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Abstract

Given a symplectic representation V ⊕V ∗ of a finite group G over a field
k with characteristic p > 0, we can extend the G-action in a natural way
to an action on the Weyl algebra W in dim(V ) variables. This allows us to
form the smash algebra W#G as a tensor product of the Weyl algebra and
the group algebra kG. In this paper, we explore the problem of whether the
ideal generated by the trivial idempotent of the group algebra contains 1.
We are able to give an explicit condition that is both necessary and sufficient
in the case where G is abelian, and extend these techniques to tackle the
case where G is solvable. In addition, we shed some insight on the problem
for a general group G.
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1 Introduction

The problem treated in this paper was motivated by the proof of a theorem in
symplectic geometry, the details of which may be found in [1]. In the course of
proving Lemma 6.1, the authors make use of the fact that the ideal generated by
the trivial idempotent in the smash algebra W#G contains 1 when considered
over a field of characteristic 0, which raises the question of whether this is always
the case for an arbitrary field of characteristic p and an arbitrary symplectic rep-
resentation. This paper aims to shed light on this problem, both for its own sake
and because of the potential for this problem to relate to questions in algebraic
group theory over characteristic 0.

In Section 2, we will provide clear definitions of the objects that will be under
study, as well as introducing some additional tools from representation theory that
will be of use in attacking the problem. In Section 3, we will prove some basic
results applicable to every symplectic representation; among other things, we will
make use of the theory of algebraic groups to state and prove results about the
structure of the representations for which this question is nontrivial.

In Section 4, we will examine the simplest case: the case where G is abelian.
We will combine facts about the structure of the symplectic group with results
from the theory of multiplicative characters to give an explicit criterion for the
trivial idempotent of a group G to generate the entire smash algebra, fully solving
this case. Starting in Section 5, we will turn our attention to the so-called “sym-
plectic block group”, a particular natural subgroup of the symplectic group with
some useful properties that make the problem more tractable. We will prove a
result about solvable subgroups of the symplectic Weyl group that closely parallels
the corresponding result about abelian groups, although we will no longer be able
to explicitly give a criterion for whether the ideal AeA contains 1.

We will discuss the case where G is a general subgroup of the symplectic Weyl
group in section 6 by making use of a more formal approach, with the goal of
shedding some insight on this more difficult case. We will be able to reformulate
the problem in a simpler fashion by making use of the decomposition of kG into
simple modules.

2 Definitions

Let k be a field of characteristic p > 2, and let G be a finite subgroup of the
symplectic automorphism group Sp(2n) that acts on the vector space V ⊕ V ∗ =
kn ⊕ (kn)∗. In other words, we equip the vector space V ⊕ V ∗ with a faithful
representation of some finite group G. We also require that this representation
preserves some nondegenerate alternating bilinear form ω, which we can write as
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the matrix

(
0 In
−In 0

)
by choosing a basis for V and extending it in the canonical

way to a basis for V ⊕ V ∗.

We note that the action of G on V extends to an action of G on the Weyl
algebra W ; i.e. the quotient of the free unital associative algebra over k in 2n
indeterminates x1, . . . , xn, ∂1, . . . , ∂n by the relations [xi, xj ] = [∂i, ∂j ] = 0 and
[∂i, xj ] = δij . This action is defined as follows: G acts on the free associative
unital algebra generated by our basis for V ⊕ V ∗. It is easy to verify that due to
the preservation of the symplectic form, this action descends to an action on the
quotient algebra; that is, G acts in a well-defined way on the Weyl algebra.

Let A denote the smash product W#G of the Weyl algebra W with the group
algebra kG. This algebra is isomorphic as a k-vector space to kG ⊗ W , and
multiplication is given by the rule gPg−1 = P g for any P ∈W ; that is, we should
think of the smash product as a semidirect tensor product. (Note that P g denotes
the group action on W .) We can now consider the two-sided ideal in this algebra
generated by the idempotent of the trivial representation eG = 1

|G|
∑
g g. Note

that we require here that p does not divide |G|, which we will assume is the case
for the remainder of this paper.

