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Abstract

In this paper we show the existence of radial positive stationary solutions to the
energy critical nonlinear Schrödinger equation on H3 by reducing the problem to an
ODE. We also make an observation that Kenig-Merle’s variational argument in [2] can
work even without the existence of a positive stationary solution, based on this, we
sketch a possible strategy which may recover their result in [2] on H3.

1 Introduction

We are interested in the initial value problem for the energy critical focusing nonlinear
Schrödinger equation in three dimensional hyperbolic space

i∂tu+ ∆H3u = −u|u|4, u(0) = u0, (1.1)

where ∆H3 is the Laplacian in H3. In particular we would like to have conditions on the
initial data that guarantee the solution will exist for all time and converge to a solution of
the linear equation. The energy quantity on hyperbolic space is defined as

EH3(u) =
1

2

∫
H3

|∇u(x, t)|2dx− 1

6

∫
H3

|u(x, t)|6dx, (1.2)

and the analogous one on three dimensional Euclidean space

ER(u) =
1

2

∫
R3

|∇u(x, t)|2dx− 1

6

∫
R3

|u(x, t)|6dx. (1.3)
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Remark 1.1. The hyperbolic energy quantity is conserved for solutions to (1.1). If u0 ∈
C∞0 (H3) this follows from a standard application of the divergence theorem, and the general
case holds by a limiting argument.

We recall the definition of Ḣ1(R3) and H1(H3)as function spaces with norms defined
as

||∇u||L2(R3) = ||u||Ḣ1(R3)

||∇u||L2(H3) = ||u||H1(H3)

It is a standard result that
||u||L2(H3) ≤ ||u||H1(H3)

In [2] Kenig and Merle show that

Theorem 1.2. If u0 ∈ Ḣ1(R3) and u0 is radial and

ER(u0) < ER(W ),

||∇u||L2(R3) < ||∇W ||L2(R3),

where W is the unique positive radial solution to

−∆W = W |W |4,

and can be written explicitly as

W (x) =
1√

1 + |x|2
3

,

then the solution u(x, t) of the Cauchy problem{
i∂tu+ ∆u = −u|u|4

u(0, x) = u0(x)
,

is defined for all time and there exists u0,+, u0,− in Ḣ1(R3) such that

lim
t→∞
||u(t)− eit∆u0,+||Ḣ1(R3) = 0, lim

t→−∞
||u(t)− eit∆u0,−||Ḣ1(R3) = 0.

Ionescu, Pausader and Staffilani show in [1] an analogous result for the defocusing case
in H3.
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Theorem 1.3. If u0 ∈ H1(H3). Then the solution u of the Cauchy problem{
i∂tu+ ∆H3u = u|u|4

u(0, x) = u0(x)
,

is defined for all time and there exists u0,+, u0,− in H1(H3) such that

lim
t→∞
||u(t)− eit∆u0,+||H1(H3) = 0, lim

t→−∞
||u(t)− eit∆u0,−||H1(H3) = 0.

We would like to show the analogous result for the focusing case, that is:

Conjecture 1.4. Consider u0 ∈ H1(H3) and assume

EH3(u0) < ER(W ), (1.4)

||∇u0||L2(H3) < ||∇W ||L2(R3), (1.5)

where W is as defined in Theorem 1.2. Assume further that u0 is radial. Then the solution
u to (1.1) is defined for all time and there exists u0,+, u0,− in H1(H3) such that

lim
t→∞
||u(t)− eit∆u0,+||H1(H3) = 0, lim

t→−∞
||u(t)− eit∆u0,−||H1(H3) = 0.

In Kenig and Merle [2] there are two key steps to this proof, energy trapping [see
Theorem 4.5] and the usage of a concentration compactness method [see Proposition 4.7].
We focus on radial solutions, because part of the second step relies on the result from Kenig
and Merle [2].

Because of the prominence of the stationary solution in the Euclidean space one would
initially expect that the positive stationary solutions to (1.1) should be well understood.
However Mancini and Sandeep [3] showed that the gradient of such solutions do not have
a finite L2 norm. The stationary solutions are still of interest and we can gain a better
understanding of those which are radial by transforming the PDE to an ODE by using
polar coordinates for hyperbolic space. We obtain the ODE

d2

dr2
u(r) + 2 coth(r) ddru(r) + u(r)5 = 0

u(0) = A > 0

u′(0) = 0

, (1.6)

and we find

Theorem 1.5. Suppose u solves (1.6) with A < 21/3 then u(r) > 0 for r ≥ 0.

