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1. abstract

If K is a convex set in the plane that contains the origin, let K◦ be its polar body. We
attempt to minimize the product c(K)c(K◦), where c denotes the external conformal radius
or logarithmic capacity of K. This follows the classical Mahler inequality, which concerns
extremizing the analogous volume product vol(K) vol(K◦). The volume product is, in the
plane, minimized by the triangle and maximized by the disk. Recently, Bucur and Fragalá
worked on the analogous problem for the functional λ1(K)λ1(K

◦), where λ1 is the first Dirich-
let eigenvalue for K, showing that this quantity is minimized when K is a disk, and that,
modulo invertible linear transformations, it is maximized among axisymmetric planar convex
sets by the square. It turns out that among the regular polygons the conformal radius product
is minimized by the pentagon, and we give some ideas about minimizing it more generally.
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2. introduction

For convex body K, the polar body is defined by

K◦ = {y : sup
x∈K

(x, y) ≤ 1}.

Mahler considered the volume product vol(K) vol(K◦), which is invariant under non-singular
linear transformations. He showed that among symmetric bodies in the plane, the product is
minimized by the square and maximized by the disk. With the symmetry condition removed,
the triangle with centroid the origin minimizes the product. Santaló later proved using Steiner
symmetrization that the ellipsoids maximize the volume product in higher dimensions: the in-
equality vol(K) vol(K◦) ≤ vol(B) vol(B◦) for origin-symmetric convex bodies is known as the
Santaló inequality. However, the corresponding lower bound, which among origin-symmetric
convex bodies is conjectured to be attained by the cube, is unproved in higher dimensions.

Recently, Dorin Bucur and Ilaria Fragalá treated a similar problem for the first Dirichlet
eigenvalue λ1(K) of a convex body K. The eigenvalue product λ1(K)λ1(K

◦) is not invariant
under nonsingular linear transformations, though it is invariant under scaling. By applying
the Santaló inequality and the Faber–Krahn inequality, Bucur and Fragalá showed that the
eigenvalue product λ1(K)λ1(K

◦) is minimized in all dimensions whenK is a ball. Formulating
the maximization problem is troublesome, because along a sequence of long, thin rectangles,
for instance, the eigenvalue product will become infinite. To get around this, Bucur and
Fragalá show that the

sup
K

inf
T

λ1(TK)λ1((TK)◦),

the supremum being taken over all origin-symmetric convex bodies K and the infimum over all
non-singular linear transformations T . They also consider a more specialized problem, where
the supremum is taken over axisymmetric convex bodies K (convex bodies symmetric with
respect to each of the coordinate hyperplanes) and the infimum over all non-singular diagonal
linear transformations. Using a combination of theoretical and numerical tools, Bucur and
Fragalá were able to prove that, in the planar case, the axisymmetric problem is solved by
the square.

Following Bucur and Fragalá, we consider the problem of extremizing the logarithmic ca-
pacity in the plane. The logarithmic capacity c(K) of K is defined by

log c(K) = lim
|z|→∞

log |z| −GK(z,∞),

where GK(z,∞) is the Green’s function for K with pole at infinity. It is the same as the
transfinite diameter of the set K, which can be defined as the limit τ as n → ∞ of the
(decreasing) sequence of geometric means

τn = sup
z1,...,zn∈K

∏
j ̸=k

(zj − zk)
1/(n(n+1)).

The capacity gives a measure of a set that is useful in potential theory, and as the second
definition suggests it behaves very loosely like diameter. It is difficult to compute in general.
Another name for logarithmic capacity when K is simply connected is external conformal
radius, and this comes from the fact that, if f is the conformal map from the exterior of the
unit disk to the exterior of K that takes infinity to itself, then

f(z) = (c(K))z +O(1)



as |z| → ∞. We study the product c(K)c(K◦) of the capacity of a convex planar set with the
capacity of its polar body.

Like the eigenvalue product, this is not invariant under non-singular linear transformations,
though it is invariant under scaling. Although the capacity is monotone increasing under
inclusion (c(K) ≤ c(K ′) if K ⊂ K ′), opposite the situation with the Dirichlet eigenvalue, the
minimization problem is easier to formulate here as well. Thus we focus our attention on this
problem, looking for

inf
K

c(K)c(K◦).

