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Abstract

This note records an attempt to prove the bilinear Strichartz es-
timate on hyperbolic space. The main difficulty is the lack of a con-
volution formula for the Fourier transform of a product of functions.
We attempt to develop physical-space methods on Euclidean space to
prove the Strichartz estimate, with the hope that such methods can
also be effective on hyperbolic space.

In this spur project, we studied the linear Schrödinger equation given in R2

by

i∂tu+ ∆u = 0, (1)

u(0, x) = u0. (2)

In particular, we would like to develop physical-space methods to under-
stand the dispersive properties of solutions. The hope is that such methods
might be more easily extended to prove results on hyperbolic space H2, where
Fourier analysis becomes more difficult. The prototype of dispersive estimate
that we will consider is the L4

t,x Strichartz estimate

Proposition 1. Let u ∈ L2(R2). Then

‖eit∆ u‖L4
t,x

. ‖u‖L2
x
. (3)
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This inequality follows from interpolation between the dispersive estimate
‖eit∆ u‖L∞ ≤ |t|−1‖u‖L1 and the conservation of mass ‖eit∆ u‖L2 = ‖u‖L2 ,
along with a classical TT ∗ argument. The main ingredient needed to extend
the result to hyperbolic space H2 is the dispersive estimate. This disper-
sive estimate was proved by Ionescu and Staffilani [8], and independently by
Anker and Pierfelice [1]. In addition, a weighted version of the Strichartz
estimates is known in the radial case [2]. These results have been used to
prove global existence for problems with critical nonlinearities on Hd [2, 7].

A refined version of the L4
t,x Strichartz estimate was introduced by Bour-

gain [3]

Proposition 2. For functions u, v ∈ L2(R2), we have

‖(eit∆PNu)(eit∆PMv)‖L2
t,x

.

(
M

N

)1/2

‖u‖L2‖v‖L2 . (4)

Here PN and PM stand for Littlewood-Paley projections, defined in Sec-
tion 1. We would like to prove a version of this estimate in hyperboic space.

However, the proofs of Proposition 2 in [3] and [4] rely on Fourier analysis,
in particular on the formula

f̂ g(ξ) = f̂ ∗ ĝ(ξ),

which is not true on H2. We should mention that there is an alternative proof
discovered by Tao [10] which relies on a one-dimensional local smoothing
estimate and the tensor-product structure of Rn. However, it is unclear to
me how this might extend to hyperbolic space.

To our knowledge, the most robust result available for the bilinear Strichartz
estimate in non-flat situations is due to Hani [5], who showed that for closed
manifolds a short-time inequality is available. This is, for generic closed
manifolds, a sharp result. It enabled Hani to prove a global existence result
for the cubic nonlinear Schrödinger equation on closed manifolds [6]. Under-
standing these methods and how they could extend to a result on hyperbolic
space is the topic of a future investigation.

After introducing some basic notation in Section 1, we discuss some basic
dispersive properties of solutions to the Schrödinger equation in Section 2.
Then, we dicuss a naive strategy for proving the bilinear estimate (4) in
Section 3. It is found that this does not strongly exploit cancellations that
occur, so in Section 4, we explore some ideas that might have a better chance
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of capturing cancellation. Also, we should make the comment that although
the ultimate goal of this project is to understand dispersion in hyperbolic
space, this write-up deals only with Euclidean space. This simplification
does not take away any of the difficulty of the problem, so long as we restrict
ourselves to geometric arguments.

1 Notation and Preliminaries

First we describe some notation used to discuss the Schrodinger equation.
Since the equation (1) is linear and translation invariant, its evolution oper-
ator eit∆ can be given by the Fourier multiplier:

êit∆u = e−it|ξ|
2

û(ξ).

From this representation, and Parseval’s theorem, it is evident that eit∆ is
unitary. In our computations, we use the convolution formula for eit∆

eit∆ u(x) =

∫
t−1ei|x−y|

2/4tu(y) dy.

From this formula the dispersive estimate immediately follows

‖eit∆ u‖L∞ ≤ |t|−1‖u‖L1 .