Remark 1.6. This shows that there exist positive stationary solutions to (1.1)

We are also able to use a numerical solving problem to find approximate solutions to
(1.6)
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Remark 1.7. The results of our simulation imply that for all A > 0 the solution to (1.6)
are positive. Furthermore, the simulation results imply that if u solves (1.6) then

|(2r)−1/4u(r)| ≤M (1.7)

for all r.

2 Preliminaries

2.1 Hyperbolic space

We consider the Minkowski space R4 with the standard Minkowski metric −(dx0)2 +
(dx1)2 + (dx2)2 + (dx3)2 and recall the bilinear form on R4 × R4

[x, y] = x0y0 − x1y1 − x2y2 − x3y3.

Hyperbolic space H3 is defined as

H3 = {x ∈ R4; [x, x] = 1 and x0 > 0}.

0 = (1, 0, 0, 0) denotes the origin of H3. The Minkowski metric of R4 induces a Riemanian
metric g on H3 with covariant derivative ∇ and induced measure which we denote by dx.

We let G denote the connected Lie group of 4 × 4 matrices that leave the form [·, ·]
invariant. For any h ∈ G the mapping Lh : H3 → H3, Lh(x) = h · x, defines an isometry of
H3. For any h ∈ G there are isometries

πh : L2(H3)→ L2(H3), πh(f)(x) = f(h−1 · x). (2.1)

We would also like be able to pass between functions defined on hyperbolic spaces and
functions defined on Euclidean spaces. For any h ∈ G there is a diffeomorphism

Ψh : R3 → H3, Ψh(v1, v2, v3) = h · (
√

1 + |v|, v1, v2, v3). (2.2)

We will denote the laplacian in three dimensional Hyperbolic space by ∆H3

We also recall the sharp Sobolev embedding theorem, as stated in [5] For any u ∈
H1(H3)

||∇u||L2(H3) ≤ K(3, 2)||u||L6(H3), (2.3)

where

K(n, 2) =

√
4

n(n− 2)w
2/n
n

,

where wn is the volume of the n− 1 sphere in R3. From [4] we have that in Rn

||∇u||L2(R3) ≤ K(3, 2)||u||L6(R3). (2.4)

So the sharp constants on the Sobolev embedding are the same for R3 and H3. We will
recall this in our discussion of variational estimates and our energy trapping argument.
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2.2 Nonlinear Schrödinger Basics

For any interval I ⊂ R and function u ∈ C(I,H3) we utilize the norm

||u||S(I) =

∫
I

∫
H3

|u(x, t)|10dxdt. (2.5)

Definition 2.1. We say that a solution u to the Nonlinear Schrödinger equation scatters
forward if there exists u0,+ such that

lim
t→∞
||u(t)− eit∆u0,+||H1(H3).

We say that a solution u scatters backwards if there exists u0,− such that

lim
t→−∞

||u(t)− eit∆u0,−||H1(H3).

If a solution scatters backwards and scatters forwards then we say that it scatters.

Remark 2.2. From Theorem 1.1 of [1] we have that if a solution is global and has finite
S(I) norm then u scatters.

We now cite the classical local well-posedness and small data results

Proposition 2.3. (Local well-posedness) Assume φ ∈ H1(H3). Then there is a unique
maximal solution (I, u) = (I(φ), u(φ)), 0 ∈ I, of the initial-value problem{

(i∂t + ∆H3)u = −u|u|4

u(0) = φ
, (2.6)

on H3 × I. In addition the energy defined in 1.1 is constant on I and

if I+ := I ∩ [0,∞) is bounded then ||u||S(I+) =∞, (2.7)

if I− := I ∩ (−∞, 0] is bounded then ||u||S(I−) =∞. (2.8)

Proposition 2.4. (Small data) Assume φ ∈ H1(H3), and ||φ||H1(H3) < δ some δ > 0 small
enough. Then the solution of {

(i∂t + ∆H3)u = −u|u|4

u(0) = φ
, (2.9)

is defined for all t and scatters.
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3 Stationary Solutions

