τ = g(σ) as follows. If

σ(k) = (vi, u) for some u ∈ Vi, τ(k) = (vi+1, u); if σ(k) = (vj , u) for some j 6= i and u ∈ V ′,
τ(k) = (vj , u). It remains to define τ(k)’s where σ(k) is an edge of L.

Write e(j) = (vj , vj+1) for j = 0, 1, . . . , ` − 1. For 1 ≤ r ≤ `, suppose σ(kr) = e(jr) where
k1 < k2 < · · · < k`. Define τ(kr) inductively: when r = 1, τ(k1) = e(2i− j1). When r ≥ 2,

τ(kr) =

{
e(jr), if {τ(k1), τ(k2), . . . , τ(kr−1)} = {e(j1), e(j2), . . . , e(jr−1)}
e(2i− jr), otherwise.

The idea is that g maps edges not in L to the corresponding edges. For edges in L, g acts as a
reflection with respect to e(i), until the reflection image matches with the preimage. An example
of g is in Figure 6.

We check the following properties of g:

• g is well-defined.
We first note that for any r ≤ `, both {σ(k1), σ(k2), . . . , σ(kr)} and {τ(k1), τ(k2), . . . , τ(kr)}

form a path Pr and P
(1)
r in L, respectively. Since j1 ≤ i, the right endpoint of P

(1)
r is never

on the left side of the right endpoint of Pr (assuming that L is a horizontal path with
left endpoint v0 and right endpoint v`, as illustrated in Figure 6). Furthermore, since the
“branching edges” of T (edges in E(T ) \E(L)) are not on the left side of vi, every branch-

ing edge adjacent to Pr must be adjacent to P
(1)
r . Thus, τ is a shelling of T (1). Moreover,

τ ∈ ST (1)\T by the correspondence between (vi, u) ∈ σ and (vi+1, u) ∈ τ for all u ∈ Vi.

Therefore, g is well-defined.



• g is injective.
Suppose g(σ) = τ. By the definition of g, σ(k) is uniquely determined whenever τ(k) 6∈ L.

Suppose τ(kr) = e(ir) for 1 ≤ r ≤ `. we can recover σ(kr) from τ : σ(k1) = e(2i− i1). When
r ≥ 2,

σ(kr) =

{
e(ir), if {σ(k1), σ(k2), . . . , σ(kr−1)} = {e(i1), e(i2), . . . , e(ir−1)}
e(2i− ir), otherwise.

Therefore, σ is uniquely determined by τ and g is injective.

Since g is injective, |ST (1)\T | ≥ |ST\T (1) | and thus F (T (1)) ≥ F (T ).

Finally, note that T (M) is the tree where all edges not in L are incident to vb `
2
c. By Proposition 3.4

and 3.6,

F (T (M)) =


2(n−1− `

2
)!

( `
2

)!

[(n−2
`
2

)
+
∑ `

2
−1

i=0

(
n−1
i

)]
, if ` is even,

(n− `+3
2

)!

( `+1
2

)!

[
(n− 1− `)

(n−2
`−1
2

)
+ n

∑ `−1
2

i=0

(
n−1
i

)]
, if ` is odd.

Thus, the proof of inequality is complete.
Futhermore, we shall prove that g is surjective only if T is isomorphic to T (M). If not, then there

are two cases:
Case 1. i < `−1

2 .
In this case, 2i < ` − 1. Thus, for every σ ∈ ST\T (1) , g(σ)(1) 6= e(` − 1) = (v`−1, v`). However,

there exists τ ∈ ST (1)\T whose first edge is (v`−1, v`), contradiction!

Case 2. i = `−1
2 and there exists another vertex vj of degree at least 3.

Suppose (vj , u) is an edge not in L, then for every σ ∈ ST\T (1) , g(σ)(1) cannot be this edge.

However, there exists τ ∈ ST (1)\T whose first edge is (vj , u), contradiction!

