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Abstract. Mehta and Schwab (2014) conjectured that there exists a mapping
between deep learning in restricted Boltzmann machines and the renormaliza-
tion group, which arises in describing the phase transition properties of gen-
eralized Ising models and in exorcising pathological infinities that abound in
quantum field theory. Rigorous approaches to the renormalization group for
generalized Ising models have been developed using random walks. By tak-
ing advantage of the Ising form of the energy function defined on restricted
Boltzmann machines, we employ such a random walk approach to elucidate the
formal connection between deep learning and the renormalization group. This
approach not only provides tools for proving fundamental properties of learning
algorithms, it also casts deep learning in the framework of rigorous approaches
to both critical phenomena and quantum field theory.

1. Introduction

A Restricted Boltzmann machine (RBM) provides useful algorithms in machine
learning to describe an unknown probability distribution. Given a set of observa-
tions, also called training data, RBMs provide approximations to the joint prob-
ability distribution of the underlying data, which allows us to sample and make
predictions about unseen observations [2]. For example, when the training data is a
set of pixels from an image, knowing the joint probability distribution of the pixels
grants us the ability to solve tasks related to pattern recognition and machine vision.

RBMs can be regarded as undirected graphical models that represent the proba-
bility distribution of what are called visible and hidden variables. The visible units
represent the observations from the data, and the hidden variables are introduced
to capture dependencies of the visible variables. Suppose that these dependencies
between hidden and visible variables are encoded in values wij , where i represents
some visible vertex and j some hidden vertex. Learning an RBM means adjusting
these parameters wij such that the marginal probability distribution of the visible
units matches the data as accurately as possible [2].

Mehta and Schwab (2014) suggest that the learning techniques for RBMs are closely
related to the renormalization group (RG), a coarse-graining procedure from quan-
tum field theory often used to extract information from a lattice spin system [5].
One popular technique regarding renormalization on an Ising-type lattice is known
as decimation. Given some Ising lattice, decimation allows you to create a new,
smaller lattice where each vertex encodes an average value of a block of vertices in
the original lattice. In the machine learning settings, each vertex represents a unit
of data, such as a pixel or a bit. Mehta and Schwab work through several examples
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displaying a parallel between repeated decimation and learning an RBM through
some deep neural net. However, their claim remains at the level of conjecture [5].

It turns out that there is a remarkable connection between quantum fields and what
are known as Markov random fields (MRFs). By passing into the imaginary time
domain, Brydges demonstrates that a quantum field actually becomes an MRF.
Making use of the Osterwalder-Schrader axioms, Brydges even provides conditions
in which an MRF may be translated back into a quantum field [4]. Since an RBM
is a degenerate case of general MRFs, it may not be surprising that there exists a
relation between renormalization in quantum field theory and deep learning in the
context of machine learning.

Brydges, Frölich, and Spencer (1982) develop a rigorous random walk formulation
of lattice spin systems following the polymer representation by Symanzik (1969) in
order to construct bounds on correlation functions in Ising-type models [1,6]. Later,
Aizenmann (1985) exhibits a critical connection between random walks and the
renormalization group by using the scaling property of Brownian motion to show
that intersection properties of random walks generated by independent Brownian
motions can be described by the renormalization equation for the beta function of a
quantum field theory [3]. The invariance described by Brownian motion’s self sim-
ilarity relates to the RG operations near criticality in that the correlations among
vertices remain the same after decimation. This connection between random walks
and RG could lead to interpretations of critical points for RBMs in the machine
learning setting.

Here we use methods similar to those of Brydges et. al. in [1] to take a step towards
completing the formal connection between the renormalization group and learning on
a RBM by constructing a random walk representation of correlation functions arising
from minimization of the Kullback-Leibler divergence (KL-divergence), a measure
of the distance between two probability distributions that allows for the quantifica-
tion of the error in the distribution predicted by the RBM model [2]. A common
technique for learning an RBM is to perform gradient descent on the KL-divergence.
We show in section 3 the known fact that the gradient of the KL-divergence can
be written as the difference of the expectations of the energy function under the
conditional distribution of the hidden layer given the training data and under the
joint distribution of the hidden and visible variables described by the model.

In section 5 we adapt the polymer representation by Symanzik in [6] to our RBM
model in order to express the partition function in terms or random loops between
the hidden and visible layers. In sections 6 and 7, we develop a random walk rep-
resentation for the expectations described by the training data and by the model
separetely. Not only does this random walk representation provide a rigorous tool-
box for proving fundamental properties and limitations of learning algorithms on
RBMs, it also casts deep learning in the framework of quantum field theory, which
leads to an analysis and generalization of learning algorithms that arise naturally in
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a field theory setting.

2. Background

In the following definitions, we let G = (V,E) be any undirected graph and let
x, y ∈ V denote any two vertices in G.

