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1. Introduction

Degree-d maps on the unit disk have many interesting geometric, topological and analytic prop-
erties, which are closely related to hyperbolic geometry. The dynamics of these maps has an
important application in classifying dynamical systems generated by polynomials in single complex
variable [3] and it provides useful information about Julia sets and Mandelbrot sets [2, 5]. To get
an understanding of this family of maps, people studied the behaviour of these maps restricted to
the boundary unit circle [3, 4]. In the paper [6], McMullen gave a complete description of simple
(i.e. degree 1) cycles of these boundary maps, showing that those simple cycles are an analogue
of simple closed geodesics on hyperbolic surfaces in the sense that the closure of union of simple
cycles has Hausdorff Dimension 0 and the closure of union of simple closed geodesics has Hausdorff
Dimension 1.

Here, we consider degree-d holomorphic maps from the unit disk onto itself. We focus on one
such map z 7→ zd. The restriction of this map to the boundary circle is equivalent to the map
x 7→ dx (mod 1) on R/Z. In this paper, we study cycles of higher degrees in this map, and in
particular, calculate the Hausdorff dimension of their closure.

Definition 1 (d-map). Let d ∈ N. We define d-map as the map on the unit circle S1 = R/Z given
by

(1) x 7→ dx (mod 1),∀x ∈ S1

In other words, if the base-d expansion of a point is (0.b1b2b3....)d, then d-map takes it to the point
whose base-d expansion is (0.b2b3b4....)d

Definition 2 (Cycle). Let d be a positive integer greater than 1. A finite set C ⊂ S1 is called
a cycle for d-map, iff d-map restricted to C is a transitive permutation. In terms of the base-d
expansion, C is given by the following collection of points.

(2) C = {(0.bibi+1....bnb1b2....bi−1)d|1 ≤ i ≤ n}
where n is a fixed positive integer and b1, b2, ..., bn are fixed digits in {0, 1, ..., d− 1}.

Here are some examples of cycles. Consider the case d = 2. Here, {0} = {(0.0)2} is the only
1-element cycle and {13 ,

2
3} = {(0.01)2, (0.10)2} is the only 2-element cycle. For an integer n > 2,

there are multiple n-element cycles. For example, there are two 3-element cycles: {17 ,
2
7 ,

4
7} and

{37 ,
5
7 ,

6
7}.

Now we define an important invariant of a cycle, called degree.

Definition 3 (Degree of a cycle). Let d be a positive integer greater than 1. Let C be a cycle for
d-map. The degree of C is the smallest non-negative integer m for which there exists a degree-m
map f : S1 → S1 such that f and d-map agree on C. It is denoted by deg(C).

Remark 1. Note that 0 ≤ deg(C) ≤ d because d-map is a degree-d map.

Remark 2. The cycles which contain only one element are fixed points of d-map and have degree
0. All other cycles have positive degree.

Now we give two examples.
Consider d = 2 and C = {37 ,

5
7 ,

6
7}. Under 2-map,

3

7
7→ 6

7
,

5

7
7→ 3

7
,

6

7
7→ 5

7
i.e. the cyclic order of the points in C is preserved. So, C has degree 1. In other words, as we
jump on the points in the cycle from 3

7 →
5
7 →

6
7 (jump over 0) and back to 3

7 , we complete one
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full circle (we jump over 0 exactly once). As we jump on the images of these points, 6
7 → (jump

over 0 to) 3
7 →

5
7 and back to 6

7 , again we complete one circle (we jump over zero exactly once).
This means that the degree of C is 1.

Now consider d = 3 and C = {15 ,
2
5 ,

3
5 ,

4
5}. Under 3-map,

1

5
7→ 3

5
,

2

5
7→ 1

5
,

3

5
7→ 4

5
,

4

5
7→ 2

5

So, as we jump on the points in the cycle from 1
5 →

2
5 →

3
5 →

4
5 (jump over 0) and back to 1

5 , we
complete one full circle (we jump over 0 exactly once). As we jump on the images of these points,
3
5 → (jump over 0 to) 1

5 →
4
5 → (jump over 0 to) 2

5 and back to 3
5 , we complete two circles (we

jump over zero twice). So, the degree of C is 2.

Definition 4 (Closure of cycles). Let m, d ∈ N with 1 < d and 1 ≤ m ≤ d. We define Em,d as the
closure of the union of degree-m cycles for d-map.

(3) Em,d = {c ∈ S1|c is in a cycle of degree-m for d-map}

In the paper [6] Curtis McMullen discussed the simple (i.e. degree 1) cycles for the d-map and
and computed the Hausdorff Dimension of their closure E1,d. Recall that Hausdorff Dimension is
defined as follows:

Definition 5 (Hausdorff Dimension). The Hausdorff Dimension of a set E is defined as:

(4) dimH(E) = inf {δ ≥ 0| inf {
∑

rδi |E ⊂
⋃
B(xi, ri)} = 0}

Theorem 1 (McMullen). Let d be a positive integer greater than 1. Then dimH(E1,d) = 0.

