
Massachusetts Institute of Technology

SPUR Final Paper, Summer 2014

Higher Bruhat orders in Type B

Author:
Suhas Vijaykumar

Mentor:
Seth Shelley-Abrahamson

Abstract. Authors Yu. I. Manin and V. V. Schechtman developed the the-

ory of “higher Bruhat orders,” presenting a family of combinatorial objects
closely related to the symmetric group. In particular, the two authors define

a series of ranked posets which generalize the weak left Bruhat order; their

construction has found applications in geometry and representation theory.
In this paper, we define a similar combinatorial system for the group Bn of

hypercube symmetries. We prove the analogue of Manin and Schechtman’s

theorem for the cases k = 1 and k = 2, and relate these orders to the structure
of the group Bn.

Suggested by Ben Elias

July 31, 2014

0



1

Contents

1. Introduction & Preliminaries 1
1.1. Higher Bruhat orders in type A (cf. [5]) 1
1.2. Coxeter systems and reflection groups 2
1.3. The group An 3
2. General Construction 4
3. The group Bn 9
4. Conjectures and current work 11
4.1. Direction of current work 11
5. Appendix 12
5.1. Theorem 20 12
5.2. Proposition 25 14
5.3. Lemma 19 14
6. Acknowledgements 15
References 15

1. Introduction & Preliminaries

In [5], authors Manin and Schechtman developed the theory of “higher Bruhat
orders” for the Weyl groups of type A. These consisted of a sequence of ranked
posets, B(In, k), such that B(In, 1) is isomorphic to the weak left Bruhat order on
the Weyl group An−1. The posets B(In, k) exhibit a number of nice structural and
combinatorial properties, which will be outlined below.

These posets, and their relationship to the Weyl groups An, have found a number
of useful applications. Notably, they were important in Elias and Williamson’s
development of Soergel Calculus (cf. [1]). In that setting, generalizations of the
orders B(In, k) to arbitrary Weyl groups are highly desirable. For more work which
either extends or utilizes the theory of Manin and Schechtman, see [1, 2, 7].

Our project’s aim is to generalize the notion of a “higher Bruhat order” to Weyl
groups of type B. In particular, we hope to define a sequence of posets BB with
analagous properties.

To elaborate on the properties of B(In, k) we wish to extend, we proceed into a
discussion of the theory presented by Manin and Schechtman.

1.1. Higher Bruhat orders in type A (cf. [5]). Let In denote the set {1 . . . n},
ordered in the usual way, and let C(In, k) denote the set of k-element subsets of
In. That is to say,

C(In, k) := {S ⊂ In : card (S) = k} .

There is a natural, lexigographic total ordering on C(In, k), as follows. For any S
and T in C(In, k), with smallest elements s and t, respectively, define <k recursively,
such that

S <k T if s < t, or if s = t and S \ {s} <k−1 T \ {t} ,

until the standard ordering on C(In, 1) ≈ In
is reached. The anti-lexicographic ordering may be obtained by reversing this order.

For each K ∈ C(In, k + 1), define P (K) to be the set {S ∈ C(In, k) : S ⊂ K}.
We refer to P (K), viewed as a subset of C(In, k), as a k-packet. Call a total ordering
of C(In, k) admissible if it restricts to either the lexicographic or anti-lexicographic
order on each k-packet.

We will denote by A(In, k) the set of admissible total orderings of C(In, k). Some
facts about A(In, k) are outlined below:

– For any admissible ordering ρ, the reverse ordering, ρt, is also admissible.
– The lexicographic (resp. anti-lexicographic) ordering, denoted ρmin (resp.
ρmax) are admissible.
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– There is a function Inv : A(In, k)→ P(C(In, k + 1)) which sends ρ to the
set of K ∈ C(In, k+ 1) such that ρ restricts to the anti-lexicographic order
on P (K). For example, Inv (ρmin) = ∅ and Inv (ρmax) = C(In, k + 1).

– There is a function N : A(In, k) → P(C(In, k + 1)) which sends ρ to the
set of elements in C(In, k + 1) whose packet forms a chain in ρ.

(We use P(S) to denote the power set of S.)

We will now construct the set B(In, k). Two admissible orderings, ρ and ρ′,
are called elementarily equivalent if one can be obtained from the other by the
exchange of two neighboring elements who do not belong to a common packet. It
is evident that for such pairs (ρ, ρ′), we have Inv (ρ) = Inv (ρ′). We write ρ ∼ ρ′

if there exists a finite sequence {ρi}m1 ⊂ A(In, k) such that ρ1 = ρ, ρm = ρ′, and
each pair (ρi, ρi+1) posesses elementary equivalence. It can be checked that ‘∼’ is
an equivalence relation.

The set B(In, k) is obtained by taking the quotient of A(In, k) with respect to
this equivalence relation; we will write [ρ] to denote the equivalence class containing
ρ. It follows from the above discussion that Inv (r) = Inv (ρ) for all ρ ∈ r, hence
the map Inv (r) is well defined for r ∈ B(In, k). It is also convenient to write
N(r) = ∪ρ∈rN(ρ).

Finally, we introduce the notion of a packet-flip, and the induced partial ordering
of B(In, k). If, for some K ∈ C(In, k+ 1), the elements of P (K) form a chain with
respect to some ordering ρ ∈ r (that is to say, if K ∈ N(r)), then we may form
a new admissible ordering ρ′ be reversing the order of this chain while fixing the
position of each other element. If this is the case, we write [ρ′] = pK(r). This
operation is called a packet-flip.

The resulting order is admissible as the size of the intersection of P (K) with any
other k-packet is at most 1, by construction; this guarantees the packet flip does
not affect the order of any other k-packet.

We write r <MS r
′ if there exists a finite sequence {Ki}m1 ⊂ C(In, k + 1) such

that r = r1, r′ = rm, ri = pKi
(ri−1), and each Ki lies in N(ri) \ Inv (ri). The

following theorem was proven by Manin and Schechtman about the relation <MS :

– <MS defines a partial order on B(In, k).
– Under <MS , B(In, k) is a ranked poset with a unique minimal element,
rmin, and a unique maximal element, rmax. The rank is given by r 7→
card (Inv (r)).

– The map rmin < pK1
(rmin) < · · · < pKm

· · · pK1
(rmin) 7→ ρ : K1 ≺ · · · ≺

Km defines a bijection from the set of maximal chains in B(In, k) to the
set A(In, k + 1).

– The map Inv : B(In, k)→ P(C(In, k + 1)) is injective.

This is the central result of Manin and Schechtman that we wish to generalize.

1.2. Coxeter systems and reflection groups. In this section we present nec-
essary background information regarding reflection groups, Coxeter groups, and
Bruhat orders.

Definition 1. Let G ∼= 〈S | R 〉 be a finite group presented by generators and
relations, and FS the free group over S. For some g ∈ G, consider the set Wg ⊂ FS
of words which evaluate to g. By well ordering, we can choose some wg ∈ Wg of
minimal length.

