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Abstract. Given a manifold M , Milnor and Stasheff studied in [1] the diag-

onal cohomology class u′′ ∈ Hm(M ×M ;Z/2) that describes the orientation
of the tangent bundle, and is related to its Stiefel-Whitney Classes. We gen-

eralize this concept to fiber bundles M → E → N where the fiber and base

are manifolds, relate it to the diagonal homology class, study the naturality
of the construction, give further characterizations of the class, and compute it

for certain examples.
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In [1], Milnor and Stasheff give a method to compute the Stiefel-Whitney classes
of tangent bundles to manifolds given its Z/2 cohomology and the actions of Steen-
rod squares on it, via the Wu class and the diagonal cohomology class. Given a

fiber bundle of manifolds Mm i→ E
π→ Nn with M a closed manifold, this method

generalizes nicely to compute w(ξ), the Stiefel-Whitney classes of the vertical bun-
dle ξ : ker dπ ↓ E, which is a subbundle of TE. We detail it below. We will work
in Z/2 coefficients.
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1. Construction of the Diagonal Cohomology Class

Let D := E ×N E = {(e1, e2 ∈ E × E : π(e1) = π(e2)}, and ∆ : E → D defined
as e 7→ (e, e) is an inclusion, whose resulting normal vector bundle (over ∆(E) ∼= E)
will henceforth be denoted ν∆E. Then ν∆E ∼= ξ canonically:

Lemma 1.1. We have ν∆E ∼= ξ are isomorphic as m-plane bundles.

Proof. For any e ∈ E, a vector (v1, v2) ∈ TeE ×Tπ(e)N TeE ∼= T(e,e)D is normal to

∆(E) iff v1 + v2 = 0. Thus we have an isomorphism of fibers

ξe → (ν∆(E))(e,e)

v 7→ (−v, v)

which extends to an isomorphism of the vector bundles. �

Remark 1.2. Notice D is a fiber bundle over N with fiber M ×M , so for n ∈ N we
denote the fiber by Dn. (Similarly, denote En the fiber in E over n).

Since ∆(E) ∈ D is closed, by Cor. 11.2 in [1], H∗(ξ, ξ0) ∼= H∗(ν∆E, ν∆E0) ∼=
H∗(D,D −∆(E)). The Thom class u thus corresponds to some u′ ∈ Hm(D,D −
∆(E)), which, by Thm. 11.3 in [1], restricts to the top Stiefel-Whitney class
wm(ξ) ∈ Hm(E) under ∆∗. (For convenience, we will only use the notation u′

to refer to this cohomology class in this section.) The class u′ is uniquely charac-
terized as follows.

Lemma 1.3. u′ is the unique class in Hm(D,D−∆(E)) such that, for any e ∈ E
with π(E) = n, if je : (En, En − e)→ (D,D −∆(E)) via z 7→ (e, z), then j∗e (u′) is
the generator of Hm(En, En − e) ∼= Hm(M,M − ∗) ∼= Z/2.

Proof. Let L ⊂ ξe an open neighborhood of 0, and let

(L,L− 0)→ (D,D −∆(E))
v 7→ (Exp(−v),Exp(v)),

which is well defined for L small enough since both coordinates project to n since
v ∈ ker dπ. Then u′ is uniquely characterized by the fact the the induced map
in cohomology maps u′ to the generator of Hm(L,L − 0) = Hm(ξe, ξe − 0). This
follows by our construction in Lemma 1.1. But this map is homotopic, via (v, t) 7→
(Exp(−tv),Exp(v)), to v 7→ (e,Exp(v)), which is the composition of

(L,L− 0)
Exp→ (En, En − e)

je−→ (D,D −∆(E))
v 7→ Exp(v) 7→ (e,Exp(v)),

and thus this composition map induces the same map in cohomology, which will
map u′ to the generator of Hm(L,L − 0) ∼= Hm(ξe, ξe − 0). Since all these maps
are isomorphisms in cohomology except for j∗E , j∗E(u′) must be the generator of
Hm(En, En− e) since this generator is the unique element of Hm(En, En− e) that
maps to the generator of Hm(L,L− 0). Thus, the proposition is proven. �

We have that u′ restricts to a class δ ∈ Hm(D) (denoted as u′′ in earlier litera-
ture). For a ∈ Hi(E), b ∈ Hj(E), define the cross product over N (of cohomology
classes) as a×N b ∈ Hi+j(E ×N E) as p∗1(a) ^ p∗2(b), where p1, p2 : E ×N E → E
are the projections. Then, the following computational tool also holds.
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Lemma 1.4. For any a ∈ H∗(E), we have (a×N 1) ^ δ = (1×N a) ^ δ (justifying
its name), where 1 ∈ H0(E).