In this paper, we characterize the degree-m cycles for d-map and generalize the above result.

Theorem 2. Let m, d ∈ N with 1 < d and 1 ≤ m ≤ d. Then

dimH(Em,d) =
logm

log d
.

This paper is organized in the following way: In Section 2, we get a lower bound on the Haus-
dorff Dimension of Em,d by calculating the Hausdorff Dimension of a subset of Em,d. In Section 3,
we prove the upper bound by imitating the proof of Theorem 1 in paper [6], using combinatorial
arguments. In Section 4, we futher investigate the relation with hyperbolic geometry by looking
into a conjecture proposed in [6] and give partial results.

2. Lower Bound

In this section, we define and study two useful invariants of a cycle called crossing number and
Digit Portrait, which are directly related to the degree of the cycle. Then we use these properties
to construct a subset of Em,d which has Hausdorff Dimension logm

log d .

Definition 6 (Crossing). Let d be a positive integer greater than 1. Let C = {c1, c2, ..., cn} be a
cycle for d-map such that

0 < c1 < c2 < .... < cn < 1

Let cn+1 = c1. For any 1 ≤ i ≤ n, the pair (ci, ci+1) is called a crossing generated by C (or simply
a crossing) iff

(5) 0 < dci+1(mod 1) < dci(mod 1) < 1

The total number of such crossings is called the crossing number of C.

(6) η(C) = # (crossings generated by C)
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Remark 3. As we jump on S1 in the counterclockwise direction and trace the points of the cycle
from c1 → c2 → .... → cn and (jump over 0) back to c1, we complete one full circle. When we
trace the images of these points, dc1(mod 1) → dc2(mod 1) → ...... → dcn(mod 1) and back to
dc1(mod 1), we may jump over 0 multiple times. Each time we jump over 0, we have a crossing.
The crossing number of the cycle is equal to its degree.

Remark 4. If n = 1, then there are no crossings. The crossing number is 0 which is the degree of
1-element cycles.

Lemma 1. Let d be a positive integer greater than 1. Let C = {c1, c2, ..., cn} be a cycle for d-map
with 0 < c1 < c2 < .... < cn < 1. Then, the crossing number of C is equal to its degree or

η(C) = deg(C)

Proof. The case n = 1 is obvious. Assume n > 1. Let cn+k = ck,∀ k ∈ N.
Let 1 ≤ i1 < i2 < ... < iη(C) ≤ n be such that ∀ 1 ≤ t ≤ η(C), (cit , cit+1) is a crossing generated

by C.
First, we prove deg(C) ≥ η(C) by contradiction. Suppose η(C) > deg(C). We can divide S1

or [0, 1) in intervals I1, I2, ..., Ideg(C) such that on each Ir, there exists a continuous non-decreasing
map gr to [0, 1) which agrees with d-map on Ir ∩ C.

Note that there are exactly η(C) sets of the type {cit , cit+1, ...cit+1}. Since η(C) > deg(C), we
can find t such that {cit , cit+1, ...cit+1} ⊂ Ir for some r. So,

0 < gr(cit+1) = dcit+1(mod 1) < dcit(mod 1) = gr(cit) < 1

which contradicts the non-decresing nature of gr. So, deg(C) ≥ η(C).
Now we prove that deg(C) ≤ η(C) by constructing an appropriate map of degree η(C).

Define f : S1 → S1 as:

f(x) =



dcit+1(mod 1)
cit+1−cit

2

(x− cit+cit+1

2 ) if x ∈ [
cit+cit+1

2 , cit+1]

dci(mod 1) + dci+1(mod 1)−dci(mod 1)
ci+1−ci (x− ci) if x ∈ [ci, ci+1] ⊂ [cit+1, cit+1 ]

dcit+1(mod 1) +
1−dcit+1

(mod 1)
cit+1+1−cit+1

2

(x− cit+1) ifx ∈ [cit+1 ,
cit+1

+cit+1+1

2 ]

where intervals are taken in counter-clockwise direction.
Here, we have divided S1 into η(C) intervals of the type [

cit+cit+1

2 ,
cit+1

+cit+1+1

2 ], each of which

is mapped onto S1.f maps the endpoints of the interval to 0, points of C to their images under
d-map. In between, f is linear.

So, f is a continuous function and ∀ t, and restriction of f gives a bijection between [
cit+cit+1

2 ,
cit+1

+cit+1+1

2 )

and [0, 1) or S1. Thus, f has degree η(C). Also, f |C agrees with d-map. This completes the proof.
�

Now that we have established the relation between the degree and the crossing number of a cycle,
we need a tool to estimate the crossing number. We observe that the crossing number of a cycle is
related to the order of points in the cycle, and hence the digits in the base-d expansion of points of
the cycle. Now we define an invariant of the cycle called Digit Portrait which characterizes these
digits.