Definition 1. A path from x to y is an ordered subset of edges ωx,y ⊂ E
ωx,y = ((x, v1), (v1, v2), ..., (vn−1, y))

Definition 2. Let x, y ∈ V be any two vertices. We call x and y separated by a
subset C ⊂ V if every path from x to y passes through C. Specifically, if x and y are
separated by C and ωx,y is a path from x to y, then( ⋃

e∈ωx,y
e

)⋂
C 6= ∅.

Definition 3. Let Σ be the set of all possible paths on a lattice L, and define µ : Σ→
[0, 1] as the uniform probability measure. A walk random walk ωN ∈ {ωx,y|x, y ∈
L and |ωx,y| = N} is a path of size |ωN | = N on L chosen under the probablity
measure µ, and a random loop ωN is a special case of a random walk in which
x = y.

Definition 4. n(k |ω) is the number of times the walk ω hits the vertex k ∈L

Definition 5. Given a path ω on a weighted graph G = (V,E) whose weights are
given by an adjacency matrix W , we define Wω ≡

∏
r∈ωWr.

Definition 6. Let G = (L,W ) be a graph, where L = LV ∪ LH is a union of finite
sub-lattices of Z and W is a set of weighted undirected edges. Let si be a random
variable associated with vertex i and let p be the joint probability distribution of
s = (s0, s1, ..., s|L|−1). Two nodes x and y ∈ L are separated by a set C ⊂ L if every
path from x to y passes through C. Formally, then C separates x and y if for all
paths ωx,y from x to y, ωx,y ∩ C 6= ∅. We say that p fulfills the Markov property
with respect to G if for all disjoint subsets A,B,C ∈ L with all nodes in A and
B being separated by C, it holds that p((sa)a∈A|(sr)r∈B∪C) = p((sa)a∈A|(sr)r∈C),
where p(a|b) is the conditional probability of b given a under the distribution p. In
this case s is called a Markov random field (MRF).

3. restricted boltzmann machines

A Restricted Boltzman Machine (RBM) is a bipartite undirected graph whose
associated random variables s are a MRF. It consists of two independent sets LH ⊂ L
and LV ⊂ L which we call the hidden layer and visible layer, respectively. Let Ωsi
be the set of possible outcomes of the random variable si. Define

ΩV ≡
∏

si|i∈LV

Ωsi (3.1)
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as the state space of the visible layer. For notational reasons, we denote by v =
{v1, v2, ..., vNV } the vector of random variables on the visible layer, whereNV = |LV |.
The same construction gives the objects ΩH , h, and NH .

Figure 1. Example RBM withNH hidden variables andNV visible
variables whose edge weights are given by elements of W

By the Universal Approximation Theorem proved by Le Roux and Bengio and later
improved by Montafur and Ay, we find that for any distribution over {1,−1}n the
interactions between the visible and hidden layers can be expressed using the energy
function

H(v,h) ≡ −
NH−1∑
i=0

NV −1∑
j=0

wijhivj −
NV −1∑
j=0

bivi −
NH−1∑
i=0

cihi (3.2)

in which wij is the weight of the edge vihj , and bj , ci are the weights associated
with the variables vj and hi respectively [8,9]. In the case of the Ising model, the
weights ci and bj are called a bias or applied magnetic field, where each spin has a
magnetic dipole moment that makes the orientation of the spin likely to align along
the direction of the field. The joint probability distribution of a specific configuration
s = (v,h) = (s0, ..., sNS ) can then be written as

p(s) ≡ p(v,h) ≡ e−βH(v,h)

Z
(3.3)

where
Z ≡ ZG(β) ≡

∑
v∈ΩV

∑
h∈ΩH

e−βH(v,h) (3.4)

is the normalization constant, better known as the partition function of the RBM.
The ability to calculate this partition function by means of summing over all possible
configurations of our RBM gives us a powerful tool in calculating other statistical
variables. For example, in the context of statistical physics, one often wishes to
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calculate what are known as correlation functions. It turns out that the correlation
function given by the random variable vihj with i ∈ LV and j ∈ LH can be calculated
via a generating function approach on Z. In particular, we allow ourselves to vary
bi and cj through some variables b∗i and c∗j and the expectation of vihj is

E[vihj ] =

(
∂

∂b∗i

∂

∂c∗j
Z
)∣∣∣∣

b∗i=bi,c∗j=cj

[7]. From now on we consider the case β = 1, which is the most common scenario in
machine learning. However, in order to consider possible interpretations of critical
phenomena in RBMs, all the following equations could be easily generalized for an
arbitrary β.