Proof. Let Nε ⊃ ∆(E) be a tubular neighborhood (and let j : Nε ↪→ D), with Nε
homeomorphic to the total space of ν∆E. Notice p1, p2 coincide on ∆(E) and thus
j∗(a×N 1) = j∗(p∗1(a)) = j∗(p∗2(a)) = j∗(1×N a). Then (a×N 1) ^ u′ = (1×N a) ^
u′ from the following commutative diagram applied to a×N 1 and 1×N a (where i
is the degree of a), and the proposition follows by restricting.

Hi(D) Hi(Nε)

Hi+m(D,D −∆(E)) Hi+m(Nε, Nε −∆(M))

j∗

^u′ ^u′|(Nε,Nε−∆(E))

∼=

�

Now, if φ : H∗(E)→ H∗+m(ξ, ξ0) is the Thom isomorphism, then it is well known
(e.g. [1, p.91]) that the Stiefel-Whitney class is given by w(ξ) = φ−1Sq(u). But
since ξ and ν∆E are isomorphic and the existence of the tubular neighborhood Nε,
H∗(ξ, ξ0) ∼= H∗(D,D −∆(E)) and under this identification, Sqi(u′) = (wi(ξ) ×N
1) ^ u′. Restricting to D:

Lemma 1.5. Sqi(δ) = (wi ×N 1) ^ δ.

Let δM ∈ Hm(M×M) be the diagonal cohomology class of M (as a fiber bundle
M → M → ∗). Suppose N = ∪α∈AUα is an open contractible cover of the base
(where arbitrary nonempty intersections are also contractible), whose existence is a
classical fact in Riemannian geometry. It trivializes the fiber bundle. The following
commutative diagram:

(D|Uα, D|Uα −∆(E|Uα) (D,D −∆(E))

(En, En − e) (En, En − e)

je je

(which holds for any e ∈ E,n = π(e) ∈ Uα), proves that u′α, the restriction of
u′ in D|Uα, satisfies the conditions of Lemma 1.2, and thus equals the vertical
relative diagonal cohomology class of the fiber bundle M → E|Uα → Uα. Thus,
δ restricts to δα, the vertical (absolute) diagonal cohomology class of that fiber
bundle. Furthermore,

Corollary 1.6. Restricting to a fiber, Hm(D)→ Hm(M ×M) maps δ 7→ δM .

Remark 1.7. We explain the notation Hi(D)→ Hi(M ×M), since at first it might
seem an abuse of notation. For convenience, we explain it instead for the fiber
bundle M → E → N . Let ι1,2 : En1,2 → E be the inclusions of the fibers of
n1, n2 ∈ N , and let γ : [0, 1] → N be a path with γ(0) = n1, γ(1) = n2. By the
homotopy lifting property:

En1 E

En1
× [0, 1] B

ι1

in0 π

γ◦pr2
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there exists a map f : En1
→ En2

and a homotopy between ι1 and ι2 ◦f . Similarly,
there exists a map g : En2 → En1 such that the following diagram commutes up to
homotopy:

En1
En2

En1

E

f

ι1 ι2

g

ι1

Thus, the following diagram commutes:

Hi(E) Hi(En1
)

Hi(En2
)

ι∗1

ι∗2
g∗f∗

(in particular, f and g are homotopy inverses), which explains the well-definedness
of the map Hi(E) → Hi(M). We will use this construction for the fiber bundle
M ×M ↪→ D → N as well.