Definition 7 (Digit Portrait). Let d be a positive integer greater than 1. Let C be a cycle for
d-map. The Digit Portrait of C is the non-decreasing map F : {0, 1, 2, ..., (d−1)} → {0, 1, 2, ..., |C|}
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which satisfies

F (j) = | C ∩ [0, (j + 1)/d) | ∀ 0 ≤ j ≤ (d− 1)

or

F (j) = # (elements of C whose base-d expansion starts with a digit less than j + 1)

Let dig(C) be the number of distinct positive values taken by F . Note that if a digit j is absent
in the base-d expansion of a point in C, then F (j) = 0 or F (j) = F (j − 1). So, dig(C) is also the
number of distinct digits which appear in the base-d expansion of any point in C. To estimate the
crossing number of C, we need the second interpretation of dig(C).

Here is an example. Consider d = 4 and the cycle C = {(0.0012)4, (0.0120)4, (0.1200)4, (0.2001)4}.
Note that

0 = (0.0)4 < (0.0012)4 < (0.0120)4 <
1

4
= (0.1)4 < (0.1200)4 <

2

4
= (0.2)4 < (0.2001)3 <

3

4
= (0.3)4

The Digit Portrait of C is the map F : {0, 1, 2, 3} → {0, 1, 2, 3, 4} given by:

F (0) = 2, F (1) = 3, F (2) = 4, F (3) = 4

F takes the values 2, 3 and 4. So, dig(C) is 3. There are exactly 3 digits (0, 1 and 2) which
appear in the base-4 expansion of the points in C.

Now we establish the relation between dig(C) and the crossing number of C:

Lemma 2. Let d be a positive integer greater than 1. Let C = {c1, c2, ..., cn} be a cycle for d-map
with 0 < c1 < c2 < .... < cn < 1 and n > 1. Then, the crossing number of C is at most the number
of distinct digits which appear in the base-d expansion of a point in C or

η(C) ≤ dig(C)

Proof. Let 1 ≤ i < n. Let ci ∈ [j1/d, (j1 +1)/d), ci+1 ∈ [j2/d, (j2 +1)/d). Note that j1 ≤ j2 because
ci < ci+1.

If j1 = j2 = j, then

0 < dci(mod 1) = dci − j < dci+1 − j = dci+1(mod 1) < 1

In this case, (ci, ci+1) cannot be a crossing. So, (ci, ci+1) is a crossing only if j1 < j2 i.e. ci is the
largest element of C ∩ [j1/d, (j1 + 1)/d) and ci+1 is the smallest element of C ∩ [j2/d, (j2 + 1)/d).

Thus, there are at most (dig(C)−1) i’s for which 1 ≤ i < n and (ci, ci+1) is a crossing. For some
cycles, (cn, c1) is an additional crossing. So, there are at most dig(C) i’s for which 1 ≤ i ≤ n and
(ci, ci+1) is a crossing. �

Lemma 1 and Lemma 2 together give a way of estimating the degree of a cycle by looking at the
digits in the base-d expansion of a point in the cycle. Now we use this to get a sufficient condition
for a point to be in the closure of the cycles of fixed degree.

Lemma 3. Let m, d ∈ N with 1 ≤ m ≤ d and 1 < d. Then any point in S1 whose base-d expansion
contains atmost m distinct digits lies in Em,d.

Proof. Let α ∈ S1. Let α = (0.α1α2α3.....)d such that ∀ r, αr ∈ {b1, b2, ..., bm} ⊂ {0, 1, ..., (d − 1)}.
Here, b1, b2, ..., bm are fixed digits in base-d such that b1 < b2 < ... < bm.

To prove that α lies in Em,d, we will show that ∀ q ∈ N, there exists a degree-m cycle C for
d-map which intersects d−q neighborhood of α. Any periodic point whose base-d expansion contains
exactly m digits is in a cycle of degree at most m. To get the maximum possible degree, we need
maximum possible crossings. This can be achieved with the following construction:
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Let N ∈ N such that ∀ t,N is greater than the number of times bt appears in the first q digits
of α. Let < bt > denote btbtbt...bt (N times). Consider the following point:

(7) c = (0.α1α2α3...αq < bm >< b1 >< bm−1 >< b1 > .... < b2 >< b1 > bm)d

Clearly, c is in d−q neighborhood of α. It is a point of cycle C = {c1, c2, ...cq+2N(m−1)+1} for d-map
with 0 < c1 < c2 < ... < cq+2N(m−1)+1.

Now we need to prove that deg(C) = m. For each 1 ≤ t ≤ m, let it be such that the largest
element of C whose base-d expansion starts with the digit bt is cit . Note that ci1 is at least (0.b1bm)d.
For t > 1, cit is at least (0. < bt >)d. For each 1 ≤ t < m, cit+1 is the smallest element of C
whose base-d expansion starts with the digit bt+1. Note that the base-d expansion of cit+1 starts
with 0.bt < b1 >.

