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Abstract. Fité et al. (2011) describe a generalization of the Sato-Tate conjecture by hypothe-
sizing that the distribution as p varies, for a fixed algebraic curve, of the normalized error terms
((p + 1 − number of solutions)/g

√
p) follows the distribution of the trace of a random element of

some subgroup of USp(2g), called the Sato-Tate group of the curve. In genus two, there are 55
non-isomorphic possibilities for the Sato-Tate group, although some have the same trace moment
sequence. When the group is connected, the work of Magyar and Grabiner shows that these kind of
sequences can be naturally interpreted as counting certain walks over a lattice of dimension g when
working in general with subgroups of USp(2g). In this paper, we look at what kinds of combina-
torial problems arise from the trace moment sequences of the not necessarily connected Sato-Tate
groups, and how they relate to the component group in these disconnected cases.

1. Introduction

1.1. Elliptic Curves

We begin with a brief discussion of elliptic curves - for our purposes, curves of the form y2 = f(x)
with f(x) = x3 + ax+ b for some a, b ∈ Q.

Definition 1.1. We say an elliptic curve is non-singular if the partial derivatives of, ∂f
∂x ,

∂y2

∂y = 2y

never vanish simultaneously; equivalently, if the discriminant ∆ = −16(4a3 + 27b2) is non-zero in
Q.

Definition 1.2. A projective solution to an elliptic curve is a triple (X,Y, Z) 6= (0, 0, 0) satisfying
the homogeneous equation Y 2Z = X3+aXZ2+bZ3. Two projective solutions (X,Y, Z), (X ′, Y ′, Z ′)
are considered to be equivalent if there exists a scalar λ such that (X,Y, Z) = (λX ′, λY ′, λZ ′).

Then every point (x, y) ∈ E corresponds to a projective solution (x, y, 1). We also have the
special solution (0, 1, 0) on the line at infinity.

Elliptic curves are unique in that they are equipped with an abelian group law. Given two points
on the curve, their sum is the reflection across the y-axis of the third point of intersection of the
line through them with the curve. Thus the inverse of a point is its reflection across the y-axis,
and the identity element of the group is the point at infinity. The only group axiom left to check
is associativity; the proof is somewhat involved and the group law on elliptic curves is classical,
so we’ll omit it here. For a fixed elliptic curve E over Q, the set E(Q) of rational points on this

curve is a natural candidate for study. The rational points form a subgroup with respect to the
group law on elliptic curves, since the sum of two points on a curve is given, coordinate-wise, by
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rational-coefficient rational functions of the coordinates of the two points. The structure of this
group is well-understood; indeed,

Theorem 1.3 (Mordell). The group E(Q) is isomorphic to T ⊕ Zr where T is a finite subgroup
given by the elements of E(Q) with finite order (the so-called torsion subgroup) and r is the rank
of the curve.

1.2. Counting points in Fp

Just as we can study, rational points on elliptic curves, we can try to understand solutions to
an elliptic curve that lie in some finite field, e.g. Fp. When we work with elliptic curves modulo
a prime, it’s not enough for the discriminant to be non-zero. We require the discriminant not to
vanish modulo p.

Definition 1.4. For an elliptic curve E we say p is a prime of good reduction if the denominators
of a and b are coprime to p and the irreducible factors of f(x) in Fp[x] appear with multiplicity at
most 1; equivalently p does not divide the numerator of ∆.

Consider a fixed a non-singular elliptic curve E with coefficients in Q, and let p be a prime
of good reduction. Suppose we wish to count the number of (projective) solutions over Fp to
the modulo-p reduction of this curve. We should expect this number to be roughly p + 1; there
should be approximately p “ordinary” solutions since the variety has dimension 1, and the extra
solution comes from the point at infinity. To be precise, we define the error term ap = (p + 1) −
(# of actual solutions), so that the number of solutions over Fp to this equation is (p+ 1)− ap. A
result of Hasse states

Theorem 1.5 (Hasse). |ap| ≤ 2
√
p.