It is not necessary to restrict to origin symmetric convex bodies for the minimization problem,
although this may make the proof easier. The maximization problem can be formulated in
the same way as for the eigenvalue product as

sup
K

inf
T

c(T (K))c((T (K))◦),

the infimum taken over non-singular linear transformations T and the supremum over origin-
symmetric convex bodies K.

We show, using the Schwarz–Christoffel formula for conformal mapping to the exterior of
a polygon, that among the regular polygons the pentagon solves the minimization problem.
The capacity product decreases from the regular triangle to the pentagon, and then increases
monotonically as n → ∞ to the capacity product for the disk.

An outline of the report is as follows. First the polar body is introduced and basic properties
are proved, and then some properties of the capacity are established. Finally, we use conformal
mapping to compute the capacity for the regular polygons and for some other polygonal
regions.

3. the polar body

Definition 3.1. For a set of points K ∈ Rd, we define its polar body K◦ by

K◦ = {y : (x, y) ≤ 1, ∀x ∈ K}

Here (·, ·) is the inner product in Rd.

Next we will show some examples of the polar body.

Example 3.1 (Polar body of a ball). Let Br = {x ∈ Rd : |x| ≤ r}. Then the polar body B◦
r

is easily seen to be the ball B1/r. The volume product is therefore equal to |B1|2. In R2, for

instance, it is π2.
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Example 3.2 (Polar body of an ellipse). The polar body of the ellipsoid K given by the
equation

x2

a2
+

y2

b2
≤ 1,

where ab ̸= 0, is the ellipse K◦ = {(x, y) : a2x2 + b2y2 ≤ 1}.
Generally, let an ellipsoid E ⊂ Rd be given by the equation

∑d
i=1

(
xi
ai

)2
≤ 1. Then E◦ is

the ellipsoid given by the equation
∑d

i=1(aixi)
2 ≤ 1.

K

K◦

Example 3.3 (Polar body of a square). The polar body of the square

K = {(x, y) : −1 ≤ max{|x|, |y|} ≤ 1}

is a square

K◦ = {(x, y) : −2 ≤ |x|+ |y| ≤ 2}.
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Example 3.4 (Polar body of a half-space). We consider the half-space

H1 = {z = (x1, . . . , xd) : x1 ≥ 1}.

From the definition, we know that

H◦
1 =

{
z = (y1, . . . , yd) :

d∑
i=1

xiyi ≤ 1,∀x1 ≥ 1

}
.

Since we can choose arbitrary x2, . . . , xd, we know that y2 = · · · = yd = 0 for any (y1, . . . , yd) ∈
H◦

1 . And we know that the equality x1y1 ≤ 1, ∀x1 ≥ 1 is equal to y1 ≤ 1, thus H◦
1 = {z =

(y1, . . . , yd) : y1 ≤ 1, y2 = · · · = yd = 0}.



Generally the polar body of a half-space is contained in a line. For instance, in R2, the
polar body of the half-plane {(x, y) : ax + by ≤ 1}, where a, b > 0, is the line segment
{(x, y) : bx = ay, 0 ≤ x ≤ a}.

K = half-space
b
A

b
O

K◦

The product vol(K) vol(K◦) of volumes is invariant under nonsingular linear transforma-
tions. This is because (TK)◦ = (T ∗)−1K◦, where T ∗ is the adjoint of T .

Next we will use a notation for the half-plane of a point. On R2, for any point A ̸= O,
where O is the origin, we define the half-plane HA as the polar body of the line segment OA.
For instance, when A = (a1, a2), where |a1|+ |a2| ̸= 0, then HA = {(x, y) : a1x+ a2y ≤ 1}.

Using this definition we can easily express the polar body of convex set. We begin with a
lemma.

Lemma 3.1. If A ⊂ B ⊂ Rn, then B◦ ⊂ A◦.

Proof. From the definition, we know that for any x ∈ B◦, then y ∈ B for any y ∈ A, thus
(x, y) ≤ 1, so x ∈ A◦. As a result, B◦ ∈ A◦. □
Lemma 3.2. The polar body of any set K is always convex.