So, ∀ 1 ≤ t < m,
0 < dcit+1(mod 1) < dcit(mod 1) < 1

i.e. (cit , cit+1) is a crossing.
Note that cq+2N(m−1)+1 = cim and cim+1 = c1 = ci1 . So,

0 < dcim+1(mod 1) < (0.b2)d < dcim(mod 1) < 1

i.e. (cim , cim+1) is a crossing.
Thus, the crossing number of C is at least m.

η(C) ≥ m
From Lemma 2, we know that the crossing number of C is at most the number of distinct digits in
the base-d expansion of a point C, which in this case, is m.

η(C) ≤ dig(C) = m

So, deg(C) = η(C) = m.
�

This immediately gives the following result:

Proposition 1. Ed,d = S1. Thus, dimH(Ed,d) = 1 = log d
log d .

Proof. Note that since base-d has only d digits, the set of all points of S1 whose base-d expansion
contains at most d digits is S1 itself. So, we have S1 ⊂ Ed,d ⊂ S1 or Ed,d = S1.

�

Let m and d be positive integers satisfying d > 1 and 1 ≤ m ≤ d. Now we use Lemma 3 to
construct a subset of Em,d. Let Am,d be the set of points in S1 whose base-d expansion contains
the digits from 0 to (m− 1) only. Clearly, Am,d ⊂ Em,d.

The structure of Am,d is similar to the structure of Cantor’s set. Here, we start with X0 = [0, 1].
Write X0 in d closed intervals of length 1/d. Let X1 be union of first m of these intervals.

X1 =

m−1⋃
i=0

[i/d, (i+ 1)/d]

X1 is the union of m intervals of length 1/d. Divide each such interval in d equal parts and take
the first m in X2. X2 is the union of m2 intervals of length 1/d2.

Repeat the process. If Xi is the union of mi intervals of length d−i, then divide each such interval
in d equal parts and take the first m in Xi+1.

Am,d =

∞⋂
i=0

Xi
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Now we calculate the Hausdorff Dimension of Am,d.

Lemma 4. dimH(Am,d) = logm
log d .

Proof. Let β > 0.
Note that ∀ i, Am,d ⊂ Xi. So, for each i, we have mi intervals of length d−i that form a covering

of Am,d. If β = logm
log d + ε for some ε > 0,

lim
i→∞

mi(d−i)
β

= lim
i→∞

mi(d−iε)((d
logm
log d )−i) = lim

i→∞
d−iε = 0

This means that, for any β > logm
log d , we can cover Am,d such that the summation of β powers of the

lengths of the intervals in the cover is as small as we like. So, dimH(Am,d) ≤ logm
log d .

Now we need to prove that the Hausdorff dimension of Am,d is at least logm
log d . Note that we can

consider Am,d as a subset of [0,m/d] which is a compact set. So, for any countable cover (Ur) of
Am,d, we can find finitely many open sets V1, V2, ..., Vp such that

∞⋃
r=0

Ur ⊂
p⋃
r=0

Vr and

p∑
r=0

|Vr|β ≤
∞∑
r=0

|Ur|β

Now we will get a lower bound on
∑p

r=0 |Vr|β. Let b ∈ N such that ∀ r, d−b ≤ |Vr|. ∀ 1 ≤ i ≤ b,let
Ni be the number of Vr’s which satisfy d−i ≤ |Vr| < d−i+1. Note that if |Vr| < d−i+1, then Vr can
intersect at most two intervals in Xi−1. Hence, Vr can contain at most 2mb−i+1 intervals in Xb. Xb

has mb intervals. So,
b∑
i=0

2mb−i+1Ni ≥ mb

or
b∑
i=0

m−iNi ≥
1

2m

For β = logm
log d ,

p∑
r=0

|Vr|β ≥
b∑
i=0

(d−i)
β
Ni =

b∑
i=0

m−iNi ≥
1

2m

i.e. the summation of logm
log d powers of the lengths of the intervals which form a cover of Am,d has a

positive lower bound. Thus, dimH(Am,d) ≥ logm
log d .

�

Now we have a lower bound on the Hausdorff Dimension of Em,d.

Theorem 3. Let m, d ∈ N with 1 < d and 1 ≤ m ≤ d. Then,

dimH(Em,d) ≥
logm

log d

Proof. Am,d ⊂ Em,d. So, dimH(Em,d) ≥ dimH(Am,d) = logm
log d .

�
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3. Upper Bound

In this section, we first find an upper bound on the number of degree-m cycles for d-map which
have n elements. We extend this result to precycles. Then, we find an appropriate covering of Em,d
to prove that its Hausdorff Dimension is at most logm

log d .