1.2.1. The Sato-Tate conjecture for elliptic curves

In order to understand the distribution of ap, it’s natural to consider the normalized xp =
ap/
√
p ∈ [−2, 2]. We can then fix an elliptic curve and ask what the distribution of xp is as p varies

over all primes of good reduction less than N as we send N to infinity. The Sato-Tate conjecture
(recently proved for elliptic curves over Q) answers this question for most elliptic curves:

Conjecture 1.6 (Sato-Tate). Write xp = 2 cos θp. For a generic elliptic curve (one without
complex multiplication), θp is distributed in [0, π] according to 2

π sin2 θ.

Our ultimate goal will be to understand these types of distributions in higher genus, but before
we do we need a way to generalize what we mean by ap; recall that when g > 1 there is no group
law on the curve itself. In general, it turns out that ap will be the trace of a particular matrix
associated with the modulo p reduction of the curve. Let’s see how this looks in genus 1 before
moving forward.

1.2.2. Interpretation in terms of matrices

One way of looking at the set E(Fp) of Fp-points of an elliptic curve is as the set of points in
E(Fp) that are fixed by the Frobenius map x→ xp. Thus the set of Fp-points is simply the kernel
of the endomorphism (Frobp − Id). This is still a difficult problem to tackle directly, but we can

simplify matters by restricting to the n-torsion subgroup; that is, the set E[n] ⊂ Fp consisting of
points P such that nP = O, where the LHS representing n-fold addition under the curve’s group
law. It’s known that this group is isomorphic to Z/n × Z/n as long as p and n are coprime, and
(critically) the Frobenius map commutes with the multiplication map P → nP . Thus it follows



COMBINATORIAL INTERPRETATIONS OF TRACE MOMENT SEQUENCES 3

that Frobp maps E[n] to itself, and this action can be represented by a 2×2 matrix Ap with entries
in Z/n which is invertible when p and n are coprime. We can now apply the identity

det(Ap − I2) = det(Ap)− tr(Ap) + 1.

It’s known that the modulo-n reduction of the degree (the size of the kernel) of Frobp− Id is equal
to the determinant of Ap−I2. Then it’s easy to see that since this should hold for all n, the number
of solutions over Fp is det(Ap) + 1− tr(Ap).

According to the Sato-Tate conjecture, the xp follow a semicircular distribution on [−2, 2].
Heuristically, if we think of Ap as a matrix over the complex numbers with trace equal to p +
1 −# of solutions and determinant p, then Ap/

√
p is unitary by Hasse. Then the claim that the

xp are distributed according to a semicircular distribution is equivalent to saying that as p varies,
Ap/
√
p is equidistributed in SU(2) according to its Haar measure. Recall that the Haar mea-

sure, which exists for any Lie group and is finite as long as the group is compact, is the unique
translation-invariant measure with total mass 1; this is explained in greater detail below.

1.2.3. Complex multiplication and moments

We aren’t completely finished with elliptic curves quite yet. The disclaimer we made earlier
was that the Sato-Tate conjecture applied only to elliptic curves without complex multiplication
- i.e., curves whose endomorphism ring is simply Z. For curves with CM, the matrix Ap cannot
simply be any matrix in SU(2). Since the curve has extra endomorphisms which the Frobenius
must commute with, Ap is distributed in some subgroup of SU(2). It turns out there are precisely
two possibilities for this subgroup - U(1) and N(U(1)), depending on whether one looks in the CM
field or not.

Since we may not always have the luxury of an explicit distribution as we do in the generic elliptic
curve case, we can work instead with moments. Suppose we didn’t know how xp was distributed
precisely; we might find it easier to compute its moments E[xnp ] which are in fact enough to determine
the distribution uniquely provided some basic analytic conditions hold (which, in this case, they
do). Since we know Ap should be equidistributed in SU(2) according to the Haar measure,

E[xnp ] =

∫
SU(2)

(tr g)n dg

In the case of SU(2), the moment sequence is 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, . . . . The odd moments
are 0 by symmetry, while the even moments are the familiar Catalan numbers, which (among
other things) count the number of walks of a given length in Z that start and end at the origin
while staying to the right of it the entire time. The CM cases also have meaningful combinatorial
interpretations; for U(1), the moment sequence is 1, 0, 2, 0, 6, 0, 20, . . . , where the 2n-th moment is(

2n
n

)
. This has a combinatorial interpretation as the number of lattice walks on Z of length 2n that

start and end at the origin. In the case of N(U(1)), for n > 0 the terms are exactly
(

2n
n

)
/2, which

counts the number of walks of the type just described, up to symmetry with respect to reflection
about the origin. This symmetry is somewhat natural; U(1) is a normal subgroup of N(U(1)) and
N(U(1))/U(1) ∼= C2. As a Lie group, this means N(U(1)) has U(1) as the connected component
of the identity, and component group C2 (Lie groups are discussed in more detail below).