Example 1.8. If E = M×N is trivial, we have ξ = (TM)×N , andD = M×M×N .
By the Relative Kunneth formula [2,p.249],

[H∗(TM, TM0)⊗H∗(N)]m ∼= [H∗(TM ×N,TM0 ×N)]m

∼= Hm(M ×M ×N,M ×M ×N −∆(M ×N))

∼= [Hm(M ×M,M ×M −∆(M))⊗H∗(N)]m

so we see u′ = u′m ⊗ 1 under that correspondence (where u′ corresponds to the
fiber bundle M →M → ∗). Then, by the Kunneth Theorem, Hm(M ×M ×N) ∼=
[H∗(M ×M)⊗H∗(N)]m, and δ corresponds to δM ⊗ 1.

Example 1.9. If N = ∗ and M = Sm, if G ∈ Hm(Sm) is the generator, we have
Hm(Sm×Sm) = (H0(Sm)⊗Hm(Sm))⊕ (Hm(Sm)⊗H0(Sm)) ∼= (Z/2)2 generated
by 1 × G,G × 1. By Lemma 1.4 for a = G we have (1 × G) ^ δ = (G × 1) ^ δ),
so δ = 0 or 1 × G + G × 1. But δ/[Sm] = 1 is well known [1], where [Sm] is the
fundamental homology class. Thus, δ 6= 0, and so δ = 1× G + G × 1.

2. Under Poincaré Duality

We have the following theorem.

Theorem 2.1. If E is compact (i.e. if M,N are compact), the diagonal cohomol-
ogy class is dual to ∆∗[E] ∈ Hm+n(D) under Poincaré Duality, where [E] is the
fundamental homology class of E.

Proof. Let ρ : ν ↓ E be the normal bundle of ∆ : E ↪→ D. We have the following
commutative diagram, where all arrows are isomorphisms:

H0(E) Hm(ν, ν0) Hm
c (ν)

H0(ν)

−^u

where u ∈ Hm(ν, ν0) is the Thom class and H∗c denotes compactly supported coho-
mology. (We have Hm(ν, ν0) = Hm(Th(ν)) = Hm(v∗) = Hm

c (ν) where v∗ = Th(ν)
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is the one-point compactification of ν, in this case equal to the Thom space Th(ν)
of ν since E is compact). There is another isomorphism H0(E) → Hm

c (ν): the
one Poincare-dual to Hm+n(E) → Hm+n(ν) induced by the inclusion of the zero
section. It is an isomorphism since E ' ν. Since all groups are isomorphic to Z/2,
these maps H0(E)→ Hm

c (ν) are the same.

We have the following diagram, that commutes excepts possibly for the dashed
arrows.

Hm(ν, ν0) Hm(D,D −∆(E)) Hm(D)

H0(E) Hm
c (ν)

Hm+n(E) Hm+n(ν) Hm+n(D)

∼=

∼=

∼=

∼=

∼=

∼=

f∗

∼=
∼=

Remark 2.2. The map Hm
c (ν) → Hm(D) is as follows. It is known Hm

c (ν) =
Hm(ν∗), the cohomology of the one-point compactification. But the one-point
compactification behaves functorially with regards to open embeddings, thus i :

ν → D gives us f : D = D∗ → ν∗. The map is Hm
c (ν) = Hm(ν∗)

f∗→ Hm(D).

(Note maps from cohomology to homology are simply applying Poincaré Dual-
ity). Following the upper-right path from Hm(ν, ν0) to Hm+n(D) gives the dual
to δ, and the lower-left path gives ∆∗[E], since the composition of the two lowest
arrows is simply induced by the inclusion E ↪→ ν ↪→ D, thinking of ν as a tubu-
lar neighborhood in D. Thus, proving the diagram is commutative even with the
dashed arrows is enough to prove the Theorem.

For the commutativity with f∗, we note D − ∆(E) ⊂ D − ν (viewed inside D)
is a deformation retract. Also, by the relative cohomology long exact sequence,
Hm(ν∗, ∗) = Hm(ν∗) since m > 0, for ∗ ∈ ν∗ the added point. Thus we have the
following commutative diagram:

Hm(D,D −∆(E)) Hm(D,D − ν)

Hm
c (ν) Hm(ν∗, ∗) Hm(D)

as desired. Finally, we verify

Hm
c (ν) Hm(D)

Hm+n(ν) Hm+n(D)

f∗

commutes. This follows from the commutativty of the following diagram, where
the upper half commutes by the naturality of Poincaré Duality, the bottom half
commutes because the corresponding diagram of maps of spaces commutes, and
Hm+n(ν∗) ∼= Hm+n(ν) because both are isomorphic to Hm(ν∗) under Poincaré
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Duality.