Techniques such as Gibbs sampling are often performed on RBMs to conduct un-
supervised learning where the goal is to find the parameters (wij , bk, cl) that best
approximate the probability distribution of the data [2], given by

p(v) =
∑
h∈ΩH

p(v,h) =
1

Z
∑
h∈ΩH

e−H(v,h) (3.5)

Once we have a suitable approximation to p(v), we can perform the same calculation
to find an approximation for the probability distribution over the hidden variables,
p(h).

p(h) =
∑
v∈ΩV

p(v,h) =
1

Z
∑
v∈ΩV

e−H(v,h) (3.6)

Simply put, we observe the behavior of the visible units and we wish to recover
the parameters which give rise to the probability distribution that our RBM follows.
Let qNT (v) be the distribution of the observed data, where NT is the number of
training samples. Then as the number of training samples goes to infinity, we have
that qNT (v) converges to q∞(v) = p(v) by the law of large numbers. Despite this
convergence, in a practical setting there will almost surely be some degree of ap-
proximation error given a finite number of training samples. The Kullback-Leibler
divergence (KL-divergence) allows us to measure (from a theoretical perspective)
the difference between the observed distribution and the actual distribution [2]. For-
mally, the KL-divergence from qNT to p is defined by

KL(qNT ||p) ≡
∑
v∈ΩV

qNT (v) ln
qNT (v)

p(v)

=
∑
v∈ΩV

qNT (v) ln qNT (v)−
∑
v∈ΩV

qNT (v) ln p(v).
(3.7)

Suppose that we have sampled the visible layer to get NT samples of training data.
Denote the µth sample by vµ. We can achieve a very simple approximation to q∞(v)
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by letting

qNT (v) =
1

NT

NT∑
µ=1

δ(v − vµ) (3.8)

That is, our approximation for the probability distribution of visible variables follows
a discrete marginal distribution given by the empirical distribution on the training
data.
The learning algorithms for RBMs rely essentially on gradient descent on the KL-
divergence, which implies the condition that the marginal distribution of the model
becomes a better approximation of the distribution of the data. This gradient is
given by

∂KL(q||p)
∂wij

=
∂

∂wij

∑
v∈ΩV

q(v) log q(v)− ∂

∂wij

∑
v∈ΩV

q(v) log p(v)

= − ∂

∂wij

∑
v∈ΩV

1

NT

NT∑
µ=1

δ(v − vµ) log p(v)

= − 1

NT

NT∑
µ=1

∂

∂wij
log p(vµ)

=
1

NT

NT∑
µ=1

 ∑
h∈ΩH

p(h|vµ)
∂H(vµ,h)

∂wij
−
∑
h,∈ΩH
v∈ΩV

p(v,h)
∂H(v,h)

∂wij


=

1

NT

NT∑
µ=1

[
Ep(h|vµ)

[
∂H(vµ,h)

∂wij

]
− Ep(v,h)

[
∂H(v,h)

∂wij

]]

(3.9)

Now, recall from the definition of H(v,h) that the only term dependent on wij
is viwijhj . Therefore, the derivatives in the argument of the expectation values
above simply evaluate to vµi hj and vihj , respecively. Defining Eµ = Ep(h|vµ) and
E = Ep(h|v), we conclude

∂KL(q||p)
∂wij

=
1

NT

NT∑
µ=1

[Eµ[vµi hj ]− E[vihj ]] (3.10)

Most of the current optimization techniques to find the RBM parameters rely on the
value of the gradient in Eq. (3.9), whose calculation is computationally expensive.
Gibbs sampling is an algorithm that produces samples from the joint probability dis-
tribution of a group of random variables, which is used to generate approximations
for the gradient that have a much lower cost than its exact computation. The idea is
to update in each time step both, the hidden variables h given p(h|v), and the visible
variables v given p(v|h). This gives rise to a Markov Chain s = s(t)|t ∈ N where
s(t) = (s

(t)
1 , ..., s

(t)
N ) determines the state of the random variables at time t. This
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chain eventually converges to the distribution of s, and then taking a sample from
the chain for a sufficiently large t gives a close approximation [2]. It is important
to clarify that the random walks arising from this Markov chain are fundamentally
different from the random walks that we are going to introduce in this paper, which
are time-independent walks on the visible and hidden layers.

4. main results

We take a step towards completing the formal connection between the renormal-
ization group and learning on a RBM by constructing a random walk representation
of the expectations arising from the minimization of the KL-divergence in Eq. (3.7).
Specifically, if we let W be the weight matrix of our model, and Wµ be a new weight
matrix that takes into account the data sample µ which will be defined more precisely
in proposition 6.1, we obtain

Theorem 4.1.

∆wij =
1

NT

NT∑
µ=1

 (2π)
−NH vµi

Z P (vµ)

∑
ω1∈Ls

Yµj (ω1)− 1

Z
∑

ωvi,hj⊂Ls

X (ωvihj )

 (4.1)

where

Yj(ω) ≡
∞∑
n=0

1

n!