Proof. Since if a, b ∈ K◦, and 0 ≤ λ < 1, we know that for any x ∈ K, then (a, x) ≤ 1 and
(b, x) ≤ 1. Thus (λa+ (1− λ)b, x) = λ(a, x) + (1− λ)(b, x) ≤ 1. So λa+ (1− λ)b ∈ K◦. Thus
K◦ is convex. □
Theorem 3.1. For a convex set K, if the origin O ∈ K, then the polar body of K is the
intersection of all half-plane corresponding to the point contained in K. We can express as
K◦ = ∩A∈KHA = ∩A∈∂KHA.

Proof. Since K is convex, and O ∈ K, we know that OA ⊂ K for any A ∈ K. Thus by using
Lemma 3.1, we know that K◦ ⊂ HA, thus K◦ ⊂ ∩A∈KHA.

For the other direction, assume there exists a point P ∈ ∩A∈KHA such that P /∈ K◦.
Then from the definition of polar body, we know that there exists a point Q ∈ K, such that
(P,Q) > 1. But P ∈ HQ, thus (P,Q) ≤ 1, contradicting (P,Q) > 1. So ∩A∈KHA ⊂ K◦.

This proves that K◦ = ∩A∈KHA.
The equation ∩A∈KHA = ∩A∈∂KHA is true because ∩A∈KHA ⊂ ∩A∈∂KHA when K con-

tains the origin and the other inclusion ⊃ is always true. □
We next show that K◦◦ = K when K contains the origin, beginning with a lemma.

Lemma 3.3. Any convex body K in Rd can be expressed as the intersection of some half-
spaces.

Proof. Denote by H(K) the set of all half-spaces containing K. Then ∩H∈H(K)H is an inter-
section of half-spaces and it contains K.

Assume for a contradiction that there exists a point x ∈ ∩H∈H(K)H with x /∈ K. Then
we choose a point y such that |xy| = infz∈K{|xz|} (where |xz| means the length of the line



segment between the points x and z). Then we denote the plane that passes through y and
is perpendicular to xy by P , and denote the space on the opposite side with x respect to the
plane P by Q.

Since x ∈ ∩H∈AH, and x /∈ Q, thus Q /∈ A, so there is a point w ∈ K such that w /∈ Q.
Make a coordinate system with the origin y = 0, the plane P by (a1, . . . , an) : a1 = 0, and
point x = (1, 0, . . . , 0). Then we know that w = (w1, . . . , wn) such that w1 > 0. Since K is
convex, and y, w ∈ K, thus for any 0 ≤ λ ≤ 1, (λw1, . . . , λwn) ∈ K. Let λ = w1

w2
1+···+w2

n
, and

denote the point (λw1, . . . , λwn) by u, then |xu| =
√

(w2
1+···+w2

n)
2−w4

1

(w2
1+...w2

n)
2 < 1 = |xy|, and this

contradicts the definition of y.
Thus ∩H∈AH ∈ K, and we know ∩H∈AH = K. □

Theorem 3.2. For any convex set K, if the origin O is contained in K, then the polar body
of its polar body is K itself. We can express as (K◦)◦ = K

Proof. Since for any point x ∈ K, then for any y ∈ K◦, (x, y) ≤ 1, as the definition, we know
that x ∈ (K◦)◦. Thus K ⊂ (K◦)◦.

On the other hand, by using theorem 3.1, we know that (K◦)◦ = ∩A∈K◦HA. If there exists
x ∈ (K◦)◦, but x /∈ K.then there exists a real number 0 ≤ c < 1, such that cx ∈ ∂K, and
this means that for any a such that c < a < 1, ax /∈ K. Since K is convex, by using lemma
3.3 we can denote K = ∩H∈PH, which P is a set of half-space. Since x /∈ ∩H∈PH, so there
exists a half-space H ∈ P such that x /∈ H. Then from example 3.4, we know that the polar
body of the half-space is a line segment OL, with one point is the origin.