Definition We say that a group G, along with its associated symplectic repre-
sentation, is W-potent if the ideal AeA contains 1.

We note that the ideal defined above is generated by linear combinations of the
form PeQ for elements P,Q ∈ W , since group elements can be commuted past
elements of the Weyl algebra (modulo some invertible action) and are absorbed
by the idempotent.

It will also be useful to consider the other primitive central idempotents of
the group algebra kG. It is a well-known result in basic group representation
theory that the idempotent corresponding to the irreducible representation V is
given by eV = dimV

|G|
∑
g∈G χV (g−1)g. (Note that e1 = e.) These idempotents

commute with kG and sum to 1; in addition, the product of any two distinct
primitive idempotents is 0. The careful reader will note that the decomposition
into irreducibles may well depend on k, which we have not assumed is algebraically
closed. In fact, we will see later that we may in fact take k to be algebraically
closed without loss of generality. Because of this, the reader may assume that
whenever a one-dimensional irreducible character is referred to, we are working
over a field extension containing all relevant roots of unity such that the charac-
teristic polynomial of each group element splits. In fact, without loss of generality
we may take k to be the algebraic closure of Fp, since we are only concerned with
semisimple elements of Sp(2n) of finite order.

Definition We say that an element of the Weyl algebra P generates the repre-
sentation V if the left kG-module spanned by {P g : g ∈ G} under the conjugation
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action is isomorphic to V .

This definition is very important, as we can decompose any polynomial P into a
sum of components Pi such that the representation generated by Pi is irreducible.
This follows from Maschke’s theorem.

3 Basic properties

Just using the definitions, we can establish some basic facts about W -potency.

Proposition 1. • Let G < Sp(2n) be a W-potent group and let H < G be a
subgroup. Then H is also W-potent.

• Let G < Sp(2n) and H < Sp(2m) be groups with symplectic representations.
The direct product G×H embeds naturally as a subgroup of Sp(2(n+m)).
Then G×H is W-potent if and only if both of its factors are.

• Let G < Sp(2n) be a group, and let M ∈ Sp(2n) be arbitrary. Then MGM−1

is W-potent if and only if G is.

• Let G < Sp(2n) be a group. Let L be a field extension of k. G embeds
naturally as a subgroup of the symplectic group acting on Ln⊕ (Ln)∗. Then
G is W-potent over k if and only if it is W-potent over L.

Proof. • By supposition, 1 =
∑
PeQ for some collection of elements of the

Weyl algebra P,Q. Applying the linear map kG→ kH that sends elements
in G \H to 0 to this linear combination recovers 1 as a member of the ideal
Pe′Q, where e′ is the trival idempotent of kH.

• Denote by e1 and e2 the trivial idempotents of kG and kH respectively.
For one direction, suppose that G and H are both W-potent. Then 1 =∑
PGe1QG =

∑
PHe2QH , where the PG and QG are contained in WG and

similarly for WH . Then 1 = (
∑
PGe1QG)(

∑
PHe2QH). We also observe

that PG commutes with QH , PG commutes with e2, and QH commutes with
e1. Finally, note that e1e2 = e, the trivial idempotent of the product group.
This allows us to rewrite the above product as the sum of terms of the form
PHPGeQHQG, which are in the ideal AeA. For the other direction, note
that any element of WG×H can be written as the product of an element of
WG and an element of WH which commute with each other. Therefor, the
same factorization trick applied in the other direction allows us to conclude
that AeG×HA is contained in the product of the ideals AeGA and AeHA.

• This follows because the isomorphism of smash algebras defined by g 7→
MgM−1 and P 7→ PM preserves the element e and hence the ideal generated
by it.
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• The map between the smash algebra over k and the smash algebra over
L preserves the dimensions and codimensions of ideals, if the ideals in the
domain are taken as vector spaces over k and the ideals in the image are taken
as vector spaces over L. The result follows by considering the codimension
of AeA.