We define the function ` : G → N which associates to each g ∈ G the length
of wg. By convention, `(1) = 0. Often, `(g) is referred to as the length of g with
respect to the presentation 〈S | R 〉.

From this point forward, the presentation G = 〈S | R 〉 is assumed, so that we
may speak freely about the length of an element in G.

Definition 2. Let R(g) denote the set of minimal-length words which evaluate to
some g ∈ G. A word in R(g) is called a reduced expression for g.
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Then, the weak left (resp. right) Bruhat order is defined by the following ordering
relation:

– g ≤ h if there exists w ∈ R(g) and w′ ∈ R(h) such that w is a suffix (resp.
prefix) of w′.

These partial orders have been studied extensively in the context of reflection
groups, and, more generally, Coxeter systems.

Definition 3. Let S = {si} be a finite, indexed set, and m a symmetric function
associating each element of S × S to an integer greater than 1, and such that
m(si, si) = 2. The Coxeter system given by S and m is denoted (W,S), where W
is the group generated by S with the relations

(sisj)
m(i, j) = 1.

The group W is called a Coxeter group.

Theorem (cf. [3]). For each pair of distinct indices i, j ∈ I, the order of sisj in
W is exactly m(i, j).

Definition 4. Fixing m = m(i, j), we see that the relations can be equivalently
formulated sisjsi . . . (m factors) = sjsisj . . . (m factors). For m > 2, these will be
called braid relations. If m = 2, they will be called commutations.

Given a Coxeter system (W,S), and an element g ∈ W , one can define a graph
structure on the set R (g) by including an edge between two words that differ by

the substitution of a braid relation or commutation. This graph is denoted Γ̃(g).

Theorem (Matsumoto, cf. [4]). For any g ∈W , Γ̃(g) is connected.

Definition 5 (Reflection groups). Let V be a Euclidean space, and define a re-
flection to be some T ∈ O(V ) whose (−1)-eigenspace has dimension 1, and whose
1-eigenspace has dimension n− 1. With this definition, a reflection group is a ma-
trix group G ⊂ O(Rn) generated by reflections. For a reflection group, one can find
Φ+ ⊂ V such that G permutes the set Φ+ ∪ {−x : x ∈ Φ+}. The following facts
about reflection groups will be used in our paper.

Theorem (cf. [3]).

– A choice of Φ+ uniquely determines a set of reflections S(Φ+) that generate
G, which are called simple reflections.

(This generating set is assumed for the next two statements.)

– The length of some x ∈ G is equal to card (x(Φ+) \ Φ+).
– G has a unique longest element, w0, which is the unique maximal element

in the weak left (or right) Bruhat order.

We will end our discussion of Coxeter groups and reflection groups by stating
the following theorem.

Theorem (Coxeter, cf. [3]). Any reflection group G with choice of simple roots S
may be presented as a Coxeter system (G,S). Conversely, any finite Coxeter group
W may be realized as a reflection group.

1.3. The group An. Some of the key components of the relationship between the
construction of Manin and Schectman and the Weyl groups of type A are outlined
below.

– There is a correspondence ϕ : B(n, 1)
∼−→ An−1.

– If An−1 is partially ordered by the weak left Bruhat order, then ϕ is an
isomorphism of ranked posets.

– A(n, 2), when viewed as an undirected graph (where edges are given by the

packet-flip operation or elementary equivalence), is isomorphic to Γ̃(w0).
– Two elements ρ and ρ′ in A(n, 2) possess elementary equivalence exactly

when the corresponding vertices of Γ̃(w0) differ by a commutation.
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An appropriate generalization of the “Higher Bruhat Order” to other Weyl
groups should maintain these properties, which are related to Manin and Schect-
man’s theorem for k = 1, 2. We are now in a position to define the general con-
struction in Type B.

2. General Construction

Let E be any finite, totally ordered subset of Z. Furthermore, we require that E
has even cardinality, and is stable under negation. Let E+ denote those elements
of E which are positive.

Definition 6. We define CB(1, E) to be the set E. For k > 1, the set CB(E, k) is
defined as the union of the sets C1

B(E, k) and C2
B(E, k), which are defined below.

˜C1
B(E, k) := {S ⊂ E : card (S) = k, and the elements of S have distinct absolute value} ,

C2
B(E, k) := {T ∪ {?} : T ⊂ E+, card (T ) = k − 1}

C1
B(E, k) is constructed by partitioning ˜C1

B(E, k) (which are sets) into orbits under
negation.

For the remainder of this paper, we will work with the set Jn := {−n . . . n}\{0}.
For brevity, we will define σ to be the map sending x 7→ −x.

Definition 7. In general, the packet operation PB will identify with every element
of CB(Jn, k+1) a subset of CB(Jn, k). For some K ∈ CB(Jn, k+1), the set PB(K)
is referred to as a k-packet.

PB is constructed differently for elements of C1
B(Jn, k) and C2

B(Jn, k).

– For K ∈ C1
B(Jn, k + 1), let R ∈ K be a representative. We define the

set P̃B(K) to consist of the σ-orbits of every k element subset of R. It
is noted here that these σ-orbits do not coincide, as the elements of R
belong to distinct σ-orbits. Moreover, it is clear that different choices of the

representative R produce the same set P̃B(K), so our map is well defined.

– For K ∈ C2
B(Jn, k+1), fix K ′ = K\{?}, and consider the set S = K∪σ(K).

We define P̃B(K) to be CB(S, k), noting that S is finite, totally ordered,
has even cardinality, and is stable under negation.

Note that the elements of CB(J, 1) are not themselves σ-orbits. For this reason, we
define

PB(K) =

{
∪T∈P̃B(K)T if K ∈ C1

B(Jn, 2)

P̃B(K) otherwise

Notation. Since C1
B(Jn, k) is a set of equivalence classes, we encounter the problem

of choosing a good way to represent its elements. Wherever possible, we will choose
the representative for which the element with the greatest magnitude is negative.
For some T ∈ C1

B(Jn, k), if R is such a representative, we will denote T by the
bracketed list [a1 . . . ak], where t = {a1 . . . ak}. Such a representative will be
referred to as an ideal representative, and we will indicate where this
choice of representative is assumed.

For consistency, an element s ∈ C2
B(Jn, k) will be denoted as a bracketed list

[b1 . . . bk−1, ?], as well.
We list elements with negative elements first, in increasing order, followed by

positive elements, in decreasing order, e.g. [−5,−2, 3, 1].

Definition 8. The standard order of the set CB(Jn, 2), is defined as follows. It
is defined with respect to ideal representatives. For the purposes of comparison,
elements [a1, ?] will assume the value [−a1, a1].

– Elements represented by two negative indices occur first, in lexicographic
order.
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– Elements with a single negative index occur afterwards. If the elements are
listed in increasing order, a1, a2, then the ordering is lexicographic in the
following sense:

[a1, a2] < [b1, b2] if a1 < b1, or if a1 = b1 and a2 > b2

Similarly, we have the following standard order for the set CB(Jn, 3). As before,
elements of the form [a1, a2, ?] will assume the value [−a1, −a2, a2] in comparison
with other elements.