Since K ∈ H, we know that OL ∈ K◦. Since x /∈ H, we know that (x, L) > 1 (this is easy
to show if we make the coordinate system and choose the half-space to be z = (z1, . . . , zn) :
z1 ≤ 1). Then since L ∈ K◦ and x ∈ (K◦)◦, (x, L) > 1, there is contradiction. We know that
(K◦)◦ ⊂ K. Thus (K◦)◦ = K. □
Example 3.5 (Polar body of a polygon). The polar body of a n-gon that contains the origin
is also a n-gon. This is easy to prove by using theorem 3.1. The polar body of a n-gon
is actually the intersection of n half-planes corresponding to the n vertices, which is also a
n-gon.

4. properties of logarithmic capacity

There are many definitions of capacity, and we give two equivalent definitions here. The
definition in higher dimensions (d ≥ 3) is slightly different. We use the notation K ′ to express
the complement of the compact set K.

Definition 4.1. For a compact set K ⊂ C, the logarithmic capacity c(K) is defined by

− log c(K) = inf

{∫∫
C2

log
1

|z − w|
dµ(w) dµ(z), µ ∈ M(K)

}
,

where M(K) is the set of Borel probability measures supported on K.

If c(K) = 0, then K is said to be a polar set. If K is not polar, then it has a Green’s
function with pole at infinity, and the logarithmic capacity can be defined in terms of this
Green’s function as well. Any convex set other than the empty set and a set with one point
is non-polar.

Proposition 4.1. If K ⊂ C is a non-polar compact set, then there exists a unique function
u on K

′
= C \K such that



(i) u = 0 on ∂K.

(ii) △u = 0 on K
′
.

(iii) u(z) = log |z|+O(1) as |z| → ∞ through the unbounded component of K ′.

The logarithmic capacity c(K) then satisfies

u(z) = log |z| − log c(K) +O(1/z)

as |z| → ∞.

We can easily get four properties of logarithmic capacity from the definition above:

1. Capacity is invariant under translation and rotation.
2. If two compact sets A and B satisfy A ⊂ B, then c(A) ≤ c(B).
3. When we consider the change of capacity under scaling, we know that if K amplifies

to rK, then the capacity c(K) will amplify to rc(K).
4. The capacity of any compact set is equal to the capacity of the boundary of the

compact set.

The fundamental solution to Laplace’s equation on the complex plane C is the function

Γ(z) =
1

2π
log |z|.

Then for the disk Dr = {z : |z| ≤ r}, the unique function u from the proposition is log |z/r|.
Thus the logarithmic capacity c(Dr) of the disk is equal to r.

Next we will state a theorem about conformal mapping.

Theorem 4.1 (Invariance of capacity under conformal mapping). For two convex body
K1,K2 ∈ R2, if there exists a conformal (bijective holomorphic) map f : C \ K1 → C \ K2,
with the property that

f(z) = z +O(1),

as |z| → ∞ in the unbounded component of C \K1, then

c(K1) = c(K2).

If we consider the function f of the form

f(z) = z +
c

z
,

where c is a real number, and think about the image of the unit circle |z| = 1 under f , we
can learn the capacity for some special cases.

Example 4.1 (Capacity of a segment). When c = 1, then the unit circle will map to a line
segment −2 ≤ Re(z) ≤ 2. When c = −1, then the unit circle will map to a line segment
−2 ≤ Im(z) ≤ 2. And the point outside the unit circle will map to all points except the
line segment.Thus we know that the line segment with length 4 will have capacity 1. Using
scaling, we know the capacity of a line segment with length L is L/4.

Example 4.2 (capacity of an ellipse). When 0 ≤ c < 1, the unit circle will map to an ellipse

x2

(1 + c)2
+

y2

(1− c)2
= 1,



and the points outside the unit circle will map to all points outside this ellipse. Since the
capacity of the circle is 1, we know that the capacity of the ellipse is 1. Generally, using
scaling, we find that the capacity of the ellipse

x2

a2
+

y2

b2
= 1,

with ab ̸= 0, is (a+ b)/2.

When |c| > 1, the unit circle will map to an ellipse

x2

(1 + c)2
+

y2

(1− c)2
= 1,

but this ellipse does not have capacity 1. The problem is that the points outside the unit
circle will not all map to points outside the ellipse. For instance,

√
ci will map to 0 under the

map f = z + c
z .

c = 0

c = 1

0 < c < 1

c > 1

We state another theorem about the change of capacity after mapping.