Based on the proof of Kenig and Merle [2] we would expect that the stationary solution to
(1.1) to play a role in our proof. However as Mancini and Sandeep [3] showed there are no
positive stationary solutions with gradients with a bounded L2 norm. Although this is the
case it can still be interesting to explore stationary solutions and in this section we prove
that there exists positive stationary solutions. We proceed by transforming the equation
into an ordinary differential equation. We then define a monotone quantity for solutions of
the ODE and use a change of variables to write the ODE in a more workable form. We also
describe results from a numerical simulation that indicate that for any positive initial data,
solutions to the ODE are always positive and that the first order decay rate of solutions
at infinite is (2r)−1/4

Stationary solutions solve the elliptic PDE

−∆H3u = u|u|4. (3.1)

The Euclidean case is discussed by Tao in [6] and we mimic his technique. We can consider
Hyperbolic space under polar coordinates, (r, ξ) where r is the distance to 0, and ξ a
parameter representing the choice of direction of the geodesic in Sn−1, in which case we
can rewrite the laplacian as:

∆H3u =
d2

dr2
u+ 2 coth(r)

d

dr
u+ sinh(r)−2∆ξu,

where ∆ξ is the laplacian on the ordinary unit n− 2 sphere. We are interested in solutions
which are radially symmetric and positive and therefore arrive at the ODE

d2

dr2
u(r) + 2 coth(r)

d

dr
u(r) + u(r)5 = 0.

Thus we would like to show that there exists a positive solution to (1.6) or
d2

dr2
u(r) + 2 coth(r) ddru(r) + u(r)5 = 0

u(0) = A > 0

u′(0) = 0

,

If u is a solution to (1.6) we define an associated energy as

E(r) =
1

6
u(r)6 +

1

2

(
d

dr
u(r)

)2

. (3.2)

Differentiating and using (1.6) we obtain

d

dr
E(r) = −2 coth(r)

(
d

dr
u(r)

)2

, (3.3)
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therefore this energy is monotone decreasing and bounded.
We will also find it useful to make the change of variables v(r) = u(r) sinh(r), where u

solves (1.6). Then v satisfies the following equation
d2

dr2
v(r) = v(r)

(
1− v(r)4

sinh(r)4

)
v(0) = 0
d
drv(0) = u(0) = A > 0

. (3.4)

We note that in order to show u(r) > 0 for all r it is sufficient to show that v(r) > 0 for
r > 0. We compile some basic results in the following lemmas.

Lemma 3.1. Suppose u solves (1.6) and u > 0 (or u < 0) for all r > r̃ then there exists
r∗ such that u is monotone decreasing (increasing) for r > r∗.

Proof. Suppose u > 0 and suppose u is not monotone decreasing, that is for some r0 we
have d

dru(r0) = a > 0 and d
dru(r) ≤ 0 for all r < r0. Then for some r1 we have d

dru(r1) = 0.
We know u(r0) > u(r1) and so

E(r0) =
1

6
u(r0)6 +

1

2

(
d

dr
u(r0)

)2

>
1

6
u(r1)6 = E(r1),

but this contradicts the monotonicity of our energy quantity. If we do not have u > 0 for
all r then it must change sign at least once. So if u > 0, (< 0) for all r > r̃ then there
exists some r0 such that u(r0) = 0 and d

dru(r0) > 0, (< 0), and u > 0, (< 0) for all r > r0.

Since u > 0 (< 0) and d
dru ≥ 0 (≤ 0) we know by (1.6) that d2

dr2
u < 0 (> 0) and so for some

r1 we have d
dru(r1) = 0, and d

dru(r) < 0 (> 0) for r1 < r < r1 + ε, some ε > 0. We claim

that this r1 = r∗. Assume otherwise, so that d
dru(r2) > 0 (< 0) for some r2 > r1. Then

for some r3 < r2 we must have u(r3) < u(r2) (u(r3) > u(r2)) and u(r3) = 0. But then
E(r3) < E(r2), contradicting the monotonicity of our energy quantity.

Remark 3.2. In particular if u solves (1.6) and u > 0 for all r ≥ 0 then u is monotone
decreasing.

Lemma 3.3. Suppose u solves (1.6) then d
dru(r)→ 0 and u→ 0 as r →∞

Proof. We will consider three cases separately, u can have a finite number of sign changes,
it can have an infinite number of sign changes and tend towards zero, or it can have an
infinite number of sign changes and not tend towards zero.