Definition 8 (Partition generated by a cycle). Let C = {c1, c2, ..., cn} be a degree-m cycle for
d-map such that 0 < c1 < c2 < .... < cn < 1. Let σ be the map on {1, 2, ...., n} which satisfies:

dcr(mod 1) = cσ(r), ∀ 1 ≤ r ≤ n
Note that σ is a permutation of {1, 2, ...., n} because C is a cycle.
Let 1 ≤ i1 < i2 < ... < im ≤ n be such that ∀ 1 ≤ t ≤ m, (cit , cit+1) is a crossing generated by

C. From the ordering of the elements of C and the definition of crossing, we conclude that:

σ(it) > σ(it + 1) and σ(it + 1) < σ(it + 2) < ... < σ(it+1), ∀ 1 ≤ t < m

and
σ(im) > σ(im + 1) and σ(im + 1) < ... < σ(n) < σ(1) < ... < σ(i1)

Now we construct a partition of {1, 2, .., n} using the above property of σ.

Pt =

{
{σ(r)|it < r ≤ it+1} if 1 ≤ t < m
{σ(r)|im < r ≤ n} ∪ {σ(r)|1 ≤ r ≤ i1} if t = m

{Pt|1 ≤ t ≤ m} is a partition of {1, 2, .., n}, called as the partition generated by C and it is
denoted by P (C).

Both P (C) and the map σ are useful counting n-element degree-m cycles.

Let us consider d = 3 and C = {(0.00102)3, (0.01020)3, (0.02001)3, (0.10200)3, (0.20010)3} as an
example. Here, n = 5. Under 3-map,

c1 = (0.00102)3 7→ (0.01020)3 = c2

c2 = (0.01020)3 7→ (0.10200)3 = c4

c3 = (0.02001)3 7→ (0.20010)3 = c5

c4 = (0.10200)3 7→ (0.02001)3 = c3

c5 = (0.20010)3 7→ (0.00102)3 = c1

So, σ is the permutation of {1, 2, 3, 4, 5} which takes 1, 2, 3, 4, 5 to 2, 4, 5, 3, 1 respectively.
(c3, c4) and (c4, c5) are the crossings generated by the cycle. So, i1 = 3, i2 = 4 and the partition
generated by C is given by:

P (C) = {P1, P2} where P1 = {σ(r)|3 < r ≤ 4}, P2 = {σ(r)|4 < r ≤ 5} ∪ {σ(r)|1 ≤ r ≤ 3}
or

P (C) = {{3}, {1, 2, 4, 5}}

Now we will show that if some properties of a cycle such as degree, the partition it generates
and its digit portrait are given, then we can construct the cycle (find its points). Later, we will use
this result to count the number of cycles of fixed degree and cardinality.

Lemma 5. Given positive integers d,m, n, P = {P1, P2, ..., Pm} which is a partition of {1, 2, ..., n},
positive integer i1 < |Pm| and a non-decreasing map F : {0, 1, 2, ..., (d − 1)} → {0, 1, 2, ..., n} with
F (d− 1) = n, there exists at most one cycle C for d-map such that:
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(1) C = {c1, c2, ..., cn} with 0 < c1 < c2 < .... < cn < 1
(2) deg(C) = m
(3) P (C) = P or P is the partition generated by C
(4) If it = it−1 + |Pt| ∀ 1 < t ≤ m, then (ci, ci+1) is a crossing ∀ i ∈ {i1, i2, ..., im}.
(5) F is the Digit Portrait of C.

Proof. Suppose C is a cycle for d-map which satisfies (1), (2), (3), (4), (5). Let σ be the map on
{1, 2, ...., n} given by:

σ(r) =


(r − it)th element of Pt if it < r ≤ it+1 and 1 ≤ t < m

(r − im)th element of Pm if im < r

(r + n− im)th element of Pm if r < i1

where ∀ 1 ≤ t ≤ m, the elements of Pt are in increasing order. Note that σ is uniquely determined
by m,n, P and i1. Comparing this with the definition of partition generated by a cycle, we conclude
that

dcr(mod 1) = cσ(r), ∀ 1 ≤ r ≤ n
Let b : {1, 2, ...., n} → {0, 1, 2, ...., (d− 1)} given by:

b(r) =

{
0 if r < F (0)
j if F (j − 1) < r ≤ F (j) and 1 ≤ j ≤ (d− 1)

Note that b is uniquely determined by n, d and k. Comparing this with the definition of Digit
Portrait, we conclude that

cr ∈ [
b(r)

d
,
b(r) + 1

d
), ∀ 1 ≤ r ≤ n

or

b(r) = the first digit in the base-d expansion of cr, ∀ 1 ≤ r ≤ n

Also,

b(σ(r)) = the first digit in the base-d expansion of cσ(r)

= the second digit in the base-d expansion of cr

Thus, we conculde that

cr = (0.b(r)b(σ(r))b(σ2(r)).....b(σd−1(r)) )d

i.e. the cycle C is uniquely determined by σ and b. �

Remark 5. (ci, ci+1) can be a crossing only if the first digits of the base-d expansions of ci and ci+1

differ. So, cycle C satisfying all conditions in the above lemma can exist only if

{F (0), F (1), ..., F (d− 1)} ⊂ {i1, i2, ...im} ∪ {n}

We will use this in the proof of the following lemma.

Lemma 6. Let d,m, n ∈ N with 1 ≤ m ≤ d and n, d > 1. Then the number of cycles C for d-map
satisfying |C| = n and deg(C) = m is at most O(nd−m+1mn−1).