We will now discuss briefly the structure of the symplectic group over Fp. We
will make use of the following two facts about algebraic groups (including the
symplectic group):

• Every element in the symplectic group Sp(2n) can be written in the form
x = xsxu, where xs is semisimple, xu is unipotent, and xs and xu commute.

• Every semisimple element of Sp(2n) is conjugate to a diagonal matrix by an
element of the symplectic group; furthermore, any collection of commuting
semisimple elements may be so diagonalized by a common element of the
symplectic group.

We will also make use of the following fact from elementary ring theory: Any
unipotent element in a ring of characteristic p has order equal to a power of p.
This follows by writing the element as 1 + x where x is nilpotent, then using the
identity (1 + x)p

n

= 1 + xp
n

. Combined with the first fact above, this implies
that any element of the symplectic group with a finite order coprime to p — i.e.,
any member of a subgroup we are considering — is semisimple. The second fact
implies that such an element may be diagonalized via an element of the symplectic
group. Since we proved above that W -potency is conjugation invariant, this allows
us to take abelian groups to be subgroups of the maximal torus generated by the
diagonal elements with no loss of generality.

4 Abelian groups

We will start with the case where G is abelian. By the conjugacy result above,

we may take any individual generator g to have the form

(
D 0
0 D−1

)
. (Note that

any diagonal element of the symplectic group has this form because for each i it
must preserve the identity ∂ixi − xi∂i = 1.)

Lemma 1. A group G with associated symplectic representation is W -potent if
and only if AeA ∩W contains some monomial of the form

∏
i ∂

ai
i x

bi
i where each

of the ai and bi are strictly less than p.

Proof. One direction is obvious. The other follows from the fact that [∂i, f ] = fxi ;
i.e. taking the commutator of an element of the polynomial subalgebra with a
differential operator differentiates with respect to that variable. A similar rela-
tion allows us to “differentiate” the operators; i.e. reduce their exponents. The
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condition on the size of the exponents allows us to avoid running into problems
with the positive characteristic.

The previous result is motivated by the fact that the Weyl algebra over a field
of characteristic p has a nontrivial center. The ideal generated by (xpi , ∂

p
i )i is

central, and this allows us to form the quotient algebra W0 of W by this ideal.
The conjugation action of G on W restricts to an action on W0 if and only if
G preserves the positive part of the center, which is indeed the case for many
important groups. Because W0 is finite-dimensional, it is a useful means to prove
that certain groups are not W -potent.

Let G < Sp(2n) be an abelian group with associated symplectic representation;
without loss of generality we may write G as a subgroup of the diagonal group(
D 0
0 D−1

)
. Hence, for any g ∈ G, its action on the Weyl algebra is given by

xgi = giixi, and ∂gi = g−1ii ∂i. We may define multiplicative characters χ1, . . . , χn ∈
Ĝ by χi(g) = g−1ii .

Theorem 1. G is W-potent if and only if any character in the character group
Ĝ can be written in the form

∏
i χ

ai
i where 0 ≤ ai < p.

Proof. We will make use of a convenient abuse of notation and use χ to mean both
a one-dimensional representation and its associated character. Similarly, we will
denote by χ1 · χ2 both their product in the character group and the tensor repre-
sentation χ1 ⊗ χ2. We first make the observation that for any arbitrary χ ∈ Ĝ,
eχxi = xieχ·χi . Similarly, eχ∂i = ∂ieχ·χ−1

i
.

To prove the forward direction, it suffices to show that the following element

is in AeA for each χ ∈ Ĝ:
(∏

i x
p−1
i

)
eχ. The result then follows because the sum

of these elements is a scalar multiple of the polynomial
∏
i x

p−1
i (by character

orthogonality relations), which we can then differentiate using the lemma above
to obtain 1. Let χ =

∏
i χ

ai
i . Then

∏
i x

ai
i · e ·

∏
i x

p−1−ai
i =

∏
i x

p−1
i eχ as desired.