If there are only finitely many sign changes then after some radius rx we know that
u(r) has the same sign. Then by applying lemma 3.1 we know that u must be monotone
after some time rx∗ and so we must have u → B as r → ∞, for some B ∈ R. Then we
can find a sequence rn such that d

dru(rn) → 0. Therefore E(rn) → B6/6 as n → ∞ and
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since energy is monotone this means that E(r)→ B6/6 as r →∞. Therefore we must have
d
dru(r)→ 0 as r →∞.

If B is not zero then we have that d2

dr2
u(r) is away from 0 uniformly by the equation, but

since d
dru→ 0 we can find a sequence of rn such that d2

dr2
u(rn)→ 0 which is a contradiction.

If u has an infinite number of sign changes and converges to zero then we can find a
sequence of d

dru(rn) → 0 as n → ∞. Then E(rn) → 0 as n → ∞ and since energy is

monotone E(r)→ 0 as n→ and so d
dru(r)→ 0 as r →∞.

If u has an infinite number of sign changes and does not tend to zero then we can find
a sequence rn such that u(rn) ≤ −B for some B > 0. Then we can find r∗n < rn such
that u(r∗n) = 0 and u does not attain any zeros between rn and r∗n. We can also find r∗∗n
such that u(r∗∗n ) = −B/2 and u(r) > −B/2 for r∗n > r > r∗∗n . Then we can obtain an
upper bound for the derivative between these points, since for all sn ∈ (r∗∗n , r

∗
n) we have

E(sn) ≤ E(r∗∗n ) and so

C =
d

dr
u(sn) ≤

√√√√2

(
1

2

(
d

dr
u(r∗∗n )

)2

− 1

6
u(sn)6

)
≤ d

dr
u(r∗∗n ),

and since d
dru(r∗∗n ) is uniformly bounded we have a lower bound for the distance between

r∗∗n and r∗n which is

|r∗n − r∗∗n | ≥
B

2C
.

We can also find a lower bound for d
dru(r) between the two points. We know that

E(sn) ≥ E(rn) and so

D =
d

dr
u(sn) ≥

√√√√2

(
1

2

(
d

dr
u(rn)

)2

+
1

6
B6

)
≥
√

3

3
B3.

Therefore we can produce a lower bound on the loss of energy on the interval between r∗∗n
and r∗n that is uniform in n. If we have infinitely many such intervals, then our energy
must eventually become negative, a contradiction, and so in fact we cannot have infinite
sign changes without u converging to 0.

Lemma 3.4. If u solves (1.1) then u can only change sign finitely many times.

Proof. Assume otherwise, so that u changes signs infinitely many times. Since u → 0
as r → ∞ we know that there exists an R such that for all r > R we have |u(r)| < 1.
Let us take r0 > R such that u(r0) < 0 and u′(r0) < 0, if no such r0 exists then u
cannot change signs an infinite number of times. If we let v(r) = u(r) sinh(r) we can see
that v(r0) < 0, v′(r0) < 0 and v′′(r0) < 0. Furthermore because |u(r)| < 1 we know that
1−v(r)4/ sinh(r)4 > 0 for all r > R and so the only way for v′′ to change signs is if v changes
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signs. Therefore so long as v is negative its first derivative will become more negative, and
if its first derivative is already negative v can never again become positive. But this is
exactly the situation at r0 and so v must remain negative. But since u(r) = v(r)/ sinh(r)
this means that u must always be negative, but this contradicts the assumption that u
changes signs infinitely many times.

Now that we have proven some basic and useful results we will proceed to demonstrate
the existence of positive solutions to the ODE.

Lemma 3.5. Suppose v solves (3.4) and v has a zero at time r1 and v > 0 for all 0 < r <

r1, then there exists r0 < r1 such that d2

dr2
v(r0) = 0, v(r0) 6= 0 and d

drv(r0) < 0

Proof. Since v(r1) = 0 and v is positive for smaller r we know that d
drv(r1) < 0. We can

find a r2 < r1 such that 1 > v(r2) > 0, ddrv(r2) < 0, d
2

dr2
v(r2) > 0. We can also find a

r3 < r2 such that d2

dr2
v(r3) < 0, ddrv(r3) < 0. Thus there exists some r0 ∈ (r3, r2) such that

d2

dr2
v(r0) = 0 and d

drv(r0) < 0 and v(r0) 6= 0.