(
1

2

)n ∑
ω1,...,ωn⊂LH

Wµ
ω

n∏
k=1

(−2iaO)ωk exp [−Uj(ω1, ω2, ..., ωn)]

exp [−Uj(ω1, ω2, ..., ωn)] =
∏
k∈LH

∫
IRNH

dake
−iai(2iakdk)

−1
2 −n(k |ω1)−...−n(k |ωn)(2iaj)−1

(4.2)

and

X (ω) ≡
∞∑
n=0

1

n!

(
1

2

)n ∑
ω1,ω2,...,ωn

(
Wω

n∏
k=1

Wωk

)
exp[−F (ω1, ..., ωn|ω)]

exp [−F (ω1, ω2, ..., ωn)] =
∏
k∈Ls

∫
IRNs

dake
−iai(2iak)

−1
2 −n(k |ω1)−...−n(k |ωn)

(4.3)

Additionally, we adapt the polymer representation of lattice spin systems developed
by Symanzik and elaborated by Brydges et. al. in [1,6] in order to express the
partition function of a RBM in terms of random walks that alternate between the
visible and hidden layer. Specifically, we show that

Z = (2π)
−Ns

∞∑
n=0

1

n!

(
1

2

)n ∑
ω1,ω2,...,ωn⊂Ls

n∏
k=1

(W )ωk exp [−F (ω1, ω2, ..., ωn)] (4.4)
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where the edges in the random walks have one end in LH and the other one in LV
due to the connectivity structure of the RBM.

5. random walk representation of the partition function for RBMs

From now on, we assume that the sample space of the random variable at each
vertex of an RBM is {±1}. In particular, the sample space of the entire RBM can
be written as the product of the sample spaces on the hidden and visible layers
Ω = ΩH × ΩV where ΩH = {±1}NHand ΩV = {±1}NV . Furthermore, we assume
that the bias on each vertex is set to zero (bi = ci = 0). With these assumptions
we lose out on features found in more complex examples such as the Potts model.
However, our assumptions do not restrict so much that the model becomes trivial.
In fact, Mehta and Schwab provide examples using the binary model on images of
binary data to search for underlying structure [5]. Even with these theoretically
limiting restrictions on our RBM, these results are still applicable to machine vision,
pattern recognition, image classification, and other fields.

Proposition 5.1.

Z = (2π)
−Ns

∞∑
n=0

1

n!

(
1

2

)n ∑
ω1,ω2,...,ωn⊂Ls

n∏
k=1

(W )ωk exp [−F (ω1, ω2, ..., ωn)] (5.1)

where

exp [−F (ω1, ω2, ..., ωn)] =
∏
k∈Ls

∫
IRNs

dake
−iai(2iak)

−1
2 +n(k |ω1)+...+n(k |ωn) (5.2)

The above equation presents the partition function Z in terms of random walks
on our RBM. Recalling the form of W, we see that any loop ω with an edge (vi,vj)
or (hi,hj) containing two vertices in the same layer will vanish since the weight of

Figure 2. Example a loop outlined in pink which contributes to the
partition function of a RBM with four hidden and visible vertices.
The other bonds have been grayed out for visual clarity.
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any edge between vertices of the same layer are zero. Thus, all walks that contribute
to the sum for the partition function must alternate between the visible and hidden
layers at each step. Additionally, the expansion allows us to consider several of these
terms at once by taking products of loops by multiplying the weightings of all the
edges found in each loop. The exponential term acts as a decay factor which forces
smaller weights on terms whose loops come back to the same vertex many times.

Proof. In order to calculate the partition function by means of random walks on
the RBM, we start by introducing the Dirac delta function. This passes us into the
continuous regime and our sample space becomes Ω′ = IRNs . This allows us to write
the partition function nicely in integral form as

Z =

∫
Ω′

NS∏
n=0

dsnδ(s
2
n − 1) exp [−H(v,h)] (5.3)

Notice that δ(x) is continuous on the positive real line, Rx>0. Additionally, δ(x)
trivially decays faster than exponentially and has integrable derivative on Rx>0. By
these properties of the delta function, we may follow in the fashion of Brydges et.
al. in [1]. In particular, we take the following integral representation of the delta
function:

δ(s2
n − 1) =

1

2π

∫
Γ

dan exp
[
ian
(
s2
n − 1

)]
, (5.4)

where Γ is the contour Im(a) = −λ, with λ large and positive so that lemmas 5.2
and 5.3 may be used. Substitution into Eq. (5.3) yields

Z =

∫
Ω′

∫
ΓNs

NS−1∏
n=0

dsndan
e−ian

2π
exp

[
−
NS−1∑
k=0

iaks2
k

]
exp [−H(v,h)]