Hm(D) Hm(ν∗)

Hm+n(D) Hm+n(ν∗)

Hm+n(ν)

∼= ∼=
∼= f∗

∼=
∼=

�

Example 2.3. As in Example 1.8, let M → M × N → N be trivial. Then
δ = δM × 1 ∈ [H∗(M ×M)⊗H∗(N)]m = Hm(M ×M ×N). We have [M ×N ] ∈
Hm+n(M×N) = Hm(M)⊗Hn(N) corresponds to [M ]× [N ]. Under ∆ : M×N →
M ×M × N this maps to (∆M∗[M ]) × [N ] (where ∆M : M → M ×M). This is
dual to δ as ∆M∗[M ] is dual to δM and [N ] is dual to 1, as expected.

3. Naturality of the diagonal cohomology class

3.1. Base-wise Naturality. The diagonal cohomology class is natural under pull-
backs, in the following sense:

Theorem 3.1. The class δ is natural under pullback. In other words, let π : E → N
be a fiber bundle with fiber M and diagonal cohomology class δ. Let f : N ′ → N be
any map and E := f∗E and D′ := f∗D viewed as a fiber bundle over h : D → N .
Let δ′ be the diagonal cohomology class of π′ : E′ → N ′. Then D′ = E′×N ′ E′ and
under the map D′ → D, δ pulls back to δ′.

Proof. Using coordinate notation for pullbacks, we have

D′ = {(n′, d) ∈ N ′ ×D : f(n′) = h(d)}
= {(n′, e1, e2) ∈ N × E × E : f(n′) = π(e1) = π(e2)}
= {((n′, e1), (n′, e2)) ∈ E′ × E′ : f(n′) = π(e1) = π(e2)}
= {(e′1, e′2) ∈ E′ × E′ : π′(e1) = π′(e2)} = E′ ×N ′ E′.

Choose any metric over D and pull it back to D′, and let ν, ν′ denote the normal
bundles of the inclusions ∆ : E ↪→ D,∆′ : E′ ↪→ D′. Notice ξ′ := (ker dπ′ ↓ E′)
is the pullback of ξ under g : E′ → E, i.e. ξ′ = g∗ξ. This is clear since both are
the bundles tangent to the fibers, and g respects fibers. By naturality of the Thom
Class, as in [3, Th. 10.28], we get that if u ∈ Hm(ξ, ξ0), u′ ∈ Hm(ξ′, ξ′0) are the
respective Thom classes, then u′ is the pullback of u under the map in cohomology
induced by ζ : (ξ′, ξ′0)→ (ξ, ξ0), i.e. u′ = ζ∗(u). Further, since

E D

E′ D′

∆

∆′
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commutes, there’s a map ν′ → ν. By our construction in Lemma 1.1, the diagram

(ξ, ξ0) (ξ′, ξ′0)

(ν, ν0) (ν′, ν′0)

∼=

ζ

∼=

commutes (clearly the complement of the zero section maps to the complement of
the zero section on all these maps, so they’re well-defined), and thus so does

Hm(ξ, ξ0) Hm(ξ′, ξ′0)

Hm(ν, ν0) Hm(ν′, ν′0)

ζ∗

∼= ∼=

Notice the map j : D′ → D creates a map of pairs (D′, D′ − ∆′(E′)) → (D,D −
∆(E)), since:

j(n′, e1, e2) ∈ ∆(E)⇔ e1 = e2 ⇔ (n′, e1, e2) ∈ ∆′(E′).