Therefore, g is surjective only if T is isomorphic to T (M), so

F (T ) = F (T (M))

if and only if T is isormorphic to T (M). This completes the proof of Theorem 3.10. �

4. Future Work

Theorem 3.8 gives a lower bound of shelling numbers based on the degree profile of a tree. We
also explore some potential upper bounds based on vertex degrees.

Conjecture 4.1. Let k ≥ 3 be a fixed positive integer and n = k(k−1)m−2
k−2 for some positive integer

m. Let ∆(T ) denote the maximum degree of a vertex in T . Among all trees T with n vertices such
that ∆(T ) ≤ k, the number of shellings of T is maximized when T is a complete k-ary tree of depth
m. An example of a complete ternary tree of depth 3 is shown in Figure 7.

Some partial results are obtained when k = 3.

Lemma 4.2. Among all trees T with n vertices such that ∆(T ) ≤ 3, there exists a tree which has
at most one vertex of degree 2 and which achieves the maximum number of shellings.
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Figure 7. A complete ternary tree of depth 3.

Proof. Let T be a tree with ∆(T ) ≤ 3. If n ≤ 3, the lemma follows by regular check. Now assume
n ≥ 4. Suppose v is a vertex such that F (Tv) is maximized among all vertices in T . Then, for any
vertex u 6= v, |Tv(u)| ≤ n

2 . We perform the following operations on T :

1. If d(v) = 2, suppose u is adjacent to v with |Tv(u)| ≥ 2. If d(u) = 2 and the child of u in
Tv is w, replace the edge (w, u) with (w, v). If d(u) = 3, suppose the children of u in Tv is
w1, w2. Without loss of generality, assume∑

x∈Tv(w1)

F (Tx) ≤
∑

x∈Tv(w2)

F (Tx).

We remove the subtree Tv(w2) from u and attach it on v.
2. Now d(v) = 3. Suppose there exists a vertex u of degree 2. Consider w, the child of u in
Tv. If d(w) = 2 and the child of w in Tv is x, replace (w, x) with (u, x). If d(w) = 3 and
the children of w in Tv are x1, x2, remove the edges adjacent to w and add (u, x1), (u, x2).
Furthermore, assuming that |Tv(x1)| ≤ |Tv(x2)|, we attach w to an arbitrary leaf of Tv(x1).

3. Repeat step 2 until no further operations can be performed.
4. Now every vertex of degree 2 is adjacent to some leaves. If there exist two vertices v1, v2

of degree 2 such that each vi is adjacent to a leaf ui, then we either replace (v1, u1) with
(v2, u1) or replace (v2, u2) with (v1, u2), depending on which replacement gives a larger
shelling number.

5. Repeat step 4 until no further operations can be performed.

We shall prove that after each of the operation above, the number of shellings of T does not
decrease.

For operation 1, call the new tree after this operation T (1). Note that for all vertex x 6= u,

|Tv(x)| = |T (1)
v (x)|. Denote |Tv(wi)| = si for i = 1, 2. By Proposition 3.4,

F (T
(1)
v )

F (Tv)
=
|Tv(u)|
|T (1)
v (u)|

=
s1 + s2 + 1

s1 + 1
> 1.

By Corollary 3.5,

F (T
(1)
u )

F (Tu)
=
F (T

(1)
u )

F (T
(1)
v )
· F (T

(1)
v )

F (Tv)
· F (Tv)

F (Tu)
=

s1 + 1

n− s1 − 1
· s1 + s2 + 1

s1 + 1
· n− s1 − s2 − 1

s1 + s2 + 1
=
n− s1 − s2 − 1

n− s1 − 1
.



For all x 6∈ Tv(u),

F (Tx)

F (Tv)
=
F (T

(1)
x )

F (T
(1)
v )

=⇒ F (T (1)
x ) ≥ F (Tx).