Proposition 3.6. Suppose v solves (3.4) with A < 21/3 then v(r) > 0 for r > 0.

Proof. Assume otherwise, so that for some r1, v(r1) = 0 and for all 0 < r < r1 we

have v(r) > 0. Then by the above lemma there exists r0 < r1 such that d2

dr2
v(r0) = 0

and d
drv(r0) < 0. Therefore u(r0) = 1 and since d

drv(r) = u(r) cosh(r) + d
dru(r) sinh(r)

we have d
dru(r0) < − coth(r0). Thus E(r0) = u(r0)6/6 + ( ddru(r0))2/2 > 2/3. However

E(0) < (21/3)6/6 = 2/3, which contradicts the monotonicity of energy.

Remark 3.7. We can actually improve our bound on A from 21/3 to 21/3 + ε. A simple
method is to find a lower bound for the energy loss that can occur between r = 0 and r0,
where u(r0) = 1.

Suppose A > 1 and v has its first zero at r1, then by Lemma 3.4, there exists r0 < r1

such that v(r0) 6= 0, d
2

dr2
v(r0) = 0, ddrv(r0) < 0. Therefore we have u(r0) = 1, ddru(r0) < −1.

Since A > 1 and u′(0) = 0 there exists s1 such that d
dru(s1) = −1 and d

dru(r) > −1 for all
r < s1. Furthermore since u is monotone decreasing while positive we have that u(s1) > 1.
We can similarly obtain s2 < s1 such that d

dru(s2) = −1/2 and d
dru(r) < −1/2 for all

s2 < t < s1. Once again by the monotonicity of u we know u(s2) > u(s1).
We know E(s2) > E(s1) and so u(s2)6−u(s1)6 > 2.25 and u(s2)6−u(s1)6 = 6(u(s2)−

u(s1)) ∗ u(ξ) some ξ ∈ (s2, s1) so

u(s2)− u(s1) > 2.25/(6A).

We also know that |u′(r)| < 1 on (s2, s1) and so

s1 − s2 > 2.25/(6A).
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Since d
dru(r) < −1/2 on (s2, s1), we know d

drE(r) = −2 coth(r)| ddru(r)|2 > −1/2. There-
fore

E(s1)− E(0) =

∫ s1

0

d

dr
E(r)dr <

∫ s1

s2

d

dr
E(r)dr < (s1 − s2)(−1/2) < −2.25/(12A).

It is clear that for A < 1.3 we must have E(s1) < 2/3, but

E(s1) = u(s1)6/6 + u′(s1)2/2 > 1/6 + 1/2 = 2/3.

Therefore we can improve our bound from 21/3 = 1.25... to 1.3

3.1 Simulation Results

Using a taylor expansion to approximate the solution to the ODE near zero allows us to use
numerical methods to obtain approximate solutions to the ODE. This can give us intuition
for the asymptotic behavior of solutions to the equation as well as the behavior of solutions
for various initial data.

Because our ODE is of second order we can expect to find a relationship between the
first three coefficients of the Taylor series. Furthermore because our solution corresponds
to a radial equation in higher dimensions we know that it must be even and so do not need
coefficients for odd powers of x. After plugging the function f(r) = B1 +B2r

2 +B3r
4 into

(1.6), and ignoring terms of low order we find that

B2 = −B5
1/6,

and
B3 = B9

1/24.

Now using this Taylor series to approximate the value of a solution to the ODE near zero
we are able to numerically solve the ODE from a point near zero to large values of r. Now
we summarize our simulation results, which can be found in Appendix B.

Simulation Result 3.8. Suppose u solves (1.6) with A > 0. Then u > 0 for all r

Simulation Result 3.9. Suppose u solves (1.6) with A > 0. Then for r > 1 we have
.5 < u(r)(2r)−1/4 ≤ 2

Remark 3.10. If State 3.9 can be shown to be true rigorously then it gives an alternate
proof of Mancini and Sandeep’s result in [3]. This result is also consistent with the method
of dominant balance. That is if we approximate u by (2r)−1/4 plus some error term of
higher order and plug it into (1.6) we obtain

d2

dr2
u(r) + 2 coth(r)

d

dr
u(r) + u(r)5 =

5

4
(2r)−9/4 − coth(r)(2r)−5/4 + (2r)−5/4 + o(tα),

where α < −5
4 Since coth(r) is approximately 1 for large r, the two terms of order −5