Theorem 4.2. Let K be a compact set, and let f be a polynomial

f(z) =

n∑
i=0

aiz
i,

where an ̸= 0. Then

c(f−1(K)) = n

√
c(K)

|an|

It is not true that for any two set A,B, c(A) + c(B) ≥ c(A∪B). Actually if A and B have
non-zero capacity and we translate them to be very far from each other, the capacity of A∪B
will tend to ∞. We will show an example for this.



Example 4.3 (Capacity of two disjoint segments). The disjoint union [−b,−a] ∪ [a, b], for
b > a ≥ 0, is the inverse image under f(z) = z2 of the segment [a2, b2]. Its capacity is therefore

√
b2 − a2

2
.

From this we see that, for any positive real number d, l, we define A = {(x, y) : −l − d ≤
x ≤ −l, y = 0}, and B = {(x, y) : l ≤ x ≤ l + d, y = 0}, actually two collinear segments
of length d are separated by a distance 2l then the capacity of A and B is both d

4 , and the
capacity of their union A ∪B is √

d(2l + d)

4
.

Example 4.4. More generally, the inverse image of a segment [an, bn] on the nonnegative
real axis under the polynomial f(z) = zn has capacity(

bn − an

4

)1/n

.

As n → ∞, this approaches b, which is the capacity of the circle with radius b. The inverse
image consists of n regularly spaced and rotated segments placed around this circle.

5. result

In this section, we will consider only compact convex sets in the plane. We wish to minimize
the product c(K)c(K◦) of the logarithmic capacity of a set with the logarithmic capacity of
its polar body. First, we say something about why the minimization problem is easier to
state. Let a > 0 and let Ea be the ellipse with equation

x2

a2
+ y2 = 1.

The polar body E◦
a of Ea is the ellipse with equation

a2x2 + y2 = 1.

The logarithmic capacity of Ea is (a+1)/2 and the logarithmic capacity of E◦
a is (1+1/a)/2.

So the capacity product is

c(Ea)c(E
◦
a) =

(1 + a)(1 + 1/a)

4
.

This product tends to infinity if a → 0 or a → ∞. Thus

sup
K

c(K)c(K◦) = ∞,

even if we take the supremum over convex bodies symmetric in the origin.
As in [2], we can formulate a maximization problem for the capacity product as follows:

sup
K

inf
T

c(T (K))c(T (K◦)),

where the infimum is taken over all non-singular linear transformations T and the supremum
over all convex bodies K symmetric in the origin. However, we will just consider the problem
of minimizing the product of capacity of a body and its polar body.

We first show a lower bound for the capacity product. We also use the following theorem,
which says that with fixed area the disk minimizes logarithmic capacity ([1], Theorem 5.3.5):



Theorem 5.1. If K ⊂ C has area A, then

c(K) ≥
√
A/π.

Theorem 5.2. The product of capacity of a body and its polar body is bigger than 3
√
3

2π

Proof. From Theorem 5.1, we know that for any body with area a ≥ 0, it has at least capacity√
a
π (the capacity for circle with area a).
Recall that for Mahler problem, the equilateral triangle minimizes the product of the area

of a body and its polar body. Thus we know that for any body K,

area(K) area(K◦) ≥ 27

4
,

which is reached when K is an equilateral triangle.
From the above two conclusion, we can easily get a lower bound of the product of the

capacity of a body and its polar body, 3
√
3

2π . □

According to [1] the capacity of a regular n-gon with side length L is

Γ(1/n)

21+2/nπ1/2Γ(1/2 + 1/n)
L.

Let Pn be the regular n-gon inscribed in the unit circle, and let P ◦
n be the polar body, which

is the regular n-gon circumscribing the unit circle. The side length of Pn is 2 sin (π/n), and
the side length of P ◦

n is 2 tan (π/n). Therefore, the product of the capacities is

1

24/nπ

(
Γ(1/n)

Γ(1/2 + 1/n)

)2

sin (π/n) tan (π/n).

The capacity product for the circle is 1. For the equilateral triangle it is slightly larger than 1,
and for the square it is slightly smaller (a little bigger than 0.98). It is smallest for a pentagon
(between 0.97 and 0.98) and then it increases to 1 as n → ∞.