For x ∈ Tv(w1),

F (Tx)

F (Tu)
=
F (T

(1)
x )

F (T
(1)
u )

=⇒ F (T
(1)
x )

F (Tx)
=
n− s1 − s2 − 1

n− s1 − 1
.

For x ∈ Tv(w2),

F (Tx)

F (Tu)
=
F (T

(1)
x )

F (T
(1)
v )

=⇒ F (T
(1)
x )

F (Tx)
=
F (T

(1)
v )

F (Tv)
· F (Tv)

F (Tu)
=
n− s1 − s2 − 1

s1 + 1
.

Therefore,∑
x∈Tv(w1)∪Tv(w2)

(F (T (1)
x )− F (Tx)) =

n− 2s1 − s2 − 2

s1 + 1

∑
x∈Tv(w2)

F (Tx)− s2

n− s1 − 1

∑
x∈Tv(w1)

F (Tx)

Note that s1 + s2 + 1 = |Tv(u)| ≤ n
2 , so n− 2s1 − s2 − 2 ≥ s2 > 0. The above formula is at least(

n− 2s1 − s2 − 2

s1 + 1
− s2

n− s1 − 1

) ∑
x∈Tv(w1)

F (Tx) ≥
(

s2

s1 + 1
− s2

n− s1 − 1

) ∑
x∈Tv(w1)

F (Tx) ≥ 0.

In addition,

F (T (1)
v ) + F (T (1)

u )− F (Tv)− F (Tu) =
s2

s1 + 1
F (Tv)−

s2

n− s1 − 1
F (Tu)

≥
(

s2

s1 + 1
− s2

n− s1 − 1

)
F (Tu)

≥ 0.

Therefore, by Proposition 3.6,
F (T (1)) ≥ F (T ).

For operation 2, call the new tree after this operation T (2). If d(w) = 2, then every shelling of

T corresponds to a shelling of T (2) by considering corresponding edges. Thus, F (T (2)) ≥ F (T ) in
this case. If d(w) = 3, suppose Tv(xi) = si for i = 1, 2. By Proposition 3.4,

F (T
(2)
v )

F (Tv)
≥
(
s1+s2+1

s2

)(
s1+s2
s2

) =
s1 + s2 + 1

s1 + 1
> 1.

For every vertex z 6∈ Tv(w), by Corollary 3.5,

F (T
(2)
z )

F (Tz)
=
F (T

(2)
v )

F (Tv)
=
s1 + s2 + 1

s1 + 1
=⇒ F (T (2)

z ) ≥ F (Tz).

For z ∈ Tv(w) \ {w}, note that F (Tu)
F (Tw) = n−|Tv(w)|

|Tv(w)| > 1,

F (T
(2)
z )

F (T
(2)
u )
≥ F (Tz)

F (Tw)
=⇒ F (T

(2)
z )

F (Tz)
≥ F (T

(2)
u )

F (Tw)
≥ F (Tu)

F (Tw)
> 1.



Furthermore,

F (T (2)
v ) + F (T (2)

u )− F (Tv)− F (Tu)− F (Tw) ≥ s2

s1 + 1
(F (Tv) + F (Tu))− F (Tw)

>
2s2

s1 + 1
F (Tw)− F (Tw)

≥ 0

since 2s2 ≥ s1 + 1. Therefore, by Proposition 3.6,

F (T (2)) > F (T ).

For operation 4, call the tree after replacing (v1, u1) with (v2, u1) T (3), and the tree after replacing

(v2, u2) with (v1, u2) T (4). We claim that

F (T (3)) + F (T (4))

2
≥ F (T ).

In fact, define

S1 := {σ is a shelling of T : (v1, u1) appears before (v2, u2)},
S2 := {σ is a shelling of T : (v2, u2) appears before (v1, u1)},

S3 := {σ is a shelling of T (3) : (v2, u2) appears before (v2, u1)},

S4 := {σ is a shelling of T (4) : (v1, u1) appears before (v1, u2)}.