1.3. Hyperelliptic curves

Convinced that there is something of combinatorial intrigue in these moment sequences, we can
consider a similar question for a more general class of curves. The natural things to examine next
are hyperelliptic curves.
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Definition 1.7. A hyperelliptic curve is an algebraic curve given by an equation of the form y2 =
f(x) where f is a polynomial of degree at least 5.

Hyperelliptic curves are typically classified by their genus g, which for equations of the form
y2 = f(x) is simply b(deg f − 1)/2c. Thus elliptic curves have genus 1 (in fact, this is part of their
precise definition), and hyperelliptic curves have genus at least 2. Let’s consider g = 2 for now.

Remark 1. What happens when, for instance, f has degree 4? The genus in this case is 1, so we
should expect an elliptic curve; yet f is quartic, not cubic. It turns out that by changing coordinates
and transforming suitably, any curve of degree 4 can be identified with one of degree 3.

Hyperelliptic curves are not endowed with a natural group law like elliptic curves are, and genus
2 is no exception. The group law for hyperelliptic curves is defined not on the curve itself, but
instead on its so-called Jacobian. In general, the Jacobian is an abelian variety associated to any
non-singular algebraic curve. In the case of elliptic curves the Jacobian happens to coincide with
the curve, which is why the curve itself has a group law. Otherwise, the genus 2 case behaves much
the same way as genus 1; the number of (projective) Fp solutions is p+ 1− tr(Frobp), the trace of
Frobenius.

It’s natural to expect that, as was the case in genus 1, the matrices Frobp/
√
p should be equidis-

tributed in some compact Lie group. While this has not been proven yet, there is strong empirical
evidence suggesting this is the case. Like we saw in genus 1, most curves are “generic” - i.e., have
the simplest possible endomorphism ring - and will consequently have Frobp/

√
p equidistributed in

some large Lie group. In fact, the set of non-generic curves has measure zero. Those curves that do
have a larger endomorphism ring should have Frobp/

√
p distributed in some smaller, Lie subgroup

of this large Lie group.

The most general such Lie group in genus 1 was SU(2). In genus 2, and more generally in
genus g, this group is USp(2g). Note there is no inconsistency here; SU(2) = USp(2). Thus in
genus 2, the matrices Frobp are usually equidistributed in USp(4). However, as the genus increases
the simple dichotomy between generic curves and CM curves disappears. In genus 2, there are 52
exceptional cases, each corresponding to a different Lie subgroup of USp(4). The group theory
reveals there are 55 possibilities (subgroups of USp(4)), but three of these are either known or
strongly conjectured to be unattainable. Still, we will examine these groups as they give rise to a
combinatorial problem of the same type.

We expect the distribution of 1/
√
p times the error term in the Fp point count to be distributed

according to the trace of a random matrix chosen according to the Haar measure in some compact
Lie group. We can now safely remove ourselves from hyperelliptic curves, and thus from any
assumptions about them, and simply consider the distribution of traces in compact Lie subgroups
of USp(4). In fact, all but two possible subgroups appear to correspond to some genus 2 curve or
other. We’ll again use the moments to characterize the distributions, and find that the moment
sequences have independent combinatorial interest.

2. Lie groups and trace moments

We’ve mentioned Lie groups before; we now enter into a brief discussion of their details for the
sake of completeness.

Definition 2.1. A Lie group is a manifold with a group structure. We consider only Lie groups
which are closed subgroups of GLn.

For a set S consider the collection of its subsets T . Formally, T = {T : T ⊆ S}. We proceed
with the definition of a measure.
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Definition 2.2. A measure on S is a function µ : T → R+ ∪ {0} satisfying µ(∅) = 0 and µ(T1) +
µ(T2) = µ(T1 ∪ T2) whenever T1 ∩ T2 = ∅. A measure on a Lie group is translation-invariant if
µ(H) = µ(gH) for any subset H of G and g ∈ G.

Remark 2. In practice, we need to consider the measure only over ’sufficiently nice’ subsets of S,
but this is an unnecessary discussion for our purposes.