=

∫
ΓNs

NS−1∏
n=0

dan
e−ian

2π

∫
Ω′

NS−1∏
n=0

dsn exp

−∑
sk∈v
sl∈h

skwklsl −
NS−1∑
k=0

iaks2
k


=

∫
ΓNs

NS−1∏
n=0

dan
e−ian

2π

∫
Ω′

NS−1∏
n=0

dsn exp

 ∑
k,l∈LS

sk(wkl − iakδkl)sl


=

∫
ΓNs

NS−1∏
n=0

dan
e−ian

2π

∫
Ω′
ds exp

[
−1

2
sT (2ia−W )s

]

(5.5)

where Ls = {0, 1, ..., Ns}, matrix a is defined such that akl = akδkl and W is the
symmetric adjacency matrix for the graph of our RBM. Specifically, W has the
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following properties:

Wij =

{
wij if si and sj are in different layers
0 if si and sj are in the same layer

(5.6)

We now observe that the above integrals are Gaussian over s and can be evaluated
to give us

Z =

∫
ΓNS

NS−1∏
n=0

dan
e−ian

2π
det

−1
2 [2ia−W ]. (5.7)

We now make a bit of a detour to introduce the following lemmas of Brydges, Frölich,
and Spencer found in [1] to rewrite det−1(2ia −W ) in terms of random walks on
LS .

Lemma 5.2. If M is a real, symmetric finite-dimensional matrix and D is a diag-
onal matrix of the same dimension, then

[
(D −M)−1

]
i,j

=

∞∑
N= 0

∑
ωN :i→j
ωN⊂L

( ∏
r∈ωN

Mr

)∏
k∈L

(dk)
−n(k |ωN ) (5.8)

where r refers to an ordered pair (also called "step") in the random walk ω.

Proof. By making use of the Neumann series of (D −M)−1, we have the expansion

[D −M ]
−1

= D−1 +D−1MD−1 +D−1MD−1MD−1 + · · · (5.9)

We can now look at any single term in the right hand of the above expansion.
For example, consider the fourth term, D−1MD−1MD−1MD−1. The explicit
expression for any entry in this matrix is

[
D−1MD−1MD−1MD−1

]
i1,i4

=
∑

i2,i3∈L
D−1
i1
Mi1,i2D

−1
i2
Mi2,i3D

−1
i3
Mi3,i4D

−1
i4

=
∑

ω4:i1→i4
ωN⊂L

( ∏
r∈ωN

Mr

)∏
k∈L

(dk)
−n(k |ωN )

(5.10)

Similarly, a term in which D−1 appears N times will fulfill the same equation, with
the difference that the sum will be over all random walks of length N that start
and end at the given subindexes. Therefore, the lemma follows by applying equation
(5.10) to each term in the right hand side of equation (5.9) and adding them all. �

Lemma 5.3. If M is a real, symmetric finite-dimensional matrix and D is a diag-
onal matrix of the same dimension, then
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det
[
(D −M)−1

]
=

[∏
i∈L

di

]−1

exp

 ∞∑
N=1

∑
ωN⊂L

MωN

∏
k∈L

(dk)
−n(k |ωN )

 (5.11)

Proof. The following computation gives the desired result.

det
[
(D −M)−1

]
= det[D−1]det−1[(I −D−1M)]

= det[D−1] exp
[
−tr log(I −D−1M)

]
= det[D−1] exp

[ ∞∑
N=1

1

N
tr(D−1M)N

]

= det[D−1] exp

 ∞∑
N=1

1

N

∑
i∈L

∑
ωN :i→i
ωN⊂L

( ∏
r∈ωN

Mr

)∏
k∈L

d
−n(k |ωN )
k


= det[D−1] exp

 ∞∑
N=1

∑
ωN⊂L

 ∏
r∈ωN

Mr

∏
k∈L

(dk)
−n(k |ωN )


(5.12)

�

We can now apply Lemma 5.3 for L = Ls, A = 2ia and M = W , obtaining

det
−1
2 [2ia−W ] = (det [(2ia−W )]

−1
)
−1
2

=
∏
k∈Ls

(2iak)
−1
2 exp

 ∞∑
N=1

∑
ωN⊂Ls

 ∏
r∈ωN

(W )r

∏
k∈Ls

(2iak)
−n(k |ωN )

12

=
∏
k∈Ls

(2iak)
−1
2 exp

1

2

∞∑
N=1

∑
ωN⊂Ls

(W )ωN
∏
k∈Ls

(2iak)
−n(k |ωN )

 .
(5.13)

It is important to notice that, because the entries of W representing the weights
between 2 hidden or 2 visible variables are zero, it is enough to sum over all walks
whose vertices alternate between the hidden and visible layer.
After substituting this last expression, Eq (5.7) becomes

Z =

∫
ΓNs

∏
i∈Ls

dai(2iak)
−1
2
e−iai

2π
exp

1

2

∞∑
N=1

∑
ωN⊂Ls

(W )ωN
∏
k∈Ls

(2iak)
−n(k |ωN )


(5.14)
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Finally, using the Taylor expansion of the exponential the theorem follows.