Proof. d,m, n are given. Now we need P = {P1, P2, ..., Pm} which is a partition of {1, 2, ..., n},
positive integer i1 < |Pm| and a non-decreasing map F : {0, 1, 2, ..., (d − 1)} → {0, 1, 2, ..., n} with
F (d− 1) = n to fix a degree-m, n-element cycle.
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Let T be the set of ordered (m+ 1)-tuples (P1, P2, ..., Pm, i1) such that P = {P1, P2, ..., Pm} is a
partition of {1, 2, ..., n}, i1 ∈ N and i1 ≤ |Pm|. We want an upper bound on #(T ).

#(T ) =
∑

a1+a2+...+am=n
ai∈N

am

(
n

a1

)(
n− a1
a2

)
...

(
n− a1 − a2 − ...− am−1

am

)

=
∑

a1+a2+...+am=n
ai∈N

am ·
n!

a1! a2! ....am!

=
∑

a1+a2+...+am=n
ai∈N

n!

a1! a2! ....am−1! (am − 1)!

≤
∑

a1+a2+...+am−1+(am−1)=n−1
ai∈N∪{0}

n · (n− 1)!

a1! a2! ....am−1! (am − 1)!

= n ·mn−1

After fixing an element of T , we need to fix a non-decreasing map F from {0, 1, 2, ..., (d − 1)}
to {0, 1, 2, ..., n} with F (d − 1) = n and {F (0), F (1), ..., F (d − 1)} ⊂ {i1, i2, ...im} ∪ {n}. We have

(n+ 1)(d−m−1) or (n+ 1)(d−m) choices for F , depending on if n is in {i1, i2, ...im} or not.
Now, using Lemma 5, we conclude that the number of degree-m n-element cycles for d-map is

at most O(nd−m+1mn−1).
�

Definition 9 (Precycle). Let d be a positive integer greater than 1. A finite set CP ⊂ S1 is called
a precycle for d-map, iff CP = {c · di (mod 1)|i ∈ N ∪ {0}} for some c ∈ S1. So, a precycle is the
forward orbit of a rational point in S1. It can be written in terms of base-d expansion of its points
as follows:

CP = {(0.brbr+1...bn1b
′
1b
′
2....b

′
n2

)d|1 ≤ r ≤ n1} ∪ {(0.b′kb′k+1...bn2b
′
1....b

′
k−1)d|1 ≤ k ≤ n2}

where n1 is a fixed non-negative integer, n2 is a fixed positive integer and all br, b
′
k are fixed digits

in {0, 1, 2, ..., d− 1}.

Remark 6. Every precycle CP includes a cycle. Note that if n1 = 0, then CP itself is a cycle.

Here is an example of a precycle. Consider d = 2 and CP = {13 ,
2
3 ,

5
6}. CP can be written as

CP = {5

6
· di(mod 1)|i ∈ N ∪ {0}}

or

CP = {5

6
} ∪ {1

3
,
2

3
} = {(0.110)2} ∪ {(0.01)2, (0.10)2}

Remark 7. We can define degree, crossing, crossing number, digit portrait and partition for a
precycle simply by replacing C by CP in the respective definitions.
Note that if CP is a precycle which is not a cycle, then the map σ in the definition of partition
(Definition 8) is not a permutation. Under σ, one element of {1, 2, ..., n} has no preimages, one has
two preimages and all other elements have exactly one preimage.

Now by using the logic which proves Lemma 6, we can prove the following result:

Lemma 7. Let d,m, n ∈ N with 1 ≤ m ≤ d. Then the number of precycles CP for d-map satisfying
|CP | = n and deg(CP ) = m is at most O(nd−m+3mn−1).

10



Remark 8. The increase in the exponent of n is due to the small change in the nature of the map
σ in the definition of partition (Definition 8).

Now we find a suitable covering of Em,d and get an upper bound on its Hausdorff Dimension.

Theorem 4. Let m, d ∈ N with 1 < d and 1 ≤ m ≤ d. Then

dimH(Em,d) ≤
logm

log d

Proof. Fix a positive integer n > 1.

CP (n) = {CP |CP is a precycle for d-map, deg(CP ) ≤ m, |CP | ≤ n}
Lemma 7 implies that |CP | is at most O(nd−m+4mn).

Let C be a degree-m cycle for d-map. Let c be a point in C. There exists a degree-m map
f : S1 → S1 which agrees with d-map on C. Note that |(fn)′(c)| = dn. This means that there
exists a point x in O(d−n) neighborhood of c for which two of x, f(x), f2(x), ..., fn(x) coincide. So,
c is in O(d−n) neighborhood of an element in CP .

Each point of any degree-m cycle for d-map lies in O(d−n) neighborhood of an element in CP .
So, Em,d lies in O(d−n) neighborhood of CP which has at most O(nd−m+4mn) elements.