– Elements represented by three negative indices occur first, in lexicographic
order.

– Elements represented by two negative indices occur second. For two ele-
ments represented by negative indices, we have the comparison

[a1, a2, a3] < [b1, b2, b3] if [a1, a2] < [b1, b2], or if [a1, a2] = [b1, b2] and a3 > b3

where a3, b3 > 0.

– Elements represented by a single negative index occur third. For two ele-
ments of this form, we have the comparison

[a1, a2, a3] < [b1, b2, b3] if a1 > b1, or if a1 = b1 and [−a2, −a3] < [−b2 − b3].

Lastly, the standard order for CB(Jn, 1) is given by the usual ordering of the set
Jn. The standard ordering of a given set is denoted ρmin wherever this notation is
unambiguous. For these sets, the reverse standard ordering, ρmax is obtained by
reversing the standard ordering.

Definition 9. For a 2- or 3-packet P , the ordering of P is given by the restriction
of the standard ordering to P . For a 1-packet, orderings are given by the following
Hasse diagrams.

[i, j]

i

−ij

−j

[i, −j]

i

−i−j

j

[k, ?]

k

−k

The reverse ordering of a 1-, 2-, or 3-packet T is given by reversing the direction
of each inequality. By standard abuse of notation, T denotes both the set and the
ordering relation, and Rev T denotes both the set and the reverse ordering.

Definition 10. A comparable component of a poset is defined to be a connected
component of the poset’s Hasse diagram.

Definition 11. We will now define the sets BB(Jn, k), for k ≤ 3.

– We call a total ordering ρ of CB(Jn, k) admissible if for each k-packet P , ρ
extends either P or RevP .

– The standard ordering, ρmin, and reverse-standard ordering, ρmax, are ad-
missible.

– We define AB(Jn, k) to be the set of all admissible orderings of CB(Jn, k).
– For an admissible ordering ρ, Inv (ρ) is defined as the set of elements K ∈
CB(Jn, k + 1) such that ρ extends RevPB(K).

– If for ρ ∈ AB(Jn, k) the set N(ρ) consists of all elements K ∈ CB(Jn, k+1)
such that for each comparable component C ⊂ PB(K), C forms a chain in
ρ.

– Two elements of CB(Jn, k) commute if they are incomparable in each k-
packet to which they both belong.

– Two orderings ρ, ρ′ ∈ AB(Jn, k) are elementarily equivalent if ρ′ can be
obtained from ρ by exchanging the order of two adjacent, commuting ele-
ments.

– We define an equivalence relation on AB(Jn, k) by taking the transitive
closure of this relation.
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– The set BB(Jn, k) is constructed by taking the quotient of AB(Jn, k) with
respect to the aforementioned equivalence relation. We write [ρ] to denote
the equivalence class containing a given admissible ordering ρ.

– We will define N([ρ]) to be ∪ρ′∈[ρ]N(ρ′).

Noting that the order on each k-packet must not be trivial, it is clear that for
any two equivalent orderings ρ, ρ′, we have Inv (ρ) = Inv (ρ′). As such, the function
Inv is well defined on the set BB(Jn, k). Moreover, we have the following result.

Proposition 12. The function Inv is injective on the set BB(Jn, k).

Proof. Consider two orderings ρ and ρ′, such that Inv (ρ) = Inv (ρ′) = S. Note
that the transitive closure of the union over the ordering relations RevP for P ∈ S
and Q for Q ∈ C(Jn, k + 1) \ S defines a poset structure on CB(Jn, k), and both ρ
and ρ′ must extend this poset. Furthermore, two elements are incomparable in this
poset, then they must be incomparable in every packet to which they both belong.

Finally, we cite the well known theorem that any two linear extensions of a given
finite poset differ by a finite sequence of transpositions of adjacent, incomparable
elements. This coincides directly with our definition of elementary equivalence. So
[ρ] = [ρ′] is uniquely determined by Inv (ρ), as desired. �

Definition 13. If we consider some total ordering ρ in A(Jn, k), together which
some k-packet PB(K) for K ∈ N(ρ), we can construct a new admissible order
ρ′ by reversing the order of each comparable component of PB(K) in ρ, while all
other elements conserve their positions. This operation is called a packet-flip, and
is written ρ′ = pK(ρ). Clearly

Inv (ρ′) =

{
Inv (ρ) \K if K ∈ Inv (ρ)

Inv (ρ) ∪ {K} otherwise.

For any [ρ], [ρ′] ∈ BB(Jn, k), we write [ρ] < [ρ′] if there exists a finite sequence
{ρi}m1 ⊂ AB(Jn, k) such that ρ1 = ρ, ρm = ρ′, and for each pair (ρi, ρi+1) there
exists some Ki ∈ N([ρi]) \ Inv ([ρi]) such that for some ρ′i ∈ [ρi], ρi+1 = pKi(ρ

′
i).

This relation defines a partial ordering on the set BB(Jn, k).

Theorem 14. For the cases k = 1, 2, BB(Jn, k) has a unique maximal (respec-
tively, minimal) element, given by [ρmax] (resp. [ρmin]).

Our proof will make use of the following lemmas, which will be proved after the
general argument is given.

Notation. For some admissible ordering ρ ∈ AB(Jn, k), and some S ⊂ CB(Jn, k),
we write S(ρ) to denote the minimal chain containing S in ρ. Furthermore, we
write SK to denote the set PB(K).

Definition 15. Let ρ ∈ AB(Jn, 2) be given. We say that an element x blocks S in
ρ when x ∈ S(ρ′), for all ρ′ ∈ [ρ].

Lemma 16. Let a set S ⊂ CB(Jn, k) be given. If x does not block S in ρ, then
there exists some ρ′ ∈ [ρ] such that S(ρ′) ⊂ S(ρ), and x 6∈ S(ρ′).

Lemma 17. Suppose K 6∈ Inv ([ρ]). Then K 6∈ N([ρ]) if and only if there exists
some x which blocks SK in ρ.

Lemma 18. Suppose K 6∈ N([ρ]) ∪ Inv ([ρ]). Then at least one of the following
seven cases holds for all ρ′ ∈ [ρ]. (An ideal representative is assumed.)

– If K ∈ C1
B(Jn, 3), fix K = [i, j, k]. Then, we have either:

(1) [i, j] < [i, x] < [i, k],
(2) [i, k] < [k, x] < [j, k], or
(3) [i, j] < [j, x] < [j, k],

for x ∈ Jn \ {i, j, k}.
– If K ∈ C2

B(Jn, 3), fix K = [i, j, ?]. Then, we have either:

(1) [i, j] < [i, x] < [i, ?],
(2) [i, ?] < [i, x] < [i, −j],
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(3) [i, −j] < [j, x] < [j, ?], or
(4) [i, j] < [j, x] < [i, −j],

for x ∈ Jn \ {i, j, −i, −j}.