For the other direction, consider the quotient map φ that sends W to W0 as
defined above. We notice that the action of G on the quotient algebra is well de-
fined, because the diagonal group preserves the positive part of the center. It will
therefore suffice to show that the two-sided ideal generated by e in the quotient
algebra does not contain 1, because if this is the case then certainly its preimage
does not. We will show this fact by constructing explicitly an element in W0 that

is not contained in the image of the ideal AeA. This element is
(∏

i x
p−1
i

)
eχ,

where χ is a character that does not have the form
∏
i χ

ai
i with 0 ≤ ai < p.

To show that this element indeed cannot be generated, we observe that the
image of the ideal is a finite dimensional vector space spanned by

∏
i ∂

ai
i x

bi
i ·
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e ·
∏
i ∂

ci
i x

di
i where 0 ≤ ai, bi, ci, di < p. Commuting e past these elements us-

ing the group operation allows us to rewrite this as
(∏

i ∂
ai
i x

bi
i ∂

ci
i x

di
i

)
eχ0

. Here

χ0 =
∏
i χ

bi−ai
i .

The next step is to put this expression in a canoncial form by commuting
xbii ∂

ci
i past one another. It is not necessary to do this explicitly; it suffices to note

that the result is contained in the span of vectors of the form ∂ci−kii xbi−kii , where

0 ≤ ki ≤ min(bi, ci). Therefore, if the element
(∏

i x
p−1
i

)
eχ was contained in

the ideal, then it would certainly be contained in the span of vectors of the form(∏
i ∂

ai+ci−ki
i xbi+di−kii

)
eχ0 . Hence we must have χ0 = χ, ai + ci − ki = 0, and

bi + di − ki = p − 1 for each 1 ≤ i ≤ n. We note that χ0 is a product of the χi;
thus by assumption there must exist some i0 for which bi0 − ai0 is negative (since
not all of the exponents can be in the range 0 ≤ bi − ai < p, and bi − ai ≥ p is
absurd since bi < p and ai > 0.)

However, subtracting the equations ai + ci − ki = 0 and bi + di − ki = p − 1
gives (bi−ai)+(di−ci) = p−1. The quantity bi−ai is negative, and the quantity
di − ci must be strictly less than p. Hence we have reached a contradiction.

5 Solvable subgroups of the symplectic Weyl group

We saw above that considering the intersection of AeA with the Weyl algebra is
a useful way to approach the problem, and for sufficiently large p the problem of
showing that AeA contains 1 reduces to showing that its intersection with W is
nontrivial (by the differentiation lemma).

Definition We say that a group G is W-regular if there exists some element P
in the Weyl algebra for which the conjugates {P g}g ∈ G are linearly independent.

Definition The symplectic block group B2n in 2n dimensions is defined as
the group of block matrices (

M 0

0
(
M−1

)ᵀ) .
The symplectic block group has two useful properties that are of use in studying
its action on the Weyl algebra. Firstly, the action of the symplectic block group
preserves the positive part of the center, and hence acts in a well-defined manner
on W0. Secondly, as we will see in the following lemma, every subgroup of the
symplectic block group is W -regular.

Lemma 2. Let G be a subgroup of the symplectic block group. Then G is W -
regular; in fact we can take the Weyl element generating the regular representation
to be a polynomial in the xi.
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Proof. We observe that the action of G on the monomials x1, . . . , xn defines a
faithful representation. It is clear that the action of G on the polynomial algebra
generated by the xi decomposes into a sum of the symmetric powers of this faithful
representation. It is a well-known theorem in representation theory that the sum
of the symmetric powers of a faithful G-representation, under the right conditions,
contains a free kG-submodule (see [2], page 45).