This means that even though regular n-gon will minimize the capacity with same area
among all n-gons (see [3]), the regular n-gon will not minimize the capacity product among
all n-gons. For instance, we can regard the regular pentagon as a degenerate hexagon, then,
since regular pentagon has smaller capacity product compared with regular hexagon, there
are hexagons with capacity product smaller than the regular hexagon.

However, the equilateral triangle with centroid the origin will minimize the capacity product
among all triangles. Also, the square centered at the origin will minimize the capacity product
among all parallelograms. We prove this below. We use [3], which shows that with fixed area,
among all n-gons, the regular n-gon Pn will minimize the logarithmic capacity. So for any
n-gon An,

c(An)√
area(An)

≥ c(Pn)√
area(Pn)

.

Proposition 5.1. Among all triangles, the equilateral triangle with centroid the origin will
minimize the capacity product. Among all parallelograms, the square with center the origin
minimizes the capacity product.

Proof. The equilateral triangle P3 with centroid the origin minimizes the volume product
among all convex sets, so it minimizes the volume product among all triangles. By [3], the



equilateral triangle minimizes capacity among all triangles with fixed area. So if T is a triangle,
then

c(T )c(T ◦) ≥
√

area(T ) area(T ◦)
c(P3)c(P

◦
3 )√

area(P3) area(P ◦
3 )

≥ c(P3)c(P
◦
3 ).

Since the square P4 with center the origin minimizes the volume product among all par-
allelograms (they all have the same area, actually) and minimizes capacity among all paral-
lelograms with the same volume, the same argument shows that this square minimizes the
capacity product among all parallelograms. □

Now we show a lower bound on the capacity product among n-gons with a certain property.
Generally it is not true that the regular n-gon minimizes the capacity product among all n-
gons, as we show afterward. For the theorem we use [3], that the regular n-gon minimizes
capacity among n-gons with fixed area, and [4] (Theorem 3), which shows that if K is a
convex set with Pn ⊂ K ⊂ P ′

n, where Pn and P ′
n are regular n-gons (n ≥ 3) centered at the

origin and each vertex of Pn lies on a side of P ′
n, then

area(K) area(K◦) ≥ area(Pn) area(P
◦
n) = n2 sin2 (π/n).

Theorem 5.3. Let An be an n-gon with Pk ⊂ An ⊂ P ′
k, where Pk and P ′

k are regular k-gons
(3 ≤ k ≤ n) centered at the origin and each vertex of Pk lies on a side of P ′

k. Then

c(An)c(A
◦
n) ≥

k sin (π/k)

n sin (π/n)
c(Pn)c(P

◦
n).

Proof. From [3] and [4], we know that

c(An)c(A
◦
n) ≥

√
area(An) area(A◦

n)
c(Pn)c(P

◦
n)√

area(Pn) area(P ◦
n)

≥
√

area(Pk) area(P
◦
k )

c(Pn)c(P
◦
n)√

area(Pn) area(P ◦
n)

=
k sin (π/k)

n sin (π/n)
c(Pn)c(P

◦
n).

□

As mentioned, we can get some formulas from [1] to calculate the capacity for some bodies
with specific shapes. Now we want to show the explicit computation for capacity. We can use
Schwarz-Christoffel mapping to calculate the capacity product for polygon inscribe the unit
circle. The Schwarz-Christoffel mapping from the interior of the unit disk to the exterior of
the polygon with interior angles πa1, . . . , πan is given by

f(z) =

∫ z

z0

w−2
n∏

k=1

(
1− w

zk

)1−ak

dw,

where the points zk on the unit circle are the prevertices and the point z0 is any point in the
unit disk except 0. The function f is a conformal map, and it has a pole at z = 0. Since
f(z) = 1/z +O(1) as z → 0, the function f(1/z) gives a conformal map from the exterior of
the unit disk to the exterior of the polygon with f(1/z) = z +O(1) as |z| → ∞. This means
the capacity of the polygon is 1. We try to find the size of the polygon when it is a triangle
and when it is a regular polgyon.



First, we do this for a regular polygon. The interior angles are π(n− 2)/n, so ak = 1− 2/n

and 1− ak = 2/n. The prevertices must be at e2πki/n, so the product is

n∏
k=1

(
1− w

zk

)1−ak

= (1− wn)2/n .