Lemma 19. Let ρ ∈ AB(Jn, 2) be given so that ρ 6∈ [ρmax]. In all of the above
cases, there exists some K ′ ∈ CB(Jn, 3) \ Inv ([ρ]) such that either SK′(ρ) ( SK(ρ)
or the smallest element in SK′ is greater than the smallest element in SK .

Proof of theorem. Firstly note that any class of orderings [ρ] satisfying Inv ([ρ]) =
CB(Jn, k+1) must be maximal. By definition, ρmax, has this property, so [ρmax] is
a maximal element. By injectivity of the function Inv on BB(Jn, k), [ρmax] is the
unique class of orderings for which Inv ([ρ]) = CB(Jn, k + 1). Therefore, we need
only to prove that an equivalence class [ρ] for which Inv ([ρ]) ( CB(Jn, k+ 1) is not
maximal.

Let [ρ] be such an ordering, so we have some K ∈ CB(Jn, k + 1) \ Inv ([ρ]) such
that each PB(K) 6∈ Inv ([ρ]).

We will prove by induction that the existence of such a K implies the existence
of some K ′ ∈ N([ρ]) \ Inv ([ρ]), and hence that [ρ] is not maximal.

Case k = 1:
Since elements of CB(Jn, 1) are themselves indices, we use the notation “≺” to
denote the ordering in some admissible order ρ, and “<” refers to the ordering
inherited from Z.

Suppose there exists some K 6∈ Inv (ρ). Fix k = [i, j] for i, j ∈ J , and suppose
without loss of generality that i is the maximal element in PB(K) with respect to
ρ. Let C denote the chain in ρ whose smallest element is j and whose greatest
element is i.

Since K 6∈ Inv (ρ), i > j. If i and j are neighbors in ρ, then we’re done. If not,
there exists some k such that j ≺ k ≺ i in ρ.

If k > j then [k, j] ∈ N(ρ) and we’re done. If not, then we have k < j. This
implies k < i, and [i, k] 6∈ Inv (ρ). By induction on the length of C, we conclude
that ρ is not maximal. Minimality of ρmin k = 1 follows by symmetry. �

Case k = 2:
Let ρ ∈ AB(Jn, 2) be given. Fix S = PB(K) for some K ∈ CB(Jn, 3), and let S
denote the minimal chain containing S.

Note that if some ρ satisfying Inv ([ρ]) 6= CB(Jn, 3) is given, there exists some
K ∈ CB(Jn, 3) \ Inv ([ρ]).

If K ∈ N([ρ]), we have nothing left to prove. If not, by Lemma 17, we may
conclude that some element blocks SK in ρ. Then, by Lemma 18 and Lemma
19, we may assume the existence of some K ′ 6∈ Inv ([ρ]) such that the smallest
element in SK′ is greater than the smallest element in SK , or the minimal chain
containing SK′ is a strict subset of S(ρ′) for all ρ′ ∈ [ρ].

Note that in any possible ordering ρ′, the number of elements greater than
the smallest element in S is finite. Likewise, the length of S(ρ′) is finite. By
induction on these two parameters, we may conclude the existence of some K∗ ∈
N([ρ]) \ Inv ([ρ]). This shows that [ρ] is not maximal. Once again, minimality of
[ρmin] follows by symmetry.

�

Proof of Lemma 16. Let ρ and S be given, and let x be some element which does
not block S in ρ. By our assumption, we can find some ρ̂ ∈ [ρ] such that x 6∈ S(ρ̂).
Without loss of generality, x < minS in ρ̂. Then let T be the subset of S(ρ) which
is less than or equal to x in ρ. Clearly T forms a chain in ρ.

Let t = t1 . . . tr be some sequence of pairs of adjacent, commuting elements
which are transposed to carry ρ to ρ̂, and t′ = t′1 . . . t

′
s be the subsequence obtained

by deleting all pairs for which one or both of the elements do not belong to T . We
will show that t′ is a valid sequence of adjacent transpositions, namely there exist
ρ′i such that:
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– ρ′1 = ρ,
– t′i is adjacent in ρ′i, and
– ρ′i+1 is obtained from ρ′i by reversing the order of the pair t′i.

From this it follows immediately that there exists some ρ∗ = ρ′s+1 for which

x 6∈ S, and such that S(ρ∗) ⊂ S(ρ).

Let ρ1 = ρ and ρi+1 be obtained from ρi by inverting the pair ti. Firstly, note
that each clearly each pair in t′ must commute, as it belongs to t. Secondly, note
that reversing the order of some pair ti which is in t but not in t′ does not change
the relative positions of elements of T with respect to the order ρi. Finally, reversing
the order of some t′i, if it can be done, preserves the property that T forms a chain.

As such, consider any pair t′i = tp. If we assume that the sequence is valid up to
t′i−1, then ρ′i agrees with ρp on the elements of T . Since t′i is adjacent in ρp and the
elements of T form a chain with respect to ρ′i, we can conclude that t′i is adjacent
in ρ′i, and the sequence is valid through t′i. The lemma is proved by induction on
the length of t′. �

Proof of Lemma 17. Fix S = PB(K). If some x blocks S in ρ, then certainly
K 6∈ N([ρ]). For the converse, suppose that no element blocks K in ρ. If S(ρ) = S
we are already finished. If not, we can select some y ∈ S(ρ) \ S. By Lemma 1,
we can produce some ρ′ such that y 6∈ S(ρ′), and S(ρ′) ⊂ S(ρ). Then, we have
S(ρ) ) S(ρ′) ⊃ S. Since ρ was arbitrary, we have by induction that S(ρ∗) = S for
some ρ∗ ∈ [ρ], so K ∈ N([ρ]) as desired. �

Proof of Lemma 18. Let ρ ∈ AB(Jn, k) be given, such that there exists K ∈
CB(Jn, 3), K 6∈ N(ρ). Fix K = [i, j, k], where i < j < 0 by convention. Once
again, fix S = PB(K), and S(ρ) is the minimal chain containing S in ρ.

First, we show that there exists some element which blocks S in ρ, which does
not commute with every element of S. Suppose to the contrary that every element
which blocks S commutes with every element of S. Then, by applying Lemma 1, we
can produce some ρ′ ∈ [ρ] for which the only elements in S(ρ′) \ S are those which
block ρ in S. But then there exists an equivalent ordering ρ∗ for which S(ρ∗) = S,
which contradicts.

Suppose K ∈ C1
B(Jn, 3). Then, we can conclude from the above that there exists

some b which blocks S in ρ, and b has the form [i, x], [j, x], or [k, x]. Either b falls
into one of the stated cases, or one of the following:

(1) [i, j] < [k, x] < [i, k]
(2) [i, k] < [i, x] < [j, k]

In case (1), consider the set D = {d : [i, j] < d < [k, x]}. If every element of
D commutes with [i, j], then there exists an equivalent ordering which does not
contain b, a contradiction. We may thus conclude that there is an element b′ ∈ D
of the form [i, x] or [j, x] such that [i, j] < b′ < [i, k] < [j, k].