The W -regularity condition is useful because it guarantees that any irreducible
representation of G or one of its subgroups occurs as the representation generated
by some polynomial in W . In particular, all one-dimensional representations occur
as the representation generated by some polynomial. As we saw earlier, if P
generates the one-dimensional representation with idempotent eχ, then Pe = eχP .
This fact is the key step in the proof of the following theorem:

Theorem 2. Let G be a solvable subgroup of the symplectic block group. Then
AeA ∩W is nontrivial.

Saying that AeA∩W is nontrivial is not the same as saying that it contains 1,
although the two are equivalent in characteristic 0. The difficulty in characteristic
p arises because W is not a simple algebra. Nonetheless, this is still a natural way
to attack the problem that builds on our approach towards dealing with abelian
groups. Our proof will once again make use of one-dimensional characters in an
essential way.

Proof. Since G is solvable, it necessarily has some normal subgroup N with an
abelian quotient G/N . We will first show that there is some element in AeA of
the form Pe′, where e′ is the trivial idempotent of N and P is a nonzero member
of the polynomial algebra generated by the xi. We will then argue by induction
that this implies the result.

First, we note that there are [G : N ] one-dimensional characters χ of G that
satisfy χ(N) = 1. Furthermore, the sum of the kG-idempotents corresponding
to these characters is precisely e′. By W -regularity, we may choose some poly-
nomials Pi with 1 ≤ i ≤ [G : N ] such that ePi = PieVi

, where the Vi are the
one-dimensional representations mentioned above. It follows that by taking the
product

∏
i Pi and placing e to the right of every polynomial except Pj (bearing in

mind that the polynomials commute, since they are contained in the subalgebra
generated by the xi) allows us to realize (

∏
i Pi) eVj

for each j as a member of
AeA. The sum of these elements is Qe′ for some polynomial Q (in fact Q =

∏
i Pi).

Now notice that the argument above can be repeated with the presence of
some arbitrary polynomial Q in the product, assuming Q commutes with all of the
Weyl elements. Hence we can keep quotienting out and multiplying by additional
polynomials until we have reached the end of the subnormal series of G, at which
point we have shown that some nonzero polynomial (possibly of a very high degree)
is present in AeA ∩W .
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Note that we make no attempt to control the degree of the polynomials or
whether their product is contained in the positive part of the center. In partic-
ular, it would suffice to take a generating set χi for the character group Ĝ and
find corresponding polynomials Qi that generate these one-dimensional represen-
tations. Then, as above, we may place e at all the possible points inside the word∏
iQ

ord(χi)−1
i in order to generate e′ multiplied by a polynomial. Doing so may

produce an effective condition on the nature of the solvable groups that we can
show are W -potent by this method.

6 The general case: A decomposition of A into
kG bimodules

We turn now to the case of a general group G. Without the use of one-dimensional
representations as a means to approach the problem, concrete results are much
harder to come by. First, we will state and prove some basic results about the
structure of the smash algebra A.

Lemma 3. The smash algebra A is equal to the direct sum of independent linear
subspaces

⊕
U,V eUAeV . Furthermore, any (two-sided) ideal I of the smash algebra

decomposes in the same way, and eUIeV = I ∩ eUAeV .

Proof. Define the linear operator FU,V ∈ End(A) as a 7→ eUaeV . We observe
that each F is idempotent, and that the product of any two distinct F ,F ′ is zero.
Therefore the F project onto their images, which are linearly independent. Fur-
thermore, the sum of all the F is the identity map due to the fact that

∑
V eV = 1,

so the direct sum of their images is equal to A.

The first claim about ideals follows from the second. Because I is an ideal,
FU,V ◦ I ⊂ I, and obviously FU,V ◦ I ⊂ eUAeV . Finally, if Q = eUPeV ∈ I, then
FU,V ◦ Q = Q and hence Q ∈ FU,V ◦ I. The result follows by combining these
assertions.