�

6. random walk representation of Eµ

Recall from section 3 that we have an explicit expression for updating the weight
wij at any step of the gradient descent algorithm in terms of expectation values. We
now provide a formulation of each term in Eq. (3.9) in terms of random walks.

Proposition 6.1.

Eµ[vµi hj ] =
(2π)

−NH vµi
Z P (vµ)

∑
ω1∈Ls

Yµj (ω1) (6.1)

where ω is summed over all random walks that begin at hj,

Yj(ω) ≡
∞∑
n=0

1

n!

(
1

2

)n ∑
ω1,...,ωn⊂LH

Wµ
ω

n∏
k=1

(−2iaO)ωk exp [−Uj(ω1, ω2, ..., ωn)]

exp [−Uj(ω1, ω2, ..., ωn)] =
∏
k∈LH

∫
ΓNH

dake
−iai(2iakdk)−n(k|ω1,...,ωn)(2iaj)−1

n(k|ω1, ..., ωn) =
1

2
+ n(k|ω1) + ...+ n(k|ωn),

(6.2)

Wµ is the symmetric matrix such that

Wµ
pq =

{
wpqv

µ
q if p > q

wpqv
µ
p otherwise,

(6.3)

and O is a symmetric matrix with zeroes along the diagonal.

There are several key features in the above proposition. The first is that in eq.
(6.1) we are summing over all loops of length one beginning at hj . Then as in our
definition of Y(ω), we take a path ω and append loops to it. These new loops are
found in a new graph defined by O containing all necessary information about our
RBM through some base change matrix.

Proof. We know

p(h|v) =
p(h,v)

p(v)
=

1
Z e
−H(v,h)

p(v)
(6.4)

When we consider the µth data sample, the entire visible layer is fixed. In particular,
p(h|vµ) is a probability distribution for h and we can consider vµi as a constant when
taking the expectation value Eµ[vµi hj ]. Once again, we introduce delta functions for
the purpose of performing integration. Our sample space for the hidden variables h
becomes Ω′H = IRNH and we get that

12



Figure 3. Example of a term that contributes to the sum for the
correlation function Eµ[vµi hj ]. The connected red and blue nodes
represent our original RBM. Notice that we have a path from the
visible layer going to the jth hidden vertex. The green nodes denote
the hidden layer after we perform the change of variables through
some base change matrix, Q. In this new hidden layer, we find
loops.

Eµ[vµi hj ] =
∑
h∈ΩH

e−H(vµ,h)

Z p(vµ)
vµi hj

=
vµi

Z p(vµ)

∫
Ω′H

NH−1∏
n=0

dhnδ(h
2
n − 1) exp [−H(h,vµ)]hj .

(6.5)

Continuing as was done for the partition function, we see that the integral over Ω′H
becomes

∫
Ω′H

NH−1∏
n=0

dhnδ(h
2
n − 1) exp [−H(h,vµ)]hj

=

∫
ΓNH

NH−1∏
n=0

dan
e−ian

2π

∫
Ω′H

NH−1∏
k=0

dhk exp

[
−H(v,h)− i

NH−1∑
r=0

ar (hr)
2

]
hj

(6.6)

By a process of completing the square, we transform the integral over the hidden
variables into a Gaussian form,

13



∫
Ω′H

NH−1∏
k=0

dhk exp

[
−H(v,h)− i

NH−1∑
r=0

ar (hr)
2

]
hj

=

∫
Ω′H

dh exp

[
NH−1∑
k=0

hk

(
NV −1∑
l=0

Wk,lv
µ
l

)
−
NH−1∑
r=0

iarh2
r

]
hj

=

∫
Ω′H

dh exp

[
NH−1∑
k=0

(
hk

NV −1∑
l=0

Wk,lv
µ
l − iakh2

k

)]
hj

=

∫
Ω′H

dh exp

[
NH−1∑
k=0

−iak

(
−2hk

∑NV −1
l=0 Wk,lv

µ
l

2iak
+ h2

k

)]
hj

=

∫
Ω′H

dh exp

NH−1∑
k=0

−iak

(
hk −

∑NV −1
l=0 Wk,lv

µ
l

2iak

)2

+ iak

(∑NV −1
l=0 Wk,lv

µ
l

2iak

)2
hj

=

∫
Ω′H

dh exp

[
NH−1∑
k=0

−iak (hk − bµk)
2

]
NH−1∏
k=0

exp
[
iak (bµk)

2
]
hj

(6.7)

where bµk =
∑NV −1

l=0 Wk,lv
µ
l

2iak . Define B as the diagonal matrix such that Bq,q =

exp
[
−1
2 iap

(
bµp
)2]. Then,

NH−1∏
k=0

exp
[
iak (bµk)