To find the side length, we look at the integral of |f ′(z)| between two prevertices:∫ 2π/n

0
|1− einθ|2/n dθ =

2

n

∫ π

0
|1− ei2θ|2/n dθ =

21+2/n

n

∫ π

0
| sin θ|2/n dθ.

We can use a formula to show that this gives the same result as the formula from earlier in
this section.

Next, we do this for a triangle. Considering when z1 = 1, z2 = e2iπα, z3 = e2iπ(α+β), then
the map

f(z) =

∫ z

w−2(1− w)1−β(1− e−2iπαw)α+β(1− e−2iπ(α+β)w)1−αdw

will map the unit disk to the outside of a triangle with angle πα, πβ, π(1 − α − β). The
circumradius of the image triangle is

1

2 sin (πα)

∫ 2πα

0

∣∣∣∣(1− eiθ
)1−β (

1− eiθ−2iπα
)α+β (

1− eiθ−2iπ(α+β)
)1−α

∣∣∣∣ dθ
Recall that |1− eiα| = 2| sin α

2 |. Thus (1) can be rewritten as

2

sin (πα)

∫ 2πα

0
|(sin θ/2)1−β(sin(θ/2− πα))α+β(sin(θ/2− πα− πβ))1−α|dθ.

Then we know that if a triangle with angle πα, πβ, π(1−α−β), with circumradius r, then
its capacity is

c(r, α, β) =
r sinπα

2
∫ 2α
0 |(sin θ

2)
1−β(sin( θ2 − πα))α+β(sin( θ2 − πα− πβ))1−α|dθ

Next we will show a lemma to caculate the capacity product for the triangle. We all choose
the circumcircle center of the triangle as the origin. If the triangle is obtuse triangle, or the
right trianlge, then in this situation the polar body is unbounded, has infinite capacity, so we
just consider acute triangle.

Lemma 5.1. For a triangle with 3 angle α, β, π−α−β, then the product of the circumradius
of the triangle and its polar body is 1

4 cosα cosβ cos(π−α−β) .

Proof. Because when we scale the origin trianlge by k > 0, then its polar body scale by 1
k ,

this does not change the product of circumradius. Now we assume the origin trangle has
circumradius 1.
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We assume the origin triangle △ABC has angle α, β, γ corresponding to A,B,C, and
has circumradius 1. Then its polar body is the triangle △DEF as shown above, has angle
π − 2α, π − 2β, π − 2θ. Then length

EF = AE +AF

= tan∠EOA+ tan∠FOA

= tan(π − α− β) + tanβ

=
sinα

cosβ cos(π − α− β)
.

Thus the circumradius of △DEF is

sinα

2 cosβ cos(π − α− β) sin(π − 2α)
=

1

4 cosα cosβ cos(π − α− β)
.

□

Then we know that for any triangle with angle πα, πβ, π(1 − α − β), then the capacity
product of this trianlge is c(r, α, β)c(r◦, 1− 2α, 1− 2β), where r denotes the circumradius of
origin triangle and r◦ denotes the circumradius of its polar body. From lemma 5.1 we know
that

rr◦ =
1

4 cosπα cosπβ cosπ(1− α− β)
.

From this we know that the capacity product of triangle is a function only related with α, β,
and we give the function for the capacity product of triangle.

I also have a conjecture about choosing the origin inside a convex body to minimizes the
capacity of its polar body. We only consider the situation that the origin inside the body,
because when the origin is outside the convex body, its polar body is unbounded.

Conjecture 5.1. The circumcircle center of an acute triangle is the unique point as the origin
that minimizes the capacity of its polar body. And generally, for any body K, the center of
the smallest circle contains K is the unique point as the origin that minimizes the capacity
of its polar body.

If we assume the conjecture 5.1 is true, then we know that for any triangle T that minimizes
the capacity product among all triangles,then the origin is its circumcircle center. Then since
(T ◦)◦ = T , so T ◦ also minimizes the capacity product, thus the circumcircle center of T is
also the circumcircle center of T ◦, this means that T is equilateral triangle, and equilateral
triangle will minimizes the capacity product among triangles.
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