This fact, and the unitarity mentioned above, are the key ingredients to the
Strichartz estimate (3), which controls the spacetime norm

‖eit∆ u‖L4
t,x

:=

(∫
R

∫
R2

|eit∆ u|4(x) dx dt

)1/4

.

Now we explain the notation we use to provide heuristic arguments. First,
we shall need a notion of localization in frequency. For f ∈ L2(R2), let PNf
denote a smooth Littlewood-Paley projection of f onto frequencies roughly.
That is, suppose mN(ξ) ∈ C∞c (R2) with support in {ξ;N/2 < |ξ| < 2N}.
Then we define PNf according to the multiplier

P̂Nf(ξ) = mN(ξ)f̂(ξ).

For our purposes the most relevant properties of PN are its continuity on Lp

for 1 ≤ p ≤ ∞
‖PNf‖Lp(R2) ≤ ‖f‖Lp(R2)
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and the Bernstein inequality for q > p

‖PNf‖Lq(R2) ≤ N2(1/p−1/q)‖PNf‖Lp(R2).

In addition to localizing in frequency space, we will be discussing localiza-
tions in physical space. To this end, let Br(x) ⊂ R2 denote the ball centered
at x of radius r. We write Br for Br(0).

Finally, we introduce some asymptotic notation. The notation A . B
means that A ≤ CB for some universal constant C. If A . B and B . A,
we write A ∼ B. This is in contrast with the notation A ≈ B, which is used
here in a nonrigorous fashion to state that A and B are morally the same.

2 General properties of Schrödinger Evolu-

tion

Before we can understand how solutions of different frequencies interact with
each other, we must first come to terms with how frequency localized func-
tions evlove. To this end, let u0 ∈ L2(R2) have frequency support in |ξ| ∼ N ,
and be concentrated in a ball of radius roughly N−1, and normalized so that
‖u0‖L2 = 1. Then

eit∆ u0(x) =

∫
|ξ|∼N

ei(x·ξ−t|ξ|
2

û(ξ) dξ.

Notice that ∇ξ(x · ξ − t|ξ|2) = 0 implies x = 2ξ. Thus, unless |x| ∼ 2Nt,
the phase oscillates rapidly and the contribution to |eit∆ u(x)| is negligible
(û is smooth because u is localized in physical space). This calculation, in
combination with the fact that eit∆ preserves mass, suggests that |eit∆ u| can
be modeled by

|eit∆ u(x)| ≈

{
(N−1 +Nt)−1 |x| ∼ N |t|
0 otherwise.

Indeed, the method of stationary phase can make this rigorous and provide
the estimate (see [9])

Proposition 3. For any m ≥ 0,

|(PNeit∆ )(x)| .m

{
|t|−1 |x| ∼ N |t| ≥ N−1

N2

〈N2t〉m〈N |x|〉m , otherwise.
(5)

4



Figure 1: A diagram of the fundamental solution t−1ei|x−y|
2/4t. The circles are

level sets of the phase. A solution localized in frequency, and concentrated
near the origin, would expand on the annulus |x| ∼ 2Nt (shaded), where the
distance between level sets (and thus the wavelength) is approximately N−1.

Here 〈A〉 is defined as (1 + A2)1/2. A pictorial representation of this is
provided in Figure 1. This estimate is the main ingredient of the approach
outlined in Section 3, and we will find it is insufficient. This, it seems we
need a more detailed understanding of the way different frequencies behave.
Let us return to the example of an initial data concentrated at the origin.
Using the fundamental solution, we can write

eit∆ u0(x) =

∫
y≤1/N

t−1ei|x−y|
2/4tu0(y) dy.

Observe that
|x− y|2 = |x|2 + |y|2 − 2x · y.

If we ignore the |y|2 contribution (since |y| ≤ 1/N), this phase function is
linear in y. Thus we can write

eit∆ u0(x) ≈ t−1eix·x/4tû0(x/2t),

so that near x, eit∆ u(x) looks like a plane wave with frequency x/4t and
amplitude t−1û(x/2t). This estimate can be made precise [9]

Proposition 4. As |t| → ∞, for any ψ ∈ L2(R2),

‖eit∆ ψ(x)− t−1ei|x|
2/4tψ̂(x/2t)‖L2

x
→ 0.
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Figure 2: On a small square, the fundamental solution t−1ei|x−y|
2/4t (whose

level sets are represented by the cocentric rings) looks like a plane wave. This
illustrates how different frequencies travel at different velocities, a statement
made precise in Proposition 4.