Further, for a fixed ε, let ν(ε) denote the ε-neighborhood of the zero section under
the given metric, as in [1], and similarly for ν′. Then, since the metric pulls back,
the map ν′ → ν creates a map of triples (v′, v′0, v

′− v′(ε))→ (v, v0, v− v(ε)). Thus,
by naturality of excision, and since the metric pulls back, for small enough ε > 0
we have the following commutative diagram:

Hm(D,D −∆(E)) Hm(D′, D′ −∆′(E′))

Hm(ν(ε), ν(ε)0) Hm(ν′(ε), ν′(ε)0)

Hm(ν, ν0) Hm(ν′, ν′0)

Exp∗∼= Exp∗∼=

exc. ∼= exc. ∼=

Combining it with the above commutative diagram and with u′ = ζ∗(u), the lemma
is proven. �

Remark 3.2. Notice that Example 1.8 follows immediately from naturality, with
the map N → ∗ pulling back M → ∗ to M ×N → N .

3.2. Fiber-wise Naturality. There is a very weak analog to Theorem 3.1 for
changes of fibers, whose proof relies chiefly on Theorem 2.1

Lemma 3.3. Assume the map of fiber bundles

M ′ E′ N

M E N

g

satisfies g∗[E
′] = [E]. Further, assume h : D′ → D satisfies that Hm+n(D′)

h∗→
Hm+n(D) is injective and h∗[D

′] = [D]. Then h∗(δ) = δ′.
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Proof. Let ∆ : E → D,∆′ : E′ → D′ denote the diagonal maps. Notice by the
assumptions and by the commutativity of

E′ E

D′ D

g

∆′ ∆

h

that h∗(∆
′
∗[E
′]) = ∆∗[E]. By the assumptions, Poincaré Duality is natural with

respect to h, i.e. the following diagram commutes:

Hm+n(D′) Hm+n(D)

Hm(D′) Hm(D)

h∗

∼=

h∗

∼=

where the upward arrows are Poincaré Duality. By Theorem 2.1 and by injectivity
of h∗ in the diagram, the lemma is proven. �

4. An Application Of The Eilenberg-Moore Spectral Sequence

The Eilenberg-Moore Spectral Sequence allows us to compute the cohomology
of D. Indeed, we have the following result: [4,p.48]

Theorem 4.1. Given a fiber bundle M → E → N , there exists a functorial second-
quadrant cohomology spectral sequence (E, d) such that:

• Er ⇒ H∗(D) converges.

• Ep,q2 = TorH
∗(N)

p,q

(
H∗(E), H∗(E)

)
, where the second index of Tor indicates

the degree.
• The edge homomorphism

H∗(E)⊗H∗(N) H
∗(E) = E0,∗

2 � E0,∗
∞ ↪→ H∗(D)

coincides with the obvious map H∗(E)⊗H∗(N) H
∗(E)→ H∗(D).

Here we think of H∗(E) as an H∗(N) module: if a ∈ H∗(E), b ∈ H∗(N) then
ba := π∗(b) ^ a. Assume π∗ : Hi(N) → Hi(E) is an isomorphism for i ≤ m.
Then H∗(E) ∼= H∗(N) as H∗(N)-modules, in dimensions ≤ m. Thus, all the
Torp,q terms vanish when p > 0, q ≤ m. Thus, by the theorem, the obvious map
[H∗(E)⊗H∗(N) H

∗(E)]m → Hm(D) is a surjection. Thus:

Corollary 4.2. If π∗ : Hi(N) → Hi(E) is an isomorphism for i ≤ m, then there
exist a1, . . . , ar, b1, . . . , br ∈ H∗(E) with |ai|+ |bi| = m for all i, such that

δ =

r∑
i=1

ai ×N bi.
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The conditions of the corollary can be verified, in some cases, using the Serre
Spectral Sequence for M → E → N . Indeed, if M = Sm, we have the E2 page:

H0(N) H1(N) · · · Hm(N) Hm+1(N) Hm+2(N)

...
...

...

...
...

...

H0(N) H1(N) · · · Hm(N) Hm+1(N) Hm+2(N)

dm+1 dm+1

where the upper row has coefficients in Hm(Sm) = Z/2 and the lower row has
coefficients in H0(Sm) = Z/2. Thus π∗ : Hi(N) → Hi(E) is an isomorphism for
i ≤ m − 1. This also holds for i = m if H0(N ;Hm(M)) → Hm(N ;H0(M)) is
injective. However, this is unfortunately a rather hard condition to verify.