Let β = logm
log d + ε for some ε > 0.

lim
n→∞

(d−n)
β
nd−m+4mn = lim

n→∞
(d

logm
log d )−nd−nεnd−m+4mn

= lim
n→∞

d−nεnd−m+4

= 0

For any β > logm
log d , we can cover Em,d such that the summation of β powers of the lengths of the

intervals in the cover is as small as we like. So, dimH(Em,d) ≤ logm
log d .

�

4. Maps on the disk

Now that we have studied the boundary behaviour, we would like to study some properties of
the maps on hyperbolic space. As in paper [6] , we study the following functions:

Let d be a positive integer greater than 1. Let Bd be the space of maps f on the unit disk which
are of the form

f(z) =
d−1∏
r=1

z(
z − ar
1− arz

)

where |ar| < 1, ∀ 1 ≤ r ≤ d− 1. Note that if ar = 0, ∀ 1 ≤ r ≤ d− 1, we have a map on the disk
which takes z to zd. We denote this map by pd.

As mentioned in [6], for each map f ∈ Bd, there is a unique homeomorphism φf : S1 → S1 such
that -

(1) f(z) = φf
−1 ◦ pd ◦ φf (z), ∀ z ∈ S1

(2) φf varies continuously with f
(3) φpd is the identity map on S1.

Remark 9. Here S1 is the set of complex numbers z satisfying |z| = 1.
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In [6] , McMullen defined the following Length function:

Definition 10 (Length of a cycle). The length on f of a cycle C for pd is given by:

(8) L(C, f) = log |(f q)′(z)|
where q = |C| and z = φf

−1(c) for some c ∈ C.

Note that f(φf
−1(c)) = φf

−1 ◦ pd ◦ φf (φ−1(c)) = φf
−1(cd). In general,

f i(φf
−1(c)) = φf

−1(cd
i
), ∀ c ∈ S1

Now by applying chain rule to calculate (f q)′, we get that

(9) L(C, f) =
∑
c∈C

log |f ′(φf−1(c))|

The Length function is an interesting invariant of f , which suggests some properties of the cycles
of pd. For example:

Theorem 5 (McMullen). Let C be a cycle for pd. If L(C, f) < log 2, then C is a simple cycle, i.e.
deg(C) = 1.

There is a conjecture suggested by McMullen:

Conjecture 1. Let C be a degree-1 cycle for pd. Then, L(C, f) has no critical points.

Now we focus on the case d = 2. Since there is only one parameter a which determines f , we
write fa instead of f and φa instead of φf . We have

(10) fa(z) = z(
z − a
1− az

), ∀ z

and

(11) |f ′a(z)| = 1 +
1− |a|2

|z − a|2
, ∀ z ∈ S1

When we choose C with less than 3 elements, we can calculate φa
−1(c) for each c in C and compute

L(C, fa). We get the following result:

Proposition 2. Let C be a cycle for p2. If |C| < 3, then L(C, fa) has no critical points.

Proof. For detailed calculations, see Appendix A.
Case 1: C = {1}
We know that

fa(φa
−1(1)) = φa

−1(12) = φa
−1(1) and φa

−1(1) ∈ S1

This leads to

φa
−1(1) =

1 + a

1 + a
and

L(C, fa) = log |f ′(φf−1(1))| = log(
2 + a+ a

1− |a|2
)

Write a as x+ iy.

(12) L(x, y) = L(C, fx+iy) = log(
2 + 2x

1− x2 − y2
)

Now we compute partial derivatives of L w.r.t. x and y and observe that ∂L
∂x is 0 iff (1 +x) = ±y

and ∂L
∂y is 0 iff y = 0. Thus, both partial derivatives of L are zero iff a = −1 which is impossible

since |a| < 1. Thus, L(C, fa) does not have any critical points.
12



Case 2: C = {ω, ω2} where ω = e
2π
3
i

We know that

fa(φa
−1(ω)) = φa

−1(ω2)

and

fa(φa
−1(ω2)) = φa

−1(ω4) = φa
−1(ω)

This means that φa
−1(ω), φa

−1(ω2), φa
−1(1) and 0 satisfy the degree-4 equation:

fa(fa(z)) = z

By simplifying this equation and factoring out [z(z − φ−1a (1))], we obtain a quadratic equation
which has φa

−1(ω) and φa
−1(ω2) as its roots. From the coefficients of the quadratic, we get:

φa
−1(ω) + φa

−1(ω2) = a− 1 and φa
−1(ω)φa

−1(ω2) =
1− a
1− a

We use this to show that

L(C, fa) = log |f ′a(φa−1(ω))||f ′a(φa−1(ω2))| = log(4 + |a|2 − 2(a+ a)− (a− a)2

1− |a|2
)

Write a as x+ iy. Now we have:

(13) L(C, fa) = L(x, y) = log(4− 4x+ x2 + y2 +
y2

1− x2 − y2
)

Now we compute partial derivatives of L w.r.t. x and y. ∂L
∂y is 0 iff y = 0. Thus, ∂L∂x = ∂L