Figure 2 illustrates this computation. A strategy that uses this property
of the Schrödinger evolution is described in Section 4.

3 Concentrated initial data and a naive ap-

proach

We are now prepared to understand the exponent of M/N in (4). Let u ∈
L2(R2) be localized at frequency roughly N , and concentrated in a ball of
radius roughly N−1, with ‖u‖L2 = 1. Also let v ∈ L2(R2) be localized at
frequency M , near the origin in a ball of radius M−1. Because of the kernel
estimate (5), we write

|eit∆ u(x)| ≈ N−1|t|−1χN(t, x) and|eit∆ v(x)| ≈M−1|t|−1χM(t, x),

where χN(t, x) (resp. χM(t, x)) is a smooth cutoff for the annulus {|x| ∼
N−1 +N |t|} (resp. {|x| ∼M−1 +M |t|}). We use this heuristic to estimate∫

R

∫
R2

|eit∆ u|2|eit∆ v|2 dx dt.

For t < (MN)−1, the supports overlap on {|x| ∼ N−1 +N |t|}, so∫
|t|≤(MN)−1

∫
R2

|eit∆ u|2|eit∆ v|2 dx dt .
∫
|t|≤(MN)−1

M2 dt .
M

N
.
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Taking the square roots of both sides we can see that the exponent matches
(4). For larger t, the annuli have separate supports, and the contribution is
negligible.

While this calculation can be made rigorous using the kernel estimate (5),
a more simple argument can be made if we allow for logarithmic losses.

Lemma 1. Let u, v ∈ L2(R2) have concentrated supports, in the sense that
| suppu| . N−2, and | supp v| .M−2. Then

‖(eit∆ PNu)(eit∆ PMv)‖L2
t,x

.

(
M

N

)1/2

log(M/N)‖u‖L2‖v‖L2 .

Proof. By conservation of mass, Bernstein’s inequality, Hölder’s inequality,
and a standard dispersive estimate:

‖eit∆ PNu‖L2
x
. ‖u‖L2

x
(6)

‖eit∆ PNu‖L∞x . N‖u‖L2
x

(7)

‖eit∆ PNu‖L∞x . |t|−1‖PNu‖L1 . |t|−1‖u‖L1 . |t|−1N−1‖u‖L2
x
. (8)

Analogous estimates hold for eit∆ v. To simplify the clutter suppose ‖u‖L2 =
‖v‖L2 = 1. We wish to estimate the left-hand side:∫
R

∫
R2

|eit∆ PNu|2|eit∆ PMu|2 dx dt =

(∫ N−2

0

+

∫ M−2

N−2

+

∫ ∞
M−2

)∫
R2

|eit∆ PNu|2|eit∆ PNv|2 dx dt

= I1 + I2 + I3.

To estimate I1, notice ‖eit∆ u‖2
L4 . N , and ‖eit∆ v‖2

L4 . M by interpola-
tion of (6) and (7). Now apply Hölder’s inequality to obtain

I1 .
∫ N−2

0

NM dt .
M

N
.

To estimate I2, use the same bound for ‖eit∆ v‖2
L4 , but use the dispersive

estimate (8) to obtain ‖eit∆ u‖2
L4 . t−1N−1. Then

I2 .
∫ M−2

N−2

M(Nt)−1 dt .
M

N
log(N/M).

Finally, for I3, use ‖eit∆ v‖2
L4 . t−1M−1. Again calculate

I3 .
∫ ∞
M−2

(MN)−1t−2 dt .
M

N
.

The claim follows upon taking square roots.
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The advantage of this argument is that it is more easily extended to
the setting of hyperbolic space (with a modified notion of the operator PN ,
see for example [7]). The reason is we only use basic properties of the
Littlewood-Paley projection operator and kernel estimates for eit∆ , which
are well-known.