Notice that if µ is a measure, then for any positive real number k, µk defined by µk(T ) = kµ(T )
for all T ⊆ S is also a measure. In other words, measures can be scaled.

Proposition 2.3. For a Lie group G there exists a unique translation-invariant measure, up to
scaling, called the Haar measure of G. When G is compact, we have µ(G) < ∞ (a so-called finite
measure), so we can normalize the measure to µ(G) = 1.

2.1. Representation theory of Lie groups

For our purposes, a representation of a Lie group G is a homomorphism ρ : G→ GL(n,C) and
n is the dimension of the representation. Equivalently, a respresentation is an action of G on Cn.
We can also say V = Cn is a representation of G, so that operations on vector spaces (direct sums,
tensor products, wedge powers) are more natural. As usual, a representation is reducible if there
is a proper subspace W ⊂ V such that for any g ∈ G and w ∈ W , ρ(g)w ∈ W . In other words, if
W is G-invariant. Otherwise, we call V irreducible.

Definition 2.4. The character χρ of a representation ρ is defined at each point g of G to be
χρ(g) = tr(ρ(g)).

Note that the character is constant on a conjugacy class since trace is preserved under conjuga-
tion.

Example 2.5. The trivial representation of G is defined by ρg = I1 for all g ∈ G. The standard
representation of SU(2) is simply a matrix(

x y
-y x

)
with |x|2 + |y|2 = 1 for each element in G. The trace is the sum of the eigenvalues, which are the
entries of the diagonal conjugate matrix, namely, eiθ, e−iθ for some θ ∈ [0, 2π]. Both examples
above are irreducible representations.

If V and W are representations of G (call ρV and ρW the corresponding homomorphisms) V ⊕W
is also a representation by letting the action of G on an element (v, w) ∈ V ⊕W be defined in
each subspace (formally, ρV ⊕W (g)(v, w) = (ρV (g)v, ρW (g)w)). It follows that a direct sum of two
representations is reducible and that its character corresponds to pointwise addition of those of the
representations involved in the direct sum. Similarly, V and W induce a representation on V ⊗W .
The representation ρV ⊗ ρW is defined by (ρV ⊗ ρW )(g)(v⊗w) = (ρV v)⊗ (ρWw) for v ∈ V , w ∈W
and extended by linearity to the rest of the space V ⊗W . Its trace is χV χW .

Most of the properties of the representations of finite groups generalize to compact Lie groups.
For instance, we can decompose a representation into irreducible representations, although the
pool of possible irreducible representations may be infinite. Similarly, irreducible representations
can be distinguished simply by looking at their characters and these form a basis of the space
of class functions. Furthermore, integration with respect to the Haar measure allows 〈χV , χW 〉 =∫
G χV (g)χW (g)dµ to be defined. In addition, it can be proven that the orthogonality relations for

finite groups carry over; namely, for irreducible representations χV , χW we have:

〈χV , χW 〉 =

{
0 V 6uW
1 V uW
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where the group has unit measure. In particular, since 〈 , 〉 is a bilinear form on the characters,
〈χtriv, χρ〉 counts the multiplicity of χtriv in the decomposition of χρ into irreducible representations.

Definition 2.6. The n-th trace moment of a representation ρ of a Lie group G is the multiplicity
of the trivial representation in the n-th tensor power of ρ. By the discussion above it equals:

〈χtriv, χρ⊗n〉 =

∫
G
χtriv(g)χρ(g)ndµ =

∫
G
χρ(g)ndµ

The values for n = 0, 1, 2, . . . form the trace moment sequence which clearly consists of nonnegative
integers.

For a Lie group, we’ll consider the trace moment sequence of the representation obtained from
their standard embedding in GL(n,C), possibly without saying so.

2.2. Distributions and moment statistics

By a distribution we refer to a measure µ defined on a set Ω such that
∫

Ω dµ(x) = 1.

Suppose we have a real random variable X distributed according to a measure µ (so
∫∞
−∞ dµ(x) =

1). It is a well-known result that in sufficiently well behaved cases (and in particular all the ones
we consider), the moments or expected values of n:

E[Xn] =

∫ ∞
−∞

xndµ(x)

uniquely determine the distribution, that is, the measure.