In case (2), consider the set D = {d : [i, k] < d < [j, k]}. If every element of
D commutes with [j, k], then there exists an equivalent ordering which does not
contain [i, x], a contradiction. We may thus conclude that there is an element
b′ ∈ D of the form [k, x] or [j, x] such that [i, j] < [i, k] < b′ < [j, k].

If K ∈ C2
B(Jn, 3), then we can conclude from the above that there exists some b ∈

S(ρ) of the form [i, x] or [j, x]. Either b belongs to one of the stated cases, or we have
[i, −j] < [i, x] < [j, ?]. In this case, consider the set D = {d : [i, −j] < d < [j, ?]}.
If every element of D commutes with [j, ?], then there exists an equivalent ordering
which does not contain [i, x], a contradiction. We may thus conclude that there is
an element b′ of the form [j, x] such that [i, −j] < b′ < [j, ?].

We have shown that one of the stated cases must hold if K 6∈ N([ρ]), proving
the lemma. �

Proof of Lemma 19. Lemma 4 is proved by case work. For the complete case anal-
ysis, refer to the Appendix [Sec. 5.3]. �
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Theorem 20. For k = 1, 2, there is a bijection

maximal chains in BB(Jn, k)
∼−−→ AB(Jn, k + 1),

which sends

[ρmin] = [ρ1] ≤ [ρ2] ≤ · · · [ρi] · · · ≤ [ρmax] 7→ K1 · · ·Km,

where ρi ∈ pKi−1
(. . . pK1

(rmin)), m = |C(Jn, 2)| and Ki ∈ N(ρi) \ Inv (ρi) for all i.

Proof. Our map is clearly injective. Assuming the previous theorem, it also pro-
duces a total ordering of CB(Jn, k+ 1). We must show that its into AB(Jn, k+ 1),
and that it is surjective.

First, let a (k + 1)-packet T ⊂ CB(Jn, k + 1) be given, and set S = ∪X∈TP (X).
For any s, t ∈ S, the unique k-packet which contains s and t, if it exists, is given
by P (X) for some X ∈ T .

In other words, given some ρ ∈ AB(Jn, k), the only packet-flips which may affect

ρ
∣∣
S

are those corresponding to elements of T . Furthermore, if some P (X), X ∈ T
doesn’t form a chain with respect to ρ

∣∣
S

, then it cannot form a chain in ρ. With
these considerations, one can check that for any such T , the only possible sequences
of packet-flips carrying ρmin to ρmax correspond to an admissible ordering of T .
This shows that our map is into AB(Jn, k + 1).

To show that our map is onto, we will prove that given any admissible ordering
K1 . . .Km as in the statement of the proposition, Ki ∈ N(ρi) for all i. The proof
is by contradiction. Suppose, for arbitrary ρ ∈ A(Jn, 2) that there exists some
Ki 6∈ N(ρ). We will show that the corresponding ordering is inadmissible.

Both statements are proven by casework; for the reader’s convenience, the full
case analysis is removed to the Appendix [Sec. 5.1].

�

3. The group Bn

Once again, let Jn be the set of indices {−n . . . n} \ {0}. Recall that the group
Bn acts faithfully on Jn by permutations. More specifically, Bn consists of exactly
those permutations π for which π(−i) = −π(i). In this way, we have a natural
inclusion Bn ↪→ S2n.

Likewise, the set of all admissible orderings of J (in our sense), namelyAB(Jn, 1) =
BB(Jn, 1), includes into the set of all total orderings of J , A(Jn, 1) = B(Jn, 1),
which are trivially “admissible” in the sense of Manin and Schechtman.

Recall from the Preliminaries section that S2n is related to A(Jn, 1) by the
bijection ϕ, which is also an isomorphism of posets. Our first task in this section
will be showing that in the following diagram, the images of Bn and BB(Jn, 1)
coincide, giving the dotted map:

B(Jn, 1) S2n

BB(Jn, 1) Bn

ϕ

ϕ

We will see that the induced byjection BB(Jn, 1)→ Bn is an isomorphism of posets.
The construction we present is, in this way, a ‘natural’ one.

Definition 21. For an arbitrary total ordering ρ of Jn, there exists a unique,
strictly increasing bijection πρ : (Jn, ρ) → (Jn, <), where ‘<’ denotes the usual
ordering of Jn. Let ϕ be the map sending ρ 7→ πρ.

Proposition 22. The images BB(Jn, 1) ↪→ B(J, 1)
ϕ−→ S2n and Bn ↪→ S2n coincide.

Proof. From the way Bn acts on Jn and the construction of ϕ, it is evident that the
image of Bn in S2n coincides with the image of exactly those orderings ρ for which
reversing the order of ρ is the same as negating each element. Such an ordering
must belong to AB(Jn, 1), so it suffices to show the converse.

To this end, let ρ ∈ AB(Jn, 1) be given, and let x be the maximal element with
respect to ρ. Then, for every other element y ∈ J \ {x}, we have y < x and hence
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−x < −y. From this we conclude that −x is the minimal element. Our result
follows by induction on n. �

Remark. In order to prove that ϕ defines a poset isomorphism, we utilize the
theory of reflection groups.

Recall that Bn consists of those permutations π : J → J for which π(−k) =
−π(k). Being a reflection group, Bn also has a standard reflection representation
in O(Rn). Having chosen a basis {ei}ni=1 for Rn, Bn acts on Rn by the rule:

ei 7→ sign (k) · e|k|, where k = π(i).

This structure provides an easy formula to compute the length of some π ∈ Bn.

Definition 23 (Root System). Let Φ+ ⊂ Rn be the system of positive roots in type
B given by the choice of roots {ei}ni=1 ∪ {ei − ej}i>j . The corresponding simple

roots are {en} ∪ {ei − ei−1}ni=2.

Remark. This choice of simple roots corresponds to the choice of generators
{(n n+1)} ∪ {(n+1−i n+2−i)(n+i n−2+i)}ni=2 for Bn as a subset of S2n,
written in cycle notation. For the remainder of the discussion, we will assume that
Bn is presented with these generators. Then `(x) = card ({α ∈ Φ+ : x(α) 6∈ Φ+}).

Definition 24. Let f be the map CB(Jn, 2)→ Φ+ given by

f(K) =


ei − ej if K = [i, j] for i > j > 0

ei + ej if K = [i, −j] for i > j > 0

ek if K = [k, ?] for k > 0

Clearly f defines a bijection. We will refer to the root f(P ) as αP .

Proposition 25. Let x ∈ Bn be given, and ρx be the corresponding total ordering
of Jn. Then, for each P ∈ CB(Jn, 2), we have

P ∈ Inv (ρx) ⇐⇒ x(αP ) 6∈ Φ+.

Proof. As the proof is simply casework, it is removed to the appendix [Sec. 5.2]. �

In other words, the following diagram commutes.