Now we might hope that, by splitting an initial condition u into small
pieces, we can control the interaction between the pieces in a way that sums.
Indeed, suppose we took a partition of unity {χi} where each χi has support
in a box of side length N−1, and we write

PNu =
∑
i

ui ui = PNχiu.

Then we might try to prove the L4
t,x Strichartz estimate in the following way:∫

R

∫
R2

|eit∆ PNu|4 dx dt =
∑
ijkl

∫
R

∫
R2

(eit∆ ui)(e
it∆ uj)(eit∆ uk)(eit∆ ul) dx dt

≤
∑
ijkl

∫
R

∫
R2

|(eit∆ ui)(eit∆ uj)(eit∆ uk)(eit∆ ul)| dx dt.

The idea is that, by carefully understanding the support properties of each
piece, it would be possible to significantly beat Hölder’s inequality. This
strategy is illustrated in Figure 3. However we can show that this last step
of taking the absolute values is already wrong

Lemma 2. Suppose u ∈ L2(R2) has support in BR and can be written as

u = N−1R−1

N2R2∑
i=1

ui,

where ‖ui‖L2 = 1 is concentrated in B1/N(xi), and B1/N(xi) is disjoint from
B1/N(xj) for any i 6= j. Then∑

ijkl

∫
R

∫
R2

|(eit∆ ui)(eit∆ uj)(eit∆ uk)(eit∆ ul)| dx dt & R3N3.

Proof. The first step is a simplification. Define the convolution kernel

KN,t =

{
N2χ|y|≤1/N |t| ≤ N−2

|t|−1χ|y|∼Nt |t| ≥ N−2.
(9)
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Figure 3: This figure shows the interaction between four localized pieces
(represented by squares) after some time. The data originally in each square
has expanded to the shaded annulus surrounding it. The four annuli intersect
to form a complex geometric shape. One might hope that by estimating the
area of this shape, it could be possible to prove the L4 Strichartz estimate.

By the estimate (5), for |t| ≥ N−2,

|eit∆ uj(x)| & (KN,t ∗ |uj|)(x).

Thus it remains to show that∫
|t|≥N−2

∫
R2

|KN,t ∗ |u||4 dx dt & R3N3.

Indeed we can restrict attention to |t| ≥ R/N . In this case, KN,t ∗ |u| has
height |t|−1R on |x| ∼ Nt. Then∫ ∞
R/N

∫
R2

|KN,t∗|u||4 dx dt ∼
∫ ∞
R/N

∫
|x|∼Nt

|t|−4R4 dx dt ∼
∫ ∞
R/N

R4|t|−2N2 ∼ R3N3,

4 A new approach and final thoughts

As discussed in the proof of Lemma 2, the strategy of dividing initial data
into small pieces and estimating their interactions is similar to applying the
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estimate
|eit∆PNu(x)| ≤ |eit∆PN | ∗ |u(x)|. (10)

The major problem with this approach is that the kernel |eit∆PN | is not
uniformly in L1, since its L1 norm grows as N2|t|. As we observed earlier,
this is not a problem for concentrated initial data, but the problem is severe
for diffuse initial data.

A cheap way to try to get around this problem is to simply wait for a
solution u ∈ L2(R2) to concentrate. Thus, we might hope that there is some
time T0 such that ‖eiT0∆PNu‖L1 . N−1, corresponding to concentration at a
scale 1/N . In this case, the estimate

|eit∆PNu(x)| ≤ |ei(t−T0)∆PN | ∗ |eiT0∆u|(x)

is far more efficient than (10). However, this strategy only works on very
special initial data. A slightly more general situation is that a solution u
could be a superposition of wavepackets that concentrate at different places
and different times. Indeed, one might hope for a decomposition of the form

u =
∑
j

e−iTj∆ψj + error,

where each ψj is concentrated in a small region, and error never concentrates.
Two ingredients would be needed to make this strategy work. First, we need
some guarantee that ei(t−Tj)∆ψj and ei(t−Tk)∆ψk don’t interact much at any
time. Second, we would need to know something about the behavior of the
error. Somehow the fact that it never concentrates might be useful in proving
an L4 estimate.