Let Y be a random matrix sampled according to the Haar measure in a Lie group G. Let ρ be
the representation obtained from the standard embedding of G in GL(n,C), and set X = tr(Y ).
Then:

E[Xn] =

∫
G

tr(Y )ndµ = 〈χtriv, χρ⊗n〉

so we can determine the distribution of the traces of a random matrix in G (or rather the moments
of the traces) by computing the multiplicity of the trivial representation in the decomposition into
irreducibles of the n-th tensor power of the standard representation.

Why is this important? The generalized Sato-Tate conjecture [?] asserts that to each hyperelliptic
curve of genus g we can associate a Lie group G ⊆ USp(2g) (called its Sato-Tate group) in such
a way that the distribution of the xp = ap/

√
p in [−2g, 2g] is the same as that of the trace of a

random matrix in G. Note that the trace is real since the eigenvalues of a matrix in USp(2g) appear
in conjugate pairs. As we’ve seen, the moments of this trace uniquely determine the underlying
distribution, and correspond to the multiplicity of χtriv in the n-th tensor power of the standard
representation.

3. Combinatorial interpretations in genus 2 when
G0 ∈ {USp(4), SU(2)× SU(2), U(1)× U(1), SU(2)× U(1)}

We’ve now come to the focus of this paper. We expect that, as they do in genus one, the
moment sequences in any genus should have natural combinatorial interpretations in terms of
counting lattice walks of a certain kind. Indeed, this is true in the generic case, when the Sato-Tate
group is USp(2g); Magyar and Grabiner [MG93] prove in general that the moment sequence in the
generic case (namely, the one obtained from matrices sampled at random in USp(2g) according to
the Haar measure) in arbitrary genus g counts the number of (integer) lattice walks of length n
restricted to the Weyl chamber of g-dimensional space and which start and end at the origin in Zg.
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We’ll now attempt to establish equivalence between the moment sequences of some of the 55
exceptional genus 2 cases identified in [?] and similar such counting problems. As a way to organize
these 55 groups, we use G0, the connected component of the identity in the group. There are six
possibilities for G0 - U(1), SU(2), U(1)×U(1), U(1)× SU(2), SU(2)× SU(2), and USp(4). We’ll
consider the various cases in decreasing order of the “size” (not quite dimension) of G0.

Remark 3. These Sato-Tate groups correspond to the cases in which the normalizer N(G0) of G0

has finite index in USp(4). Of course, G is a subgroup of N(G0) since conjugation by an element
of G must permute the connected components and stabilizes the identity element (and thus, its
connected component G0).

3.1. G0 = USp(4)

Of course, we must have G = G0 = USp(4). Magyar and Grabiner prove that the corresponding
moment sequence 1, 0, 1, 0, 2, 0, 5, . . . counts the number of integer lattice walks (i.e. walks with
allowed steps (±1, 0), (0,±1)) of length n restricted to the first octant (the Weyl chamber, in this
particular case) which start and end at the origin. There is a closed form for this sequence; namely,
cncn+2 − c2

n+1 where ck denotes the k-th Catalan number.

3.2. G0 = SU(2)× SU(2)

Groups in [?]: SU(2)× SU(2), N(SU(2)× SU(2))

This case accounts for exactly two different Sato-Tate groups - SU(2) × SU(2) itself, and its
normalizer N(SU(2) × SU(2)). The moment sequence of the former is 1, 0, 2, 0, 10, 0, 70, . . . - the
2n-th term is, in general, the product cncn+1 of consecutive Catalan numbers. As it happens, this
is exactly the number of lattice walks of length n restricted to the first quadrant of the plane. In
fact, why the expression cncn+1 should count the number of walks of this kind is quite difficult, but
we can ignore the closed form and explain the equivalence via the algebra.