4
cancel and we are left with terms of lower order which we can ignore.
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4 Nonlinear Schrödinger Equation

In this section we consider radial solutions to the initial value problem{
i∂tu+ ∆H3u = u|u|4

u(x, 0) = u0(x)
. (4.1)

We would like to parallel the proof of the scattering result from [2]. That is we would
like to show

Claim 4.1. Suppose Conjecture 1.4 is not true. Then there exists Ecrit such that for
each E > Ecrit there exists u0(x) ∈ H1(H3) with ||∇u0(x)||L2(H3) < ||∇W ||L2(R3) and
EH3(u0) < E for which the corresponding solution to (1.1) does not scatter. Further-
more we will show there exists a ucrit and an interval I∗ such that ||∇ucrit(x)||L2(H3) <
||∇W ||L2(R3), EH3(ucrit) = Ecrit and ||ucrit||S(I∗) =∞, where || · ||S(I∗) is the norm defined
in (4.14).

At first glance it may be peculiar that the stationary solution in Euclidean space is in our
result for hyperbolic space. However after scaling any solution to the nonlinear Schrödinger
equation on Euclidean space can be made an approximate solution on hyperbolic space and
so we would not expect to be able to get a better constant than those given for Euclidean
space by Kenig and Merle in [2]. It is because the sharp Sobolev constants are the same in
hyperbolic and Euclidean space that we expect this to work. We know a key component
in their result is the variational estimate

Lemma 4.2. Let W be as in Theorem 1.2. For some u ∈ Ḣ1(R3), assume

||∇u||2L2(R3) < ||∇W ||
2
L2(R3).

Assume moreover that ER(u) ≤ E(W )− δ where δ > 0. Then, there exists δ̄ = δ̄(δ0) such
that

||∇u||2L2(R) < ||∇W ||
2
L2(R3) − δ̄,

and ∫
R
|∇u|2 − |u|6 ≥ δ̄

∫
|∇u|2.

We would like to show an analogue of this in hyperbolic space, but there is no stationary
solution to the Schrödinger equation in hyperbolic space with a bounded H1 norm. So we
would not expect tone able to replicate this result in hyperbolic space. However the proof
in [2] does not rely on the existence of a ground state element in hyperbolic space and in
fact only utilizes the sharp constant from Sobolev embedding and so can be adapted to
Hyperbolic space. We can show
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Lemma 4.3. Let W be as in Theorem 1.2 Assume that

||∇u||L2(H3) < ||∇W ||L2(R3).

Assume moreover that
EH3(u) ≤ ER(W )− δ,

where δ > 0. Then, there exists δ̄ = δ̄(δ0) such that

||∇u||L2(H3) < ||∇W ||L2(R3) − δ̄, (4.2)

and ∫
H3

|∇u|2 − |u|6 ≥ δ̄
∫
H3

|∇u|2. (4.3)

Because the proof of this Lemma is identical to the proof of Lemma 3.4 in [2] we present
it in appendix A.

Remark 4.4. We note that a more general statement is true, based on the proof presented.
Let M be a noncompact manifold and C be some constant. Assume that

||u||L6(M) ≤ C||∇u||L2(M), (4.4)

(the inequality need not be sharp) and

||∇u||2L2(M) < C−3.

Assume moreover that

1

2

∫
M
|∇u|2 − 1

6

∫
M
|u|6 ≤ 1

3
C−3 − δ,

where δ > 0. Then, there exists δ̄ = δ̄(δ0) such that

||∇u||2L2(M) < C−3 − δ̄, (4.5)

and ∫
M
|∇u|2 − |u|6 ≥ δ̄

∫
M
|∇u|2. (4.6)

Once a variational estimate such as the above is shown we can prove an energy trapping
result by a standard continuity argument as done in [2]

Theorem 4.5. (Energy trapping) Let u be a solution of (1.1) with u(0) = u0 such that

||∇u0||L2(H3) < ||∇W ||L2(R3) and EH3(u0) < ER(W )− δ (4.7)
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Let I 3 0 be the maximal interval of existence. Let δ̄ be as in Lemma 4.3. Then for each
t ∈ I we have ∫

H3

|∇u(t)|2 ≤ ||∇W ||L2(R3) − δ̄, (4.8)∫
H3

|∇u(t)|2 − |u(t)|6 ≥ δ̄
∫
H3

|∇u(t)|2. (4.9)

Proof. By Remark 1.1 we have that EH3(u(t)) = EH3(u0) for all t ∈ I and the theorem
follows directly from Lemma 4.3 and a continuity argument.