BB(Jn, 1) Bn

P(CB(Jn, 2)) P(Φ+)

Inv

ϕ

P(f)

Theorem 26. ϕ defines a poset isomorphism BB(Jn, 1)→ Bn, where Bn is ordered
by the weak left Bruhat order.

Proof. The proof follows directly from the following observation, which is simply
a consequence of ϕ’s construction. For some x ∈ Bn and s, a simple generator,
we have that ϕ : sx  pK(ρx) for some K ∈ CB(Jn, 2). Likewise, ϕ−1 : pK(ρ)  
s′ϕ−1(ρ) for some simple generator s′.

Let us then examine the covering relations. In Bn, under the weak left Bruhat
order, x′ covers x if there exists a simple generator s such that x′ = sx and `(x′) >
`(x). Under ϕ−1, this corresponds to ρx′ = pK(ρx) for some K ∈ CB(Jn, 2). But
by Proposition 3, `(x′) > `(x) =⇒ Inv (ρx′) ) Inv (ρx) =⇒ K 6∈ Inv (ρx). So ρx′

covers ρx.

Conversely, let ρx′ = pK(ρx) for some K 6∈ Inv (ρx). Under ϕ, this corresponds to
x′ = sx for a simple generator s. Once again, Proposition 3 tells us that Inv (ρx′) )
Inv (ρx) =⇒ `(x′) > `(x), so x′ covers x. As desired, we have an isomorphism of
posets. �

Corollary 27. ϕ induces a bijection AB(Jn, 2)→ R (w0), where w0 is the longest
element of Bn.
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Proof. From Theorem 20, we have a bijection

{max chians in BB(Jn, 1)} → AB(Jn, 2).

Similarly, each maximal chain in the weak left Bruhat order gives a unique reduced
expression for w0. As ϕ is an isomorphism of posets, it also gives a bijection between
the set of maximal chains. We get our bijection by composing these maps. �

Proposition 28. In the induced bijection AB(Jn, 2)→ R (w0), two words differ by
a commutation if and only if the corresponding total orderings possess elementary
equivalence.

Proof. In CB(Jn, 2), two elements commute if their packets are disjoint. In Bn ⊂
S2n, two cycle products commute if they operate on disjoint sets of indices. Under
the correspondence given by ϕ, these two statements are exactly the same. �

Remark. The higher Bruhat orders were defined by Manin and Schechtman for
Sn, and Bn can be realized as the wreath product Sn n (Z/2Z)n. It is therefore
natural to ask whether our construction can be generalized to the complex reflection
group Sn n (Z/mZ)n.

4. Conjectures and current work

4.1. Direction of current work. The central goal of our current work is to prove
the following conjecture.

Conjecture 1. Theorems 14 and 20 hold for general k.

By assuming the existence of such a result for k = 3, one can classify possible
packet-flip sequences and so determine the orderings of 4-packets. Then it will
be possible investigate admissible orderings of CB(Jn, 4), and whether the packet
orderings admit a coherent description. In this manner, we have been able to
compute the posets BB(J4, 3) and BB(J5, 4).

The main challenge faced by this program is choosing the standard ordering from
the set of admissible orderings. Short of observing and proving a coherent pattern,
our computations have motivated a number of conjectures about ρmin for k > 3.
Once ρmin is systematically defined, we will have the all of the necessary structure
to state, and hopefully prove, Conjecture 1.

Conjecture 2. Note that we have a map fi : AB(Jn+1, k)→ AB(Jn, k) by remov-
ing all elements containing the index i from some ordering ρ ∈ AB(Jn+1, k). We
expect that every fi sends ρmin ∈ AB(Jn+1, k) to ρmin ∈ AB(Jn, k).

Conjecture 3. The elements of C2
B(Jn, 2) occur in lexicographic order in ρmin, if

one ignores ?.

Assuming Conjecture 1, we should be able to understand the structure of the
posetsBB(Jn, k) directly in terms of the posetsBB(Jk+1, k) andB(In, n−2). With
this in mind, we have the following conjecture about the structure of BB(Jn, n−1)

Conjecture 4. BB(Jn, n−1) is composed of squares, and (2n+2n)-gons. BB(Jn, k)
is composed of these cycles, as well as 2n-gons similar to B(In, n− 2).

The computed posets BB(Jn, n − 1) are presented below. Note that red edges
correspond to flipping the packet of some K ∈ C2

B(Jn, n − 1), while blue edges
correspond to flipping the packet of some K ′ ∈ C1

B(Jn, n− 1).
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5. Appendix

5.1. Theorem 20. Firstly, given some K ∈ CB(Jn, k + 1), we examine the restriction of
ρmin to S = ∪Z∈P (K)P (Z), and consider which sequences of packet flips may occur. (An
ideal representative is assumed in the left-hand column only.)

Case k = 1:

K ρmin

∣∣∣
S

Possible flip sequence (up to reverse)

[i, j, 0] −i < −j < j < i [i, j] ≺ [i, ?] ≺ [i, −j] ≺ [j, ?]
[i, j, k] i < j < k [i j] ≺ [i, k] ≺ [j, k]

Case k = 2:

K ρmin

∣∣∣
S

Possible flip sequence (up to reverse)

[i, j, k, 0] [−i, −j] < [−i, −k] < [−j, −k] <
[i, ?] < [−i, j] < [−i, k] < [j, ?] <
[−j, k] < [k, ?]

[−i, −j, −k] ≺ [i, j, ?] ≺ [−i, −j, k] ≺
[−i, −k, j] ≺ [i, k, ?] ≺ [j, k, ?] ≺ [−i, j, k]

[i, j, k, l],
where k < 0

[i, j] < [i, k] < [j, k] < [i, l] <
[j, l] < [k, l]

[i j, k] ≺ [i, j, l] ≺ [i, k, l] ≺ [j, k, l]

[i, j, l, k],
where k > 0

[i, j] < [−k, −l] < [i, l] < [i, k] <
[j, l] < [j, k]

[i, j, k] ≺ [i, j, l] ≺ [j, k, l] ≺ [i, k, l]

From this it’s clear that any maximal chain inBB(Jn, k) is sent to an ordering of CB(Jn, k+
1) that respects the standard or reverse-standard ordering of (k+ 1)-packets. This shows
our map is into AB(J, k + 1).

Suppose KN . . .K1 is an admissible order of CB(Jn, k+1). Let r0 denote the class of the
standard ordering of CB(Jn, k). We want to show that KN . . .K1 gives a valid sequence
of packet flips pKN . . . pK1 on r0. With the empty sequence of packet flips as base case,
assume inductively that pKi . . . pK1 is a valid sequence of packet flips on r0 for some i ≥ 0.
Then writing ri = pKi . . . pK1(r0), we need to check that Ki+1 ∈ N(ri). Noting that
Ki+1 is the minimal element of CB(Jn, k + 1) \ Inv (ri) with respect to the admissible
order KN . . .K1, it suffices to prove the following statement: If ρ is an admissible ordering
of CB(Jn, k) and K ∈ CB(Jn, k + 1) \ (Inv (ρ) ∪ N(ρ)), then K is not minimal in the
restriction of any admissible ordering to CB(Jn, k+ 1) \ Inv(ρ). This is what we check by
casework below.