Proposition 3.1. The number of lattice walks of length 2n confined to the first quadrant which
start and end at the origin is given by

n∑
k=0

(
2n

2k

)
ckcn−k

Proof. We count the number of such walks by casework on the number of horizontal steps taken.
Supposing there are 2k of them (of course, a walk taking an odd number of horizontal steps could
not possibly return to the origin), the number of ways to pick k of them to be “right” steps, and
the remaining k “left” in such a way that we’ve never taken more left steps than right is exactly
ck. Analogously, there are cn−k ways to do assign the vertical steps a direction so that the number
of walks of this kind is in all

n∑
k=0

(
2n

2k

)
ckcn−k

�

This binomial convolution of the Catalan numbers can be interpreted as E[(X+Y )n] where X,Y
are independent, identically distributed random variables whose even moments are the Catalan
numbers (this follows immediately from independence and linearity of expectation). Recall that
for a generic elliptic curve, whose Sato-Tate group is SU(2), the even moments are precisely the
Catalan numbers. Since SU(2)×SU(2) embeds diagonally in USp(4), and has as its Haar measure
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the square of the Haar measure on SU(2), the trace of a random matrix in SU(2) × SU(2) is
distributed as X +Y . Thus E[(X +Y )n], which counts the number of first quadrant walks starting
and ending at the origin, is the trace moment sequence for the Sato-Tate group SU(2)× SU(2).

The other possible Sato-Tate group, N(SU(2)×SU(2)), has moment sequence 1, 0, 1, 0, 5, 0, 35, . . . ;
for n > 0, the 2n-th term is cncn+1/2. Again, we won’t prove that this closed form is valid for
the moment sequence; rather, we’ll show the moment sequence and the counting problem agree,
circumventing the closed form altogether. The closed form is really only for completeness and
notational convenience.

Proposition 3.2. The number of essentially different first-quadrant lattice walks of a given pos-
itive length that start and end at the origin, where two paths are considered equivalent if they are
reflections of one another about the line y = x, is given by

1

2

n∑
k=0

(
2n

2k

)
ckcn−k, n > 0

Proof. Since no path can be its own reflection when n > 0, there are precisely

1

2

n∑
k=0

(
2n

2k

)
ckcn−k

inequivalent paths.
�

The algebraic motivation is as follows : N(SU(2) × SU(2)) is generated by SU(2) × SU(2)
together with the single, order two matrix [

0 −I2

−I2 0

]
.

Thus exactly half the matrices in N(SU(2) × SU(2) have trace zero, while the rest have trace
distributed according to the distribution on SU(2)× SU(2).

3.3. G0 = U(1)× SU(2)

Groups in [?]: U(1)× SU(2), N(U(1)× SU(2))

Again, there are only two Sato-Tate groups of this kind - U(1)×SU(2) itself, and its normalizer
N(U(1)×SU(2)) which contains U(1)×SU(2) as an index 2 subgroup. The moment sequence for
U(1)× SU(2) is 1, 0, 3, 0, 20, 0, 175, . . . - the 2n-th term is cnbn+1/2 in general. Based on what the
moment sequences for U(1) and SU(2) counted in genus one, we might expect

Proposition 3.3. The number of upper half-plane lattice walks that start and end at the origin is
n∑
k=0

(
2n

2k

)
ckbn−k

Proof. If we make 2k vertical steps, there are ck ways to arrange them so that the path never falls
below the x-axis, and bn−k ways to pick the horizontal steps. Summing over k, the total number
of such walks is

n∑
k=0

(
2n

2k

)
ckbn−k

�
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Note that, once again, we haven’t shown that the sum in question is equal to the closed form
provided. We’re only interested in establishing equivalence between the moment sequences and
counting problems, not so much in the problems themselves.

This binomial convolution can be interpreted as E[(Z +W )n] for independent random variables
Z,W where Z has the Catalan numbers as its even moments, and W has the central binomial
coefficients. In the genus one case, we saw the moment sequence for SU(2) was exactly the Catalan
numbers, and the moment sequence for U(1) was the central binomial coefficients. What’s more,
U(1)× SU(2) embeds diagonally in USp(4) and has as its Haar measure the product of the Haar
measures on U(1) and SU(2), so that the trace of a random matrix in U(1)× SU(2) is distributed
as Z + W . Thus the moment sequence is simply E[(Z + W )n], which is the binomial convolution
we obtained by counting.

As was the case before, there is only one other group with this connected component, N(U(1)×
SU(2)). This group has moment sequence 1, 0, 2, 0, 11, 0, 90, . . . . For n > 0, the 2n-th term is
(cnbn+1 + cn)/2.