2
]

= det
−1
2 [B] (6.8)

and we may move this factor of the determinant out in front of the integral. After
substituting h with σ = h− bµ we get

det
−1
2 [B]

∫
Ω′H

dh exp

[
NH−1∑
k=0

−iak (hk − bµk)
2

]
hj

= det
−1
2 [B]

∫
IRNH

dσ exp

[
NH−1∑
k=0

−iak (σk)
2

]
(σj + bµj )

= det
−1
2 [B]

∫
IRNH

dσ exp

[
NH−1∑
k=0

−iak (σk)
2

]
σj + det

−1
2

∫
IRNH

dσ exp

[
NH−1∑
k=0

−iak (σk)
2

]
bµj

(6.9)

In the first term, recall that the probability distribution may be factorized among
the hidden variables. We get NH independent Gaussian integrals. In particular,
isolating the jth integral we see that the entire first term vanishes. This is because
exp[−iaj(σj)2]σj is an odd function in σj . Thus, we only have to consider the second
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term

= det
−1
2 [B]

∫
IRNH

dσ exp

 ∑
k,l∈LHε

−σkiakδ(l, k)σl


= det

−1
2 [B] bµj

∫
IRNH

dσ exp

[
−1

2
σT 2iaσ

] (6.10)

where iam,n = iamδm,n. Then, evaluating the Gaussian integral, we get

det
−1
2 [B] bµj

∫
IRNH

dσ exp

[
−1

2
σT 2iaσ

]
= det

−1
2 [B] bµj det

−1
2 [2ia]

(6.11)

Let Q be a NH x NH symmetric, orthogonal and non diagonal matrix. And let
QBQT = D + O where D is a diagonal matrix and O has zeroes in the diagonal.
Then, Equation (6.11) can then be rewritten as

bµj det
−1
2 [B] det

−1
2 [2ia]

= bµj det
−1
2

[
QBQT

]
det

−1
2 [2ia]

= bµj det
−1
2 [D + O]det

−1
2 [2ia]

= bµj det
−1
2 [2iaD + 2iaO]

= bµj det
−1
2 [(2iaD)− (−2iaO)]

(6.12)

Since (2iaD) is a diagonal matrix and (−2iaO) is symmetric with zeroes in the
diagonal entries, we can apply Lemma 5.3, obtaining

bµj det
−1
2 [(2iaD)− (−2iaO)]

= bµj

∏
p∈L

(2iapdp)

− 1
2

exp

1

2

∞∑
q=1

∑
ωq⊂LH

(−2iaO)ωq
∏
k∈L

(2iakdk)
−n(k |ωq)

 (6.13)

And so we can conclude

E[vµi hj ]
µ =

vµi
Z P (vµ)

∫
ΓNH

NH−1∏
k=0

dak
(2iakdk)−

1
2 e−iakbµj

2π

· exp

1

2

∞∑
q=1

∑
ωq⊂LH

(−2iaO)ωq
LH−1∏
k=0

(2iakdk)
−n(k |ωq)

 (6.14)
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Plugging in the definition of bµj and bringing out the numerator in (6.14), we have

E[vµi hj ]
µ =

vµi
∑
kWkjv

µ
j

Z P (vµ)

∫
ΓNH

NH−1∏
k=0

dak(2iakdk)−
1
2
e−iak

2π

1

2iaj

· exp

1

2

∞∑
q=1

∑
ωq⊂LH

(−2iaO)ωq
∏
k∈LH

(2iakdk)
−n(k |ωq)


(6.15)

Again, the proposition follows after expanding the exponential.

�

7. random walk representation of E

Now that we have a representation for the clamped correlation function, we press
on to find a formulation of the true correlation functions in terms of random walks.
In particular, we will find that

E[vihj ] =

∑
ωvi,hj

X (ωvihj )

Z
. (7.1)

where

X (ω) ≡
∞∑
n=0

1

n!

(
1

2

)n ∑
ω1,ω2,...,ωn

(
Wω

n∏
k=1

Wωk

)
exp[−F (ω1, ..., ωn|ω)]. (7.2)

where exp[−F (ω1, ..., ωn|ω)] = exp[−F (ω1, ..., ωn, ω)]. Before delving into the proof
of the above statement, we take a moment to describe the walks that appear in
the above sum. In the expression for E[vihj ] we are summing over paths whose
endpoints are vi and hj . Notice that the each term X (ω) looks nearly identical
to the expression we found for Z. The main difference is that when we sum over
the products of n loops, there is an additional recurring factor Wω corresponding
to the path found in the argument for X . More so, each term X (ω) is damped by
additional factors of (2iaj)

−n(i,ω). This gives a nice geometric interpretation. In the
numerator of the expression for E[vihj ], we are effectively summing over all random
paths whose endpoints exactly cover the sites vi and hj . In the denominator, we
have a sum over all random loops in our lattice system.