Since A is a kG-bimodule under multiplication, this motivates us to consider
the kG-bimodule structure of the projections eUAeV . We start by considering the
case where either U or V is the trivial representation; this case is easier to handle
and we can be more explicit.

Lemma 4. The linear subspace eVAe is spanned by elements of the form Pe,
where the representation generated by P is isomorphic to V . Similarly, the linear
subspace eAeV is spanned by elements of the form eP , where the representation
generated by P is isomorphic to V ∗.

Proof. To prove the first assertion, it suffices to show that eV Pe = P eV e. This
follows as a result of the fact that ge = e. The second assertion can be proved
analogously to the first by commuting in the other direction.
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In the general case, we can still describe the kG-bimodule structure by using
a more formal approach.

Lemma 5. The left multiplication action of kG on eUAeV is isomorphic to its
action on U ⊗ (U∗ ⊗ W ⊗ V )G ⊗ V ∗, where the action on U is the action of
the irreducible representation U and its action on the other tensor components is
trivial (i.e. they are multiplicity space). The right multiplication action is given by
the right G-action on the same space, except now the action on V ∗ is the nontrivial
action and U is now part of the multiplicity space.

Proof. We will prove the statement for the left action; the right follows analo-
gously. We first write A = W ⊗ kG; since eV is central in the group algebra,
we may write the module as eU ⊗W ⊗ eV kG. Left multiplication by the central
primitive idempotent eU corresponds to projection into the U -isotypic submod-
ule. In addition, it is well known that eV kG has a kG-bimodule structure given
by V ⊗ V ∗; the V ∗ is multiplicity space for the left action and vice versa for the
right action. (Note that this follows from the fact that the regular representation
of a group G contains each irreducible representation V with multiplicity dimV .)

Therefore, the left module structure is given by the U -isotypic summand of
W ⊗ V , all tensored by the multiplicity space V ∗. By Schur’s lemma we may
rewrite this in the form U ⊗ (U∗ ⊗W ⊗ V )G ⊗ V ∗, where all but the first U is
multiplicity space.

Note that we are implicitly making use of the canoncial isomorphism U∗⊗V ∼=
Hom(U, V ). In addition, it is important to remember that the idempotent eV in
fact projects onto V ∗ instead of V when acting on the right.

We can now reformulate our question in the following way: A group G is
W -potent if and only if the multiplicative maps eVAe⊗ eAeV → eVAeV are sur-
jective for each irreducible representation V . In terms of left kG modules using
the description above, this map becomes V ⊗ (V ∗ ⊗W )G ⊗ (W ⊗ V )G ⊗ V ∗ →
V ⊗ (V ∗ ⊗ W ⊗ V )G ⊗ V ∗; ignoring factors that appear with the same ac-
tion on the right and the left, the problem reduces to showing that the map
(V ∗ ⊗ W )G ⊗ (W ⊗ V )G → (V ∗ ⊗ W ⊗ V )G is surjective. This suggests that
we should seek to approach this problem by understanding this structure of the
spherical subalgebra eVAeV .

Note that the above statement can be stated more explicitly as follows: Be-
cause 1 =

∑
V eV , it follows that the projection of 1 using the eUAeV decompo-

sition is simply as the sum of the identity elements of the spherical subalgebras.
Therefore, if 1 ∈ AeA and we write 1 =

∑
i PieQi, we can project into V to get

eV =
∑
i eV PieQieV . By Lemma 4, we may rewrite this as eV =

∑
i P

eV
i eQeV ∗

i .
Therefore the problem reduces to showing that for each irreducible representation
V , we may write eV as a linear combination of elements of the form PeQ, where
P generates V and Q generates V ∗. Right away this tells us that G must be close
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to W -regular in the sense that every irreducible representation must occur as a
summand in the decomposition of W as a left kG-module under the conjugation
action; in fact, if G preserves the positive part of the center we may replace W
above with W0.