Proposition 3.4. The moment sequence for N(U(1)×SU(2)) counts the number of essentially dif-
ferent upper half-plane lattice walks that start and end at the origin, where two paths are considered
equivalent if they are reflections of one another about the y-axis

Proof. When n = 0 there is one such path (the empty path), and for n > 0 only the paths that
lie entirely along the y-axis (of which there are cn) can be their own reflections, so principle of
inclusion-exclusion with Proposition 3.3 means there are (cnbn+1 + cn)/2 such paths in all.

�

3.4. G0 = U(1)× U(1)

Groups in [?]: F, Fa, Fc, Fab, Fac, Fa,b, Fab,c, Fa,b,c

The next class of groups have G0 = U(1)× U(1) - there are eight of these groups, which can be
further classified (although not completely) by their component group G/G0.

Component group G/G0 = C1

Here the component group is trivial, so G = G0 = U(1)× U(1). This group is denoted by F in
[?], a convention which we too will use. The moment sequence in this case is 1, 0, 4, 0, 36, 0, 400, . . . ,
where in general the 2n-th term is b2n. It’s not hard to see that this is the number of lattice walks
of length n in the plane that start and end at the origin.

Indeed, the number of such walks is exactly the same as the number of walks on length n on
a diagonal lattice (whose basis vectors with respect to the standard basis are (1, 1) and (−1, 1))
which start and end at the origin, since we can go from walks of one type to the other by rotating
by π/4. To count the number of diagonal lattice walks, remark that exactly n of the 2n steps must
be steps in the positive x-direction, and n of the 2n steps must be steps in the positive y-direction.
These choices uniquely determine the identity of each step and the resulting path must return to

the origin, so in all there are
(

2n
n

)2
paths of this kind.
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Component group G/G0 = C2

There are 3 different groups with connected component U(1) × U(1) and component group
C2; in [?] they are denoted by Fa, Fc, and Fa,b. In the first case, the moment sequence is

1, 0, 3, 0, 21, 0, 210, . . . where the 2n-th term is 1
2(b2n + bn). This counts the number of distinct

lattice walks starting at and returning to the origin up to reflection about, say, the y-axis. Indeed,
each of the b2n walks has a reflection different from itself except for the bn that are confined to the
y-axis; the formula follows.

The moment sequence for the group Fc is 1, 0, 2, 0, 18, 0, 200, . . . where the 2n-th term is 1
2b

2
n.

This counts the number of distinct lattice walks of length n starting and ending at the origin, up
to reflection about the line y = x; indeed, every path has a reflection different from itself.

Finally, the group Fab has the same moment sequence - 1, 0, 2, 0, 18, 0, 200, . . . . Again, he 2n-th
term in general is 1

2b
2
n. This counts the number of distinct lattice walks of length n starting and

ending at the origin, up to a rotation of π/2 about the origin. It’s not hard to see that once more,
every path has a rotation different from itself. What may not be so clear, however, is why we chose
these particular order two symmetries for these groups. This will become apparent shortly; we’ll
see that roughly, a represents reflection about the y-axis, b represents reflection about the x-axis,
and c represents reflection about the line y = x. This explains, for instance, why there is no group
Fb; it is the same as the group Fa.

Component group G/G0 = C4

The group Fac, as we should expect given the cases we’ve seen so far, has moment sequence
which counts the number of lattice walks of length n that start and end at the origin, and which are
inequivalent up to the transformation ac. Given that a represents reflection about the vertical axis,
and c represents reflection about the line y = x, the transformation ac represents counterclockwise
rotation by π/4. Clearly for n > 0 no path is its own rotation, and so the moment sequence

1, 0, 1, 0, 9, 0, 100, . . . with 2n-th term 1
4

(
2n
n

)2
agrees with what we should expect.

Component group G/G0 = D2

The same is true for the two groups with component group D2 - Fa,b and Fab,c. Indeed, the
moment sequence of Fa,b is 1, 0, 2, 0, 12, 0, 110, . . . with 2n-th term (b2n + 2bn)/4. We’d expect this
to count the number of lattice walks of length 2n that start and end at the origin, equivalent up
to reflection about the horizontal and vertical axes. This is exactly what happens - the only walks
that are equal to reflections of themselves about either axis (note ab corresponds to a π/2 rotation
about the origin, which fixes no path) are those that lie entirely on a single axis. For n > 0 there
are 2bn of these and the claim follows.