Then F (T (3))
2 = |S3|, F (T (4))

2 = |S4|, and F (T ) = |S1|+ |S2|. Note that there is an injection from S1

to S4 by considering corresponding edges ((v2, u2) corresponds to (v1, u2)), so |S1| ≤ |S4|. Similarly,
|S2| ≤ |S3|. The claim follows immediately.

Finally, operation 2 can only repeat finitely many times since after each step, the number of
shellings would increase; operation 4 can only repeat finitely many times since after each step, the
number of vertices of degree 3 would increase. Note that the resulting tree after all operations are
ended has at most one vertex of degree 2. Therefore, the proof is complete. �
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Appendix A. Some Combinatorial Inequalities

Lemma A.1. Let s1 ≤ s2 ≤ · · · ≤ sd−1 and d ≥ 3 be some positive integers. Then(
s1 + s2 + · · ·+ sd−1

s1

)
< 2s1−1d

if and only if s1 = s2 = · · · = sd−1 = 1.

Proof. Note that s1 + s2 + · · ·+ sd−1 ≥ (d− 1)s1, so(
s1 + s2 + · · ·+ sd−1

s1

)
≥
(

(d− 1)s1

s1

)
.

We claim that when s1 ≥ 2, (
(d− 1)s1

s1

)
≥ 2s1−1d.

Induct on d. When d = 3,(
2s1

s1

)
=

s1∏
k=1

s1 + k

k
≥ (s1 + 1)

s1∏
k=2

s1 + k

k
≥ 3 · 2s1−1.

Suppose that the claim holds for d− 1, then(
ds1

s1

)
=

(
(d− 1)s1

s1

) s1∏
k=1

(d− 1)s1 + k

(d− 2)s1 + k
≥ (2s1−1d) · d

d− 1
≥ 2s1−1(d+ 1),

so the claim is proved by induction.
According to this claim, if s1 ≥ 2,(

s1 + s2 + · · ·+ sd−1

s1

)
≥ 2s1−1d,

contradiction! So s1 = 1 and s1 + s2 + · · ·+ sd−1 < d. This gives s1 = s2 = · · · = sd−1 = 1. �

Lemma A.2. Suppose 2 ≤ d1 ≤ d2 are positive integers, then

2 · (d1 + d2 − 2)! ≥ d1!d2!.

Proof. Note that

(d1 + d2 − 2)!

d2!
=

d1−2∏
k=1

(d2 + k) ≥
d1−2∏
k=1

(2 + k) =
d1!

2
,

so the lemma follows immediately. �

Lemma A.3. Suppose 2 ≤ d1 ≤ d2 are positive integers, then(
d1 + d2

d1

)
≤ 2d1d2

if and only if d1 = 2 and d2 ≤ 4.

https://mathoverflow.net/questions/297385
https://mathoverflow.net/questions/297385


Proof. We claim that when d1 ≥ 3, (
d1 + d2

d1

)
> 2d1d2.

Induct on d1. When d1 = 3,(
d1 + d2

d1

)
− 2d1d2 =

(d2 + 3)(d2 + 2)(d2 + 1)

6
− 6d2 = f(d2).

If d2 = 3, f(d2) = 2 > 0. If d2 ≥ 4,

f(d2) ≥ (4 + 3)(4 + 2)(d2 + 1)

6
− 6d2 = d2 + 7 > 0.

Suppose that the claim holds for d1 − 1, then(
d1 + d2

d1

)
=
d1 + d2

d1

(
d1 + d2 − 1

d1 − 1

)
>
d1 + d2

d1
2(d1 − 1)d2 > 2d1d2,

so the induction is complete.
According to this claim, d1 = 2 and (

2 + d2

2

)
> 4d2.

This implies
d2

2 − 5d2 + 2 ≤ 0

and thus d2 ≤ 4. �
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