5. Spherical Fiber Bundles

In this section we assume M is topologically a sphere. We have the Serre Spectral
sequence of M ×M → D → N (illustrated for m = 3):

H0(N) H1(N) · · · Hm(N) Hm+1(N) Hm+2(N)

...
...

...

...
...

...

H0(N) H1(N) · · · Hm(N) Hm+1(N) Hm+2(N)

...
...

...

...
...

...

H0(N) H1(N) · · · Hm(N) Hm+1(N) Hm+2(N)

dm+1 dm+1

dm+1 dm+1

depicting the E2 page, where the upper row has coefficients in H2m(Sm × Sm) =
Z/2, the middle row has coefficients in Hm(Sm × Sm) = Z/22, and the lower row
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has coefficients in H0(Sm×Sm) = Z/2. There will be differentials in Em+1 and in
E2m+1. (Notice, for instance, that if n < 2m+ 1 then all the differentials in E2m+1

will be 0, since Hk(N) = 0 for all k ≥ 2m+ 1). In particular, we have

Hm(D) ∼= Hm(N)⊕ ker
(
H0(N ;Hm(M ×M))

dm+1−→ Hm+1(N)
)

Since H0(N ;Hm(M ×M)) ∼= Hm(M ×M), we have that the fiber-restriction map
Hm(D) → Hm(M ×M) mapping δ 7→ δM simply ignores the Hm(N) coordinate
and includes the kernel into Hm(M × M). But in Example 1.9 we computed
δM = 1 × G + G × 1 where G ∈ Hm(Sm) is the generator. Thus, under the
identification (4.1), we have:

Lemma 5.1. Under the identification (4.1), we have δ = (δN , 1× G + G × 1), for
some δN ∈ Hm(N), denoted the base-wise diagonal cohomology class. In particu-
lar, if Hm(N) = 0, then δ = 1× G + G × 1.

Remark 5.2. Notice also that if the differential H0(N ;Hm(M×M))
dm+1−→ Hm+1(N)

is injective, then δN completely determines δ. However, this condition is hard
to verify, since differentials in spectral sequences are generally hard to compute.
Nevertheless, Lemma 4.1 implies that 1× G + G × 1 must be in its kernel.

Given a real m-plane bundle τ : F ′ ↓ N , recall its sphere-ification Sph(τ) denotes
the sphere bundle where all the fibers Rm of τ have been replaced with their one-
point compactification, Sm. We state the main conjecture of the paper:

Conjecture 5.3. The base-wise diagonal cohomology class of Sm → Sph(τ)→ N
equals the top dimensional Stiefel Whitney class wm(τ) ∈ Hm(N).

For trivial τ , this holds because both classes are 0, as is implied by Example 1.8.
Notice that δN does satisfy the normalization and naturality axioms in the definition
of Stiefel-Whitney classes. Indeed, the normalization axiom for the Infinite Mobius
band vector bundle is verified in Section 6, and the naturality axiom is verified in
the following result:

Lemma 5.4. The base-wise diagonal cohomology class is natural. In other words,
let f : N ′ → N and τ : (E ↓ N) be an m-plane bundle, with pullback f∗τ . Let

δN
′
, δN denote the base-wise diagonal cohomology classes of Sph(τ ′) and Sph(τ).

Then f∗(δN ) = δN
′
.

Proof. Clearly f∗(Sph(τ)) = Sph(τ ′), and the map Sph(τ ′)→ Sph(τ) maps the∞-
point of each fiber to the∞ point of its target fiber. Let D := Sph(τ)×NSph(τ) and
define D′ analogously. We have a map h : D′ → D which, by Theorem 3.1, satisfies
h∗(δ) = δ′, where δ, δ′ are the diagonal cohomology classes of Sph(τ), Sph(τ ′),
respectively. By functoriality of the Serre Spectral Sequence, the map of fiber
bundles

Sm × Sm D′ N ′

Sm × Sm D N

h f
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induces a map in the respective E2 pages which respects convergence to the E∞

page:

Em,02 = Hm(N) Em,0∞

E0,m
2 E0,m

∞

E
′0,m
2 E

′0,m
∞

E
′m,0
2 = Hm(N ′) E

′m,0
∞

f∗

such that

h∗ : Hm(D) = Em,0∞ ⊕ E0,m
∞ → E

′m,0
∞ ⊕ E

′0,m
∞ = Hm(D′)

is the direct sum of the two maps in the diagram. Thus, h∗(δ) = δ′ immediately

implies f∗(δN ) = δN
′
, as desired. �

5.1. An Application of the Gysin Sequence. Spherical fiber bundles are in-
teresting also in one final scenario. Choose a projection pi from either of p1, p2 :

D → E. Notice M → D
pi−→ E is a fiber bundle. Assume π1(E) acts trivially on

H∗(M). This holds, for instance, if m > 1 and N is simply connected since the
homotopy long exact sequence

· · · → π1(M)→ π1(E)→ π1(N)→ · · ·

implies E is also simply-connected. Then we can construct the (long exact) Gysin
sequence:

· · · → Hk(E)
p∗i−→ Hk(D)

pi!→ Hk−m(E)
c^−−→ Hk+1(E)→ · · ·

where pi! is the Poincaré-dual to pi∗ : H2m+n−k(D)→ H2m+n−k(E), and the map
Hk−m(E) → Hk+1(E) is simply cupping with some fixed class c ∈ Hm+1(E). At
k = m we have δ 7→ 1 7→ c = 0 by exactness: indeed, pi!(δ) = 1 because of the
following commutative diagram:

Hm(D) H0(E)

Hm+n(D) Hm+n(E)

pi!

∼= ∼=
pi∗

δ 1

∆∗[E] [E]

by Theorem 2.1. Thus, the Gysin Sequence separates into short exact sequences,
as follows:

Lemma 5.5. Assume M = Sm with m > 1 and N is simply connected. For i = 1, 2
and for all k we have a short exact sequence (which doesn’t split naturally)

0→ Hk(E)
p∗i−→ Hk(D)

pi!−→ Hk−m(E)→ 0

In particular, δ does not come from a class in Hm(E).
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6. A Nontrivial Example: The Klein Bottle

Take M = S1, N = S1, and E to be the Klein Bottle. It is well-known that
the cohomology of the E is H∗(E) = Z/2[x, y]/〈x3, y2, x2y〉. Before comput-
ing H∗(D), we compute δ∗ ∈ H1(S1 × S1) to aid us in computations. Given
H∗(S1 × S1) = Z/2[z, w]/〈z2, w2〉. By Lemma 1.4 for a the generator of H1(S1)
we have z ^ δ∗ = (a × 1) ^ δ∗ = (1 × a) ^ δ∗ = w ^ δ∗ which gives δ∗ = z + w
or 0. But δ∗/µ[S1] = 1 is well-known ([1]), thus δ∗ 6= 0 so δ∗ = z + w.

6.1. Computing the Diagonal Cohomology Class. The CW-complex diagram
for D is the following:

with:
where the face identifications for the first two (top and front) faces is via projection,
and for the third we rotate one face π radians. We’ll call the top, front, and side
faces T, F, S (corresponding to their colors teal, fucshia, and sunset). We also label
the arrows with one, two, and three heads a, b, c, for convenience. Notice T, F are
Klein Bottles and S is a torus. By abuse of notation, a, b, c will also denote the
corresponding 1-cells and T, F, S the corresponding 2-cells. The cellular cochain
complex for D is:

0→ Z/2→ Z/2a ⊕ Z/2b ⊕ Z/2c → Z/2S ⊕ Z/2T ⊕ Z/2F → Z/2→ 0

where the generator of Z/2i represents the cocycle taking i 7→ 1. The first and
third maps are clearly 0, and the middle map is

(α, β, δ) 7→ (0, 2δ, 2β)

which with Z/2 coefficients is also 0. Thus

• H0(D) = Z/2 with basis 1.
• H1(D) = Z/23 with basis [S]∗, [T ]∗, [F ]∗.
• H2(D) = Z/23 with basis [a]∗, [b]∗, [c]∗.
• H3(D) = Z/2, and higher cohomology groups are 0.