Proof. We consider a more general case where we do not distinguish between hidden
and visible vertices. Specifically, instead of having visible and hidden spins encoded
by v and h, we have a single collection of spins denoted s, where sk denotes the
kth spin vertex. Starting with the integral representation of the expectation value
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E[sisj ].

E[sisj ] =
1

Z

∫
Ω

∫
IRNS

NS−1∏
n=0

dsndan
e−ian

2π
exp

[
−
NS−1∑
k=0

iaks2
k

]
exp [−H(v,h)] sisj

(7.3)

We can proceed as we did with the partition function in section 5, using the fact
that ∫

IRNs

ds e
1
2s
TMs sisj = det−

1
2 [M ] exp

[
1

2
∂TsM

−1∂s

]
sisj

∣∣∣∣
s=0

(7.4)

where ∂s = ( ∂
∂s1

, ..., ∂
∂sNs−1

)T [1], to get

∫
IRNs

ds exp

[
1

2
sT (2ia−W )s

]
sisj

= det [2ia−W ]
−1

(2ia−W )
−1
ij

=
∏
k∈Ls

(2iak)
−1
2 exp

1

2

∞∑
N=1

∑
ωN⊂Ls

(W )ωN
∏
k∈Ls

(2iak)
−n(k |ωN )


·
∞∑

N= 1

∑
ωN :i→j
ωN⊂Ls

(W )ωN
∏
k∈Ls

(2iak)
−n(k |ωN )

(7.5)

where the last expression comes from applying lemma 5.2 and lemma 5.3. Once
again, the result follows from applying the Taylor expansion of the exponential in
the last expression. �

8. further work

Throughout the above discussion we have just provided a setup to begin exploring
vital results. From our equation on updating ∆wij , we have that

∆wij = −δ{ 1

NT

NT∑
µ=1

Eµ[vihj ]− E[vihj ]} = δ{E[vihj ]−
1

NT

NT∑
µ=1

Eµ[vihj ]}. (8.1)

As we found above, the parity of any term Eµ[vihj ] may be positive or negative
depending on the value assigned to vi. Then a simple bound for ∆wij is

∆wij ≤ δ
(
|E[vihj ]|+ |

1

NT

NT∑
µ=1

Eµ[vihj ]|
)
≤ δ
(
|E[vihj ]|+

1

NT

NT∑
µ=1

|Eµ[vihj ]|
)

(8.2)
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In [1], Brydges et. al. compute the following upper bound on the correlation func-
tions E[vihj ] in an Ising-type model.

E[vihj ] ≤
( ∑
ω:i→j

∏
k∈L

(2ν)−n(k|ω)

)
(8.3)

In the above equation, ν is the dimension of the graph. This inequality may be
directly carried over for the expectation value E[vihj ]. Finding an analogous bound
on the expectation Eµ[vihj ] will complete the bound on ∆wij . Completing this in-
equality will provide a bound on how fast learning can occur.

Another direction to go from here is to more formally establish the connection be-
tween learning an RBM and the renormalization group in an Ising-type lattice. From
our discussion on Eµ, we introduced orthogonal matrices so that we retrieve random
walks on an equivalent hidden layer as prescribed by the matrix O. Observe that
the following block matrix equation must have a solution.

(
Q1 R
RT Q2

)(
D1 0
0 D2

)(
QT1 R
RT QT2

)
=

(
0 R′

R′T 0

)
(8.4)

The solution exists because we can suppose that the matrix we are conjugating
with serves as a base-change matrix. Given a basis B = (b1, b2, ..., bn), there exists
a base change operator T that permutes the entries of B. For example, we could
have that TB = (bm, bm+1, ...bn, b1, b2, ..., bm−1). Through this change of basis we
are given new hidden and visible layers, allowing us to analyze random walks all
over again. More so, by allowing us to create new vertices xk which are independent
from the rest of the graph, we may assume that the hidden layer has 2M vertices
for some M ∈ N. Then by virtue of Eq. (8.4), we may designate values for the
new hidden variables via some sampling procedure, giving us new correlation values
E[vnewi hnewj ]. This process of fixing some fraction of your current graph to create a
new graph with similar properties could admit a connection to the practice of deci-
mation in the renormalization group.

One could also follow Aizenmann’s analysis on random paths in the renormaliza-
tion group in [3] where he studies intersection properties of random walks and their
implications on the renormalization group. The task here would be to provide an
analogous survey on (possibly n-layer) RBMs. Once this has been done, it would be
natural to take limits where the number of layers you examine as well as number of
nodes per layer go to infinity and state results about infinitely deep and infinitely
wide neural networks.
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