Now that we have this energy trapping result we would like to parallel the method of
proof and result from [2]

Remark 4.6. Consider u0 ∈ H1(H3) and assume EH3(u0) < ER(W ), ||∇u0||L2(H3) <
||∇W ||L2(R3) and that u0 is radial. Then the solution u to (1.1) is defined for all time and
||u||S(R) <∞.

We consider the set

A = {E ≤ ER(W );∀u0(x) if ||∇u0(x)||L2(H3) ≤ ||∇W ||L2(R3) and EH3(u0(x)) < E then ||u||S(I) <∞}.
(4.10)

If we can show that supA = ER(W ) then our proof is complete. Therefore assume oth-
erwise. That is there exists some Ecrit < ER(W ) such that for each E > Ecrit there
exists a u0(x) with ||∇u0(x)||L2(H3) ≤ ||∇W ||L2(R3) and EH3(u0(x)) ≤ E for which the
corresponding solution to (1.1) does not scatter.

We will produce a ucrit(x) such that ||∇ucrit(x)||L2(H3) ≤ ||∇W ||L2(R3), E(ucrit) = Ecrit
and the corresponding solution to (1.1) does not scatter. To do so we will find a sequence
of functions whose energy converges to Ecrit and which strongly converges to a limit in
H1(H3).

In the below subsection using the profile decomposition described in [1] we will show
that for a sequence {uk}k with ||∇uk||L2(H3) ≤ ||∇W ||L2(R3) and E(uk) ≤ Ecrit+ 1

k we have
that uk → v strongly, for some v ∈ H1(H3).

Based on the proof of Kenig and Merle we expect that the existence of such v will
produce the desired contradiction.

4.1 Profile Decomposition

We now utilize the method for profile decomposition in hyperbolic space from Ionescu,
Pausader and Staffilani in [1] to show the existence of the desired critical element. The
following proposition is the focusing version of the proposition in [1].
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Proposition 4.7. (Profile Decomposition [1]) Assume that (fk)k≥1 is a bounded sequence
if H1(H3). Then there are sequences of pairs (φµ,Oµ) ∈ Ḣ1(R3) × Fe and (ψν , Õν) ∈
H1(H3)×Fh, µ, ν = 1, 2, . . . such that, up to a subsequence, for any J ≥ 1

fk =
∑

1≤µ≤J
φ̃µOµk

+
∑

1≤ν≤J
ψ̃νÕνk

+ rJk , (4.11)

See Ionescu, Pausader and Staffilani, section 5 in [1] for the defintions of φ̃µOµk
and ψ̃νÕνk

.

lim
J→∞

lim sup
k→∞

(
sup

N≥1,t∈R,x∈H3

N−1/2|PNeit∆H3 rJk |(x)

)
= 0. (4.12)

Moreover the frames {Oµ}µ≥1 and {Õν}ν≥1 are pairwise orthogonal. Finally the decompo-
sition is asymptotical orthogonal in the sense that

lim
J→∞

lim sup
k→∞

∣∣∣∣∣∣E(fk)−
∑

1≤µ≤J
E(φ̃µOµk

)−
∑

1≤ν≤J
E(ψ̃νÕνk

)− E(rJk )

∣∣∣∣∣∣ = 0, (4.13)

where E is the energy defined in (1.2).

This is an analogue of Proposition 3.4 in [1], but when dealing with the euclidean profile
we utilize the result from [2]. Furthermore because we are interested in radial solutions we
do not have space translation elements in the profiles.

Proposition 4.8. Let uk ∈ C((−Tk, T k) : H1(H3)), k = 1, 2, . . . be a sequence of radial
nonlinear solutions of the equation

defined on open intervals (−Tk, T k) such that EH3(uk) → Ecrit. Let tk ∈ (−Tk, T k) be a
sequence of times with

lim
k→∞

||uk||S(−Tk,tk) = lim
k→∞

||uk||S(tk,Tk) =∞. (4.14)

Then there exists v ∈ H1(H3) such that, after replacing uk with a suitable subsequence we
have, uk(tk, x)→ v(x) ∈ H1 strongly.