Where [i]∗ denotes the cohomology class corresponding to [i] under Poincaré Du-
ality. To compute the multiplicative structure of H∗(D), we use the fact that
[i]∗ ^ [j]∗ = [i ∩ j]∗. For a 1-cell i we denote I = [i]∗ and for a 2-cell J we denote
j = [J ]∗. We easily get

• s2 = 0, t2 = c, f2 = b, st = c, fs = b, tf = a, which immediately implies
• Bs = Cs = Bf = Ct = 0
• As = At = Af = Bt = Cf 6= 0.

Thus H∗(D) = Z/2[t, f, s]/〈s2, t3, f3, t2f2, t2fs, f2ts〉.

Given M × M
∼=→ Dn ⊂ D for some n ∈ N we get H1(D) → H1(M × M)

which by Corollary 1.6 maps δ 7→ δ∗. But t 7→ z, f 7→ w, s 7→ 0 and thus
δ = t + f + s or t + f . Further, if x ∈ H1(E) with x2 6= 0 then by Lemma
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1.4, T ^ δ = (x ×N 1) ^ δ = (1 ×N x) ^ δ = Y ^ δ. If δ = t + f then
t ^ δ = t2 + tf = C + A 6= B + A = f2 + tf = f ^ δ, a contradiction. Thus

δ = t+ f + s . So B +C = δ2 = Sq1(δ) = (wi(ξ)×N 1) ^ (t+ f + s), from which

easily follows w1(ξ) = y ∈ H1(E), with y2 = 0.

6.2. Under Poincaré Duality. By Theorem 2.1, δ = t+ f + s is dual to ∆∗[E],
which is represented by the following submanifold on the left:

Rather unexpectedly, this is not to be confused with the manifold on the right,
which represents t+ f . Indeed, these representations agree with cup products:

t(t+ f + s) = c+ a+ c = a

f(t+ f + s) = a+ b+ b = a

s(t+ f + s) = c+ b

t(t+ f) = c+ a

f(t+ f) = a+ b

s(t+ f) = c+ b

7. Further Research

We describe a few possible prospects looking forward.

1. A proof (or counterexample) to Conjecture 4.3. The Axiom of the Whitney
Sum Formula could potentially be verified: the main obstacle seems to be comput-
ing the cohomology of D which corresponds to Sm1+m2 → Sph(ξ⊕ τ)→ N , where
ξ, τ ↓ N are m1,m2-plane bundles, respectively.

2. A stronger version of Lemma 3.3. If the map M ′ → M is either a covering
map or a degree 1 map, we hypothesize the lemma holds without the need for fur-
ther conditions.

3. A version of Corollary 4.2 for N = ∗ is described in [1,Ch. 11]. We hy-
pothesize there is a general statement analog to this one, which does not on such
strong assumptions as the Corollary requires.

4. The formula w(TE) = w(ξ) ^ π∗(w(TN)), together with the fact that i∗ξ =
TM for i : M ↪→ E, could be related to δ via the computational Lemmas in Section
1. Indeed, let p1,2 : D → E, q1,2 : E×E → E, r1,2 : M×M →M, s1,2 : N×N → N
be projections, and δN ∈ Hn(N × N), δM = δ∗, δE ∈ Hm+n(E × E) be diagonal
cohomology classes. Let h = π ◦ p1 = π ◦ p2, and ∆X : X → X × X denote the
diagonal map for any space X. Then,

Conjecture 7.1. The identity

δE |D = δ ^ h∗(∆∗N (δN ))
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holds.

Assuming the identity holds, applying Sq gives

Sq(δE |D) = Sq(δE)|D
= (q∗1(w(TE)) ^ δE)|D

=
(
q∗1(w(ξ)π∗(w(TN))) ^ δE

)
|D

=
(
q∗1(w(ξ)π∗(w(TN)))

)
|D ^ δE |D

= p∗1(w(ξ)π∗(w(TN))) ^ δ ^ h∗(∆∗N (δN ))

=
(
p∗1(w(ξ)) ^ δ

)
^
(
h∗ ◦∆∗N ◦ s∗1(w(TN)) ^ h∗ ◦∆∗N (δN )

)
= Sq(δ) ^ h∗ ◦∆∗N (Sq(δN ))

= Sq(δ ^ h∗ ◦∆∗N (δN )),

which agrees with Lemma 1.5. This computation is null, but provides a heuristic
argument for the validity of the conjecture.
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