The cases we consider are equivalent to the statement that K 6∈ N([ρ]) ∪ Inv (ρ) by
Lemma 17 and Lemma 18. To clear up ambiguity: the first column gives the order of
elements in some ρ for which the packet K cannot be flipped. The fourth column gives
lists some features of an ordering corresponding to a chain in which K would be flipped
next, and the fifth column gives the necessary packet order, showing that the ordering in
column 3 is in fact inadmissible.

Case k = 1: We consider cases where the 1-It is only packet containing k, l ∈ Jn cannot
be inverted. (Without loss of generality, k < l.) necessary that we consider the upper
half of a given ordering. Using the fact that elements whose packet is inverted precede
[k, l], and that [k, l] must precede other uninverted packets, we conclude that the corre-
sponding order is inadmissible. (Note that in the table below, the assignment l = −k is
possible, yielding the packet [k, ?] ≈ [k, l].)

Case Condition Implied order Admissible order (up to re-
verse)

k ≺ x ≺ l x < k < l [x, k] ≺ [k, l] ≺ [x, l] [x, k] < [x, l] < [k, l]
k < x < l [k, l] ≺ [k, x] and [k, l] ≺ [x, l] [k, x] < [k, l] < [x, l]
k < l < x [l, x] ≺ [k, l] ≺ [k, x] [k, l] < [k, x] < [x, l]

Case k = 2: We do the same for k = 2. Here, we examine the packet of [k, l, m] (ideal
representative), and the packet of [k, l, ?].



Case m condition x condition Implied order Admissible order (up to reverse)

[k, l] ≺ [k, x] ≺ [k, m] ≺ [l, m] k < l < m < 0 x > m [k, m, x] ≺ [k, l, m] ≺ [k, l, x] [k, l, m] < [k, l, x] < [k, m, x]
l < x < m [l, x, m] ≺ [k, l, m] ≺ [k, x, m] [k, l, m] < [k, x, m] < [l, x, m]
k < x < l [k, l, m] ≺ [k, x, m] and [k, l, m] ≺ [x, l, m] [k, x, m] < [k, l, m] < [x, l, m]
x < k [x, k, m] ≺ [k, l, m] ≺ [x, l, m] [x, k, m] < [x, l, m] < [k, l, m]

k < l < 0 < m 0 < x < m [k, m, x] ≺ [k, l, m] ≺ [k, l, x] [k, l, m] < [k, l, x] < [k, m, x]
x > m [k, l, m] ≺ [k, l, x] and [k, l, m] ≺ [k, x, m] [k, l, x] < [k, l, m] < [k, x, m]
l < x < 0 same as ↑ same as ↑
k < x < l [k, x, l] ≺ [k, l, m] ≺ [k, x, m] [k, x, ] < [k, x, m] < [k, l, m]
x < k [x, k, l] ≺ [k, l, m] ≺ [x, k, m] [x, k, l] < [x, k, m] < [k, l, m].

[k, l] ≺ [k, m] ≺ [x, m] ≺ [l, m] k < l < m < 0 x > m [l, m, x] ≺ [k, l, m] ≺ [k, m, x] [k, l, m] < [k, m, x] < [l, m, x]
l < x < m [l, x, m] ≺ [k, l, m] ≺ [k, x, m] [k, l, m] < [k, x, m] < [l, x, m]
k < x < l [k, l, m] ≺ [k, x, m] and [k, l, m] ≺ [x, l, m] [k, x, m] < [k, l, m] < [x, l, m]
x < k [x, k, m] ≺ [k, l, m] ≺ [x, l, m] [x, k, m] < [x, l, m] < [k, l, m]

k < l < 0 < m x > 0 [l, m, x] ≺ [k, l, m] ≺ [k, m, x] [k, l, m] < [k, m, x] < [l, m, x]
l < x < 0 [l, x, m] ≺ [k, l, m] ≺ [k, x, m] [k, l, m] < [k, x, m] < [l, x, m]
k < x < l [k, l, m] ≺ [k, x, m] and [k, l, m] ≺ [j, x, m] [k, x, m] < [k, l, m] < [j, x, m]
x < k [x, k, m] ≺ [k, l, m] ≺ [x, l, m] [x, k, m] < [x, l, m] < [k, l, m]

[k, l] ≺ [l, x] ≺ [l, m] k < m < 0 x > m [l, m, x] ≺ [k, l, m] ≺ [k, l, x] [k, , l, m] < [k, l, x] < [l, m, x]
k < x < m [k, l, m] ≺ [k, l, x] and [k, l, m] ≺ [l, x, m] [k, l, x] < [k, l, m] < [l, x, m]
x < k [x, k, m] ≺ [k, l, m] ≺ [x, l, m] [x, k, m] < [x, l, m] < [k, l, m].

k < 0 < m x > m [k, l, m] ≺ [k, l, x] and [k, l, m] ≺ [l, m, x] [k, l, x] < [k, l, m] < [l, m, x]
k < x < 0 same as ↑ same as ↑
0 < x < m [l, m, x] ≺ [k, l, m] ≺ [k, l, x] [k, l, m] < [k, l, x] < [l, m, x]
x < k [x, k, l] ≺ [k, l, m] ≺ [x, l, m] [x, k, l] < [x, l, m] < [k, l, m]

[i, j] ≺ [i, x] ≺ [i, ?] ≺ [i, −j] ≺ [j, ?] i < j < 0 x < i [x, i, j] ≺ [i, j, ?] ≺ [x, i, ?] [x, i, j] < [i, x, ?]
i < x < j [i, x, j] ≺ [i, j, ?] ≺ [i, x, ?] [i, x, j] < [i, x, ?] < [i, j, ?]
0 < x < j [i, j, ?] ≺ [i, j, x] and [i, j, ?] ≺ [i, x, −j] [i, j, x] < [i, j, ?] < [i, x, −j]
0 < x < −i [i, x, 0] ≺ [i, j, ?] ≺ [i, j, x] [i, j, ?] < [i, j, x] < [i, x, ?]
x > −i [x, i, ?] ≺ [i, j, ?] ≺ [x, −i, j] [x, i, ?] < [x, −i, j] < [i, j, ?]
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5.2. Proposition 25. Recall that the function f defines a bijection CB(Jn, 2)→ Φ+, and
is defined by

f(K) =


ei − ej if K = [i, j] for i > j > 0

ei + ej if K = [i, −j] for i > j > 0

ek if K = [k, ?] for k > 0

.

From now on we will write αP to denote the root f(P ).

Proof of Proposition 25. Let i, j such that i > j > 0 be given. Fix k = x(i) and l = x(j).
We will consider each case separately. Suppose that [−j, −i] 6∈ Inv (ρx). Then the image
of the positive root αP = ei − ej under x is positive. In particular, either:

(1) k > l > 0, and x(αP ) = ek − el.
(2) k > 0 > l, and x(αP ) = ek + e−l, or
(3) 0 > k > l, and x(αP ) = e−l − e−k.