Proof. Using the time translation symmetry, we mary assume that tk = 0 for all k ≥ 1.
We apply Proposition 4.7 to the sequence (uk(0))k which is bounded in H1 and we get
sequences of pairs (φµ,Oµ) ∈ Ḣ1(R3) × Fe and (ψν , Õν) ∈ H1(H3) × Fh, µ, ν = 1, 2, . . .
such that the conclusion of Proposition 4.7 holds. By Lemma 5.4 (i) of [1] we may assume
that for all µ, either tµk = 0 for all k or (Nµ

k )2|tµk | → ∞ and similarly, for all ν, either tνk or
|tk|ν →∞. There are four possible cases for the distributions of profiles
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Case I: all profiles are trivial, φµ = 0, ψν = 0 for all µ, ν.
Case IIa: There is only one Euclidean profile
Case IIb: There is only one hyperbolic profile
Case III: There are two or more profiles of any variety
We would like to show that all of the cases other than case IIb produce contradictions

and that case IIb gives us the desired result. The proof laid out for cases I, IIb, and III in
[1] can be repeated for the focusing case because their arguments rely on characteristics of
the linear solution and small data results that hold for both the focusing and defocusing
cases. In order to show that case IIa leads to a contradiction we can apply the primary
result of Kenig and Merle to find that any Euclidean profile must have a bounded S(I)
norm contradicting (4.14). This step in particular is why we have restricted ourselves to
the radial case.

Now that we have desired proposition we are able to produce a critical element v ∈
H1(H3) with some maximal interval of existence I∗ such that

EH3(v) = Ecrit ||v||S(I∗) =∞.

The next step is to show that v(t, ·), t ∈ I∗ forms a pre-compact family, that is to say
for any sequence v(tk, ·) there exists a subsequence which is strongly convergent. To show
this we use profile decomposition on the sequence v(tk, ·) and repeat Proposition 4.8. This
property implies that I∗ must be the whole real line. The final step is to show the such
a v cannot exist. Namely, given such a v we can define functions φ(r) = |r|2 and zR(t) =∫
|v(x, t)|2R2φ( rR)dx. We expect to be able to find an upper bound for |z′R(t)| and would

like to produce a lower bound for z′′R(t). In computing a lower bound for z′′R(t) it is
necessary to make use of Hyperbolic geometry. We expect that this part would be specific
to Hyperbolic space as the analogous step in [2] uses a localized version of the Virial identity
on R3 and so we expect a similar level of work specific to the geometry of H3 would be
necessary to complete the proof.
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5 Appendix A(Proof of Lemma 4.3)

Proof. We present the proof of Lemma 3.4 in [2]. Let M be a non-compact manifold and let
C := ||∇W ||L2(R). From the proof in [2] we know that 1

3 ||∇W ||L2(R3) = ER(W ) Consider

f(y) =
1

2
y − C−3

6
y3,
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and let ȳ = ||∇u||2L2(M). Then

f(ȳ) =
1

2
||∇u||2L2(M) −

C−3

6
||∇u||6L2(M) ≤

1

2
||∇u||2L2(M) −

1

6

∫
M
u6dµ <

1

3
C−3 − δ.

We note that f(0) = 0 and f ′(y) = 1
2 −

1
2C

6y2 so f ′(y) = 0 if and only if y = C−3 and for
smaller y is positive. We know 0 < ȳ < C−3 and

f(C−3) =
1

2
C−3 − C6

6C9
= C−3(

1

2
− 1

6
) =

1

3
C−3.

Since f is strictly increasing between 0 and C−3 we have ȳ ≤ C−3 − δ̄. This shows (4.5).
Now to show (4.6) we consider the function

g(y) = y − C6y3.

Because of (2.3) we have that∫
M
|∇u|2 − |u|6 ≥

∫
M
|∇u|2 − C6

(∫
M
|∇u|2

)3

= g(ȳ).

Note that g(y) = 0 if and only if y = 0 or y = C−3 and that g′(0) = 1 and g′(C−3) = −2.
We then have, for 0 < y < C−3, g(y) ≥ Dmin{y, (C−3−y)}, and so, since 0 ≤ ȳ < C−3− δ̄
by (4.5) we have (4.6).

6 Appendix B (Simulation Code and Results)

We compile the Mathematica code used and graphs produced in this section. Each of the
three graphs illustrates both the asymptotic behavior of solutions and that solutions are
positive up to large values for r.
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