My guess is that the solution to this problem will look quite different
from this, and will need to use some information about the movement of
different frequencies, such as Proposition 4. Indeed, let me now propose a
decomposition of free solutions that takes this into account. Suppose we are
given an initial condition u ∈ L2 localized to frequencies |ξ| ∼ N . As before,
we can write

PNu =
∑
i

ui, ui = PNχiu,

where the partition of unity χi is composed of smooth bump functions with
supports in balls of radius N−1. Suppose we want to have an accurate esti-
mate for eit∆ PNu for times |t| . T0. Now we can break up frequency space
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t

x

Figure 4: A combinatorial interpretation of the bilinear Strichartz estimate.
The wavepackets of the high-frequency wave are more localized and move in
a different space-time direction than the wavepackets of the low-frequency
wave packets. The transversality and the difference in widths of the space-
time tubes are the main features.

into T 2
0N

2 pieces of width O(T−1
0 ). Each piece in frequency space corresponds

to a spacetime tube that doesn’t spread out by much for |t| . T0. This allows
us to write ui a a sum of T 2

0N
2 pieces, each of which are spatially localized

at a scale N−1, and have unique directions. Figure 4 illustrates a simple
example of this decomposition for two functions of different frequencies, each
of which are localized at some point in space and time.

With this kind of decomposition, the bilinear Strichartz estimate turns
into a problem of estimating the area of intersection of transverse tubes in
spacetime with different widths. If this connection can be made precise,
then the problem of proving a bilinear Strichartz estimate on hyperbolic
space reduces to the problem of understanding the incidence properties of
geodesics. This is the global ingredient that is not available, for example, in
Hani’s result for closed manifolds [5], because closed manifolds have geodesics
that can self-intersect in some finite time.

11



5 Acknowledgements

I would like to thank Gigliola Staffilani for suggesting this problem, which I
have learned a lot from. I am also very grateful to David Jerison and Pavel
Etingof for their thought-provoking discussions and support. Without them
the SPUR experience could not happen. I am also indebted to my mentor
Chenjie Fan, who put up with all of my crazy ideas and frustrations.

References

[1] JP. Anker and V. Pierfelice. Nonlinear Schrödinger equation on real
hyperbolic spaces. Annales de l’institut Henri Poincar (C) Analyse non
linaire, 26(5):1853–1869, 2009.

[2] V. Banica, R. Carles, and G. Staffilani. Scattering theory for radial
nonlinear Schrödinger equations on hyperbolic space. GAFA, 18:367–
399, 2009.

[3] J. Bourgain. Refinements of Strichartz’ inequality and applications to
2D-NLS with critical nonlinearity. Intern. Mat. Res. Notices, 5:253–283,
1998.

[4] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao.
Global well-posedness and scattering for the energy-critical nonlinear
Schrödinger equation in R3. Annals of Mathematics, 167:767–865, 2008.

[5] Z. Hani. A bilinear oscillatory integral estimate and bilinear refinements
to Strichartz estimates on closed manifolds. Analysis and PDE, 5:339–
362, 2012.

[6] Zaher Hani. Global well-posedness of the cubic nonlinear schrödinger
equation on closed manifolds. Communications in Partial Differential
Equations, 37(7):1186–1236, 2012.

[7] AD. Ionescu, B. Pausader, and G. Staffilani. On the global well-
posedness of energy-critical Schrödinger equations in curved spaces.
Analysis and PDE, 5:705–746, 2012.

[8] AD. Ionescu and G. Staffilani. Semilinear Schrödinger flows on hyper-
bolic spaces: scattering in H1. Math. Ann., 345:133–158, 2009.

12



[9] Rowan Killip and Monica Visan. Nonlinear schrodinger equations at
critical regularity. Amer. Math. Soc., Providence, RI, Clay Math. Proc.,,
Evolution equations, 17:325–437, 2013.

[10] T. Tao. A physical space proof of the bilinear Strichartz and local
smoothing estimate for the Schrödinger equation. 2010.

13