∂y = 0 iff

x = 2 and y = 0 which is impossible since |a| < 1. Thus, L(C, fa) does not have any critical points.
�

We are still studying cycles with more elements. Here are some difficulties that we need to
overcome. Let q ∈ N. Note that if C is a cycle and |C| divides q, then for any point c ∈ C, φ−1f (c)

satisfies the degree-dq equation

f q(z) = z

For example, for d = 2 and q = 3, f qa(z) = z has 8 roots two of which are 0 and φa−1(1). We can
reduce it to a degree-6 equation whose roots are preimages of two different cycles under φa. In this
case, we cannot apply the method used above to calculate L and check its critical points because
we first need to separate the roots in two groups - one for each cycle. For q > 3, the problem is even
harder since the roots of the corresponding equation may include preimages (under φa) of cycles of
higher degree.

Due to our calculations in the proof of Proposition 2 , we belive that in the case d = 2, L(C, fa)
is an algebraic function of a and a, and Conjecture 1 is true.
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Appendix A. Calculating L(C, fa)

Case 1:

L(C, fa) = log |f ′(φf−1(1))|

= log(1 +
1− |a|2

|(1+a1+a)− a|2
)

= log(1 +
|1 + a|2

1− |a|2
)

= log(
2 + a+ a

1− |a|2
)

L(x, y) = L(C, fa) = log(
2 + 2x

1− x2 − y2
)

∂L

∂x
= (

1− x2 − y2

2 + 2x
)(

2(1− x2 − y2) + (2 + 2x)(2x)

(1− x2 − y2)2
)

= 2(
1 + 2x+ x2 − y2

(2 + 2x)(1− x2 − y2)
)

∂L

∂y
= (

1− x2 − y2

2 + 2x
)(

(2 + 2x)(2y)

(1− x2 − y2)2
)

=
2y

1− x2 − y2

Case 2: φa
−1(ω), φa

−1(ω2), φa
−1(1) and 0 satisfy the degree-4 equation:

fa(fa(z)) = z

or

z(
z − a
1− az

)(
z( z−a1−az )− a
1− az( z−a1−az )

) = z

or

z(
z − a
1− az

)(
z2 − az − a+ aaz

1− az − az2 + aaz
) = z

So, φa
−1(ω), φa

−1(ω2) and φa
−1(1) satisfy the following cubic:

(z − a)(z2 + (aa− a)z − a) = (1− az)(1 + (aa− a)z − az2)
or

(1− a2)z3 + (aa− 2a+ a− a2 + aa2)z2 + (a2 − a2a− a+ 2a− aa)z + (a2 − 1) = 0

or

[(1 + a)z − (1 + a)] [(1− a)z2 + (1− a− a+ aa)z + (1− a)] = 0

We divide both sides by [(1 + a)z − (1 + a)] = (1 + a)(z − φ−1a (1)) to get the desired quadratic
equation.

Let φa−1(ω) = z1 and φa−1(ω2) = z2. We have

z1 + z2 = a− 1 and z1z2 =
1− a
1− a
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Now we can compute the modulus of the product of the derivatives of f at φa−1(ω) and φa−1(ω2).

|f ′a(φa−1ω)||f ′a(φa−1(ω2))|
= |f ′a(z1)||f ′a(z2)|

= (1 +
1− |a|2

|z1 − a|2
)(1 +

1− |a|2

|z2 − a|2
)

= 1 +
1− |a|2

|(z1 − a)(z2 − a)|2
(|z1 − a|2 + |z2 − a|2 + 1− |a|2)

= 1 +
1− |a|2

|1−a1−a + a(1− a) + a2|2
(1 + |a|2 − az1 − az1 + 1 + |a|2 − az2 − az2 + 1− |a|2)

= 1 +
|1− a|2

1− |a|2
(3 + |a|2 + a(1− a) + a(1− a))

= 1 +
|1− a|2

1− |a|2
(3 + a+ a− |a|2)

= 1 + |1− a|2 +
|1− a|2

1− |a|2
(2 + a+ a)

= 2 + |a|2 − a− a+
(1 + |a|2 − a− a)

1− |a|2
(2 + a+ a)

= 4 + |a|2 +
(2|a|2 − a− a)(2 + a+ a)

1− |a|2

= 4 + |a|2 +
4|a|2 − 2(a+ a)(1− |a|2)− (a+ a)2

1− |a|2

= 4 + |a|2 − 2(a+ a)− (a− a)2

1− |a|2

Now we take log of both sides and replce a by x+ iy.

L(x, y) = L(C, fa) = log(4− 4x+ x2 + y2 +
y2

1− x2 − y2
)

∂L

∂x
=

1

4− 4x+ x2 + y2 + y2

1−x2−y2
(−4 + 2x+

8xy2

(1− x2 − y2)2
)

∂L

∂y
=

1

4− 4x+ x2 + y2 + y2

1−x2−y2
(2y)(1 +

4y2

(1− x2 − y2)2
)
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