Conversely, if [−i, −j] ∈ Inv (ρx), we have one of the following:

(1) l > k > 0, and x(αP ) = ek − el.
(2) l > 0 > k, and x(αP ) = −e−k − el, or
(3) 0 > l > k, and x(αP ) = e−l − e−k.

Therefore x(αP ) is not positive.

Next, we show that if [−j, i] 6∈ Inv (ρx), then the image of αP = ei + ej under x is
positive. If this were the case, then we would have one of the following:

(1) −k < l < 0, and x(αP ) = ek − e−l,
(2) −k < 0 < l, and x(αP ) = ek + el, or
(3) 0 < −k < l, and x(αP ) = el − e−k.

Analagous to the previous case, if [−j, i] ∈ Inv (ρx) then the image of α is not positive.
The cases to consider here are:

(1) l < −k < 0, and x(αP ) = ek − e−l,
(2) l < 0 < −k, and x(αP ) = −ek − el, or
(3) 0 < l < −k, and x(αP ) = el − e−k.

Lastly, if [i, ?] ∈ Inv (ρx), then then the image of αP = ei is clearly positive. Otherwise,
it is not; this follows directly from π(−i) = −π(i). �

5.3. Lemma 19. As the lemma is merely casework, it was checked by a computer algo-
rithm. We will describe this algorithm, and prove its correctness.

Definition 29. For some ρ ∈ AB(Jn, k), and two elements a, b ∈ CB(Jn, k), a crosses b
in ρ if a < b in ρ, and b < a in some ρ′ ∈ [ρ]. If this is the case, then it is also true that b
crosses a in ρ.

We now describe an algorithm A which, on inputs ρ ∈ AB(Jn, k) and a, b ∈ CB(Jn, k),
outputs the predicate [a crosses b in ρ].

Algorithm 1. Let S denote the chain of elements in ρ greater than a and less than or
equal to b. Without loss of generality, suppose a < b in ρ. We initialize a list, called
right, containing only the element a. For each element q in S, in ascending order, we
compute whether q commutes with every element in right. If so, we continue. If not, we
add q to right. Finally, we output the value of the predicate [b commutes with every q
contained in right].

Proof of correctness. Suppose that there exists some ρ′ ∈ [ρ] such that of the first k
elements of S, each element is either less than than a or contained in right. Furthermore,
suppose that the elements of S∪{a} form a chain in ρ′, and those elements of S which are
not among the first k conserve their positions from ρ. If the (k + 1)th element commutes
with all of right than clearly we can find a ρ′′ in which the same is true for the first k+ 1
elements, by commuting it below a. If not then we add this element to right and proceed
with ρ′. Since ρ suffices as a base case, it follows by induction on the size of S that A
outputs 1 =⇒ a crosses b.

Conversely, suppose that x > a in ρ and x does not commute with a. Then clearly
x > a in ρ′, for all ρ′ ∈ [ρ]. Now suppose that A outputs 0. Then b did not commute
with some element r < b of right, hence r < b for all ρ′ ∈ [ρ]. But for each element r in
right which is not a, we can find some smaller element r′ in right such that r′ < r for all
ρ′ ∈ [ρ]. By induction on the size of S, which bounds the size of right, we are guaranteed
to arrive in this manner at some element which is greater than a for all ρ′ ∈ [ρ]. By
transitivity, the same is true of b. �
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Remark. In the following algorithm, posets are represented as directed acylclic graphs,
where elements are nodes and covering relations are directed edges. Clearly, two elements
are comparable in a poset if and only if they are connected in the corresponding graph.
The transitive union of two posets is computed by taking the transitive binary relation
given by the union of two directed graphs. This relation is reflexive and transitive by
definition, and it is antisymmetric so long as the union graph contains no cycles. Linear
extensions are computed using the topological sorting algorithm.

Notation. A 2-packet P is understood to be an ordered set with the ordering inherited
from the standard ordering ρmin. RevP is understood to be the same set, with the
ordering relation inherited from ρmax.

Algorithm 2. Now we describe the general algorithm.
Recall that each case from Lemma 18 consists of a sequence of 4 or 5 elements of

CB(Jn, 2); all but one belong to some packet PB(K) for K ∈ CB(Jn, 3), and the remaining
element shares exactly one index with K. As such, there is a unique element R ∈ CB(Jn, 4)
such that the set T = ∪S∈PB(R)PB(S) contains our sequence. Furthermore, the unique
2-packet containing any pair of elements in our sequence is contained in T .

Our algorithm receives as input the sequence mentioned above, as well as a total or-
dering of the indices in the sequence.

The algorithm initializes an empty list L, and iterates over all pairs of elements in our
sequence. If any pair is contained in a common 2-packet, P , it does the following:

– If the pair of elements is in standard order, it adds the poset given by the standard
order on P to L.

– Otherwise, it adds the poset given by the reverse-standard order to L.

Let U be the set of packets PB(S) for S ∈ PB(R) whose order is not recorded in this
manner. Our algorithm iterates over P(U) and does the following.

For some B ∈ P(U), the algorithm creates a new list L’ containing the elments of L. For
each element P ∈ U∩B, it adds the poset P to L’. For each element P ∈ U \B, it adds the
poset RevP to L’. The algorithm computes the transitive union over the relations in L’.
If there are no cycles, then the algorithm records a linear extension of the corresponding
poset.

For each recorded linear extension, the algorithm iterates over the packets PB(S) for
S ∈ PB(R) until it finds a 2-packet P ∗ which is in lexicographic order such that either

– minρ P
∗ > minρ PB(K) and minρ PB(K) does not cross minρ P

∗, or
– minρ P

∗ = minρ PB(K), maxρ P
∗ < maxρ PB(K), and maxρ P

∗ does not cross
maxρ PB(K).

If this is the case, the algorithm continues. Otherwise, it outputs 0. If every linear
extension recorded has been checked in this way, the algorithm outputs 1.

Proof of correctness. Firstly, we note that every ρ ∈ AB(Jn, k) which respects the ordering
of our sequence must have the property that Inv (ρ) contains all of those packets in L which
are in reverse-standard order, and none of those which are in standard order. Now, for
some such ρ, consider the poset obtained by taking the transitive union over RevPB(S)
for each S ∈ Inv (ρ) and PB(S′) for each S′ ∈ CB(Jn, 3)\Inv (ρ). This poset, which we will
denote Q, is clearly extended by ρ. As such, we can conclude that the relation obtained
in this way is indeed a partial ordering. Now consider the relation obtained by taking the
transitive union of PB(S) or RevPB(S) for just those S ∈ PB(R). This relation includes

in P , and it is transitive. Therefore ρ
∣∣∣
T

was considered by our algorithm. Moreover, if

two elements cannot cross in ρ
∣∣∣
T

then they can’t cross in ρ, for obvious reasons. This

completes the proof. �
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