We now make the following conjecture that we hope will lead to a resolution
of the general case (of a subgroup of the block group) in a similar fashion as
the solvable case; i.e. a proof that the interesction AeA ∩W contains a nonzero
element.

Conjecture 1. Let G be a subgroup of the symplectic block group in 2n dimen-
sions, and let V be an irreducible representation. Let P be a member of the poly-
nomial algebra spanned by the xi that generates V ; let Q be a member of the same
algebra that generates V ∗. Schur’s lemma tells us that V ⊗V ∗ has a trivial isotypic
summand of dimension 1; the representation defined by the conjugation action on
the vector space spanned by {P gQh : g, h ∈ G} is isomorphic to a quotient of
V ⊗ V ∗. We conjecture that the trivial summand of this quotient is nontrivial;
i.e. there is some linear combination of P gQh that is nonzero and G-invariant.
Furthermore, this element, possibly multiplied by some nontrivial member of the
group algebra, is in the span of P geQh.

If true, this conjecture would allow us to produce an element of the form T`eV
in the linear span of the P geQh, where ` ∈ kG and T is G-invariant. Since T com-
mutes with kG and the submodule of kG generated by eV is simple, some kG-linear
combination of T`eV would therefore equal TeV ; producing such a G-invariant in
each spherical subalgebra eVAeV would allow us to realize their product as a mem-
ber of W (mimicking our proof of the solvable case). A possible route to proving
this conjecture lies in considering eVAeV as a left kG module under conjugation
and acting via the trivial idempotent, since this projects the subalgebra into the
centralizer of kG; of course, any G-invariant polynomial multiplied by a primitive
central idempotent is in this centralizer.
We close this section by providing a concrete bound on |G| in the case that G is
W -potent and acts on W0.

Proposition 2. Let G be a W -potent subgroup of the symplectic group Sp(2n)
that preserves the positive degree part of the center of W . Then |G| ≤ p2n.

Proof. By assumption G acts on W0, allowing us to form the smash algebra A0 =
W0#G. The ideal A0eA0 is spanned by a basis for W0 ⊗ W0 under the map
P ⊗Q 7→ PeQ. Also note that dimA0 = dim kG · dimW0 = |G| · dimW0. Hence
if A0eA0 = A0, then necessarily (dimW0)2 ≥ |G| · dimW0. Finally, note that
dimW0 = p2n, since a basis is given by

∏
i ∂

ai
i x

bi
i with 0 ≤ ai, bi < p.
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7 Further directions

There are several directions for further research that present themselves at this
juncture. The first is to provide an explicit description of those solvable groups for
which the argument presented in this paper holds; this might lead to a condition in
the solvable case that is both necessary and sufficient. In addition, there is much
work to be done in the general case. For instance, in the case of the simple group
A5 (which acts naturally on k5⊕

(
k5
)∗

via permutation block matrices), very little
is known about the ideal AeA. One approach might be to consider the same group
over C; by the simplicity of the smash algebra over fields of characteristic zero,
there should be some C-linear combination of Weyl elements PeQ that equals 1,
and perhaps there is a way to lift this linear combination into characteristic p.

Another important direction is to consider groups that are not conjugate to
subgroups of the symplectic block group. One good place to start might be the
“symplectic Weyl group” of elements in the normalizer of the diagonal group; this
group preserves the positive part of the center, but in addition to block matrices
it also contains elements that swap xi and ∂i. This has the advantage of still
preserving the positive part of the center.

Finally, the hardest case of this problem seems to be those groups that do
not act on W0 in a well-defined way. Since making use of the finite dimensional
algebra W0 is the only technique in this paper capable of proving that a particular
group is not W -potent, a new approach will have to be found for this case; perhaps
there is some useful method short of giving an explicit description of the ideal AeA.

In terms of approaches that might be useful, it might be fruitful to attempt to
unify the idempotent projections employed in Section 6 with the differentiation
idea used in previous sections.
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