The group Fab,c is slightly more straightforward. The symmetries in question here are a π/2
rotation about the origin, and reflection about the lines y = x and y = −x. Each of these
symmetries fixes no paths with n > 0, so the 2n-th term of the moment sequence should be 1

4b
2
n

for n > 0; it should come as no surprise that it is.



COMBINATORIAL INTERPRETATIONS OF TRACE MOMENT SEQUENCES 11

Component group G/G0 = D4

This group Fa,b,c has the largest possible component group of a Sato-Tate group with connected
component U(1)×U(1). In this case the moment sequence is 1, 0, 1, 0, 6, 0, 55, . . . with 2n-th term
equal to 1

8(b2n + 2bn) in general. We claim that for n > 0 this counts the number of lattice walks of
length 2n that start and end at the origin, up to equivalence with respect to all symmetries of the
square.

Indeed, it’s not hard to see that the only paths that are sent to themselves under any of these
symmetries are those that lie entirely on one axis. Once more there are 2bn of these paths and
no others, and these paths are fixed only by reflection about the axis on which they lie, so there
should be 1

8(b2n + 2bn) inequivalent paths, as desired.

4. Combinatorial interpretations in genus 2 when G0 ∈ {SU(2), U(1)}

The cases we’ve seen so far have been fairly simple; in each, the moment sequences have been
very clearly related to lattice walks of some sort. The prescence of two groups in the decomposition
of G0, e.g. U(1) × SU(2), led to simultaneous restrictions on each of the two coordinates of the
walk. Finally, the component group G/G0 was always a subgroup of D4, so that its action on the
paths was natural.

When we move to the two “smaller” cases of U(1) and SU(2) we see a somewhat different
behavior. There is now only one group as opposed to two, and there are many more possibilities
for the component group. In general, the connected component places a restriction on the path in
only one of the coordinate directions; restrictions and/or symmetries in the other direction depend
on the component group.

We’ll now explain a couple of methods by which we can relate component groups to counting
problems.

The first keeps within the basic paradigm of planar lattice walks that we’ve been working with,
in which the component groups act by imposing restrictions or symmetries on the unconstrained
axis of walk. The counting problems from this perspective fit more naturally with the counting
problems for the larger component groups, as they count walks in two dimensions.

The second method involves interpreting the moment sequences as counting closed walks on the
number line together with some auxiliary graph, where a move entails making a move on the graph
and a move on the number line and the walks on each must return to their starting point. The
connected component restrictions are inherited from genus 1, and the component group acts by
restriction or symmetry on the graph walk. In this method the component groups act slightly more
naturally.

In general, the component groups in these cases are subgroups either of S4 × C2 or D6 × C2,
the two possible maximal subgroups. The interpretation for S4 × C2 (the corresponding group is
J(O)), and, by extension, several of its subgroups, works most naturally in the setting of the second
method. In the case of D6 × C2 and its subgroups, the second “method” is really just a different
way of thinking of the first, and the first is more natural.
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4.1. G0 = SU(2)

Groups in [?]: E1, E2, E3, E4, E6, J(E1), J(E2), J(E3), J(E4), J(E6)

For the SU(2) cases, the models mentioned above are not exceptionally different in substance,
as S4 × C2 does not come up. We’ll nonetheless explain them both in order to lay out the basic
model the remaining groups are to follow.

The first idea is to let the component group act on and restrict in the plane. In this case, however,
it will prove to be better to look at diagonal lattice walks, in which each step taken is of the form
(±1,±1). Recall that in genus 1, SU(2) imposed the restriction that the path should stay to one
side of the number line and return to the origin. Since we have two coordinate directions to work
with now, it makes sense for this restriction to be placed on one of them, say the horizontal. The
vertical movement is controlled by the component group.

When G0 = SU(2), all component groups are cyclic or dihedral. In the cyclic cases, Ck, the
component group restricts the vertical motion by requiring that the path ends at a y-coordinate
divisible by 2k. In the dihedral cases, Dk, the component group does the same thing, but also
identifies a path with its reflection in the x-axis.

Since we make diagonal lattice walks, each move requires choice of a horizontal and vertical
direction; conversely, such a choice determines the step uniquely. Since these two directions are
independent, we can count them separately and multiply. In each case there are cn ways to take
steps along the horizontal axis. Depending on the value of k, and whether the component group is
Ck or Dk, we will get various different numbers of walks that end at a y-coordinate divisible by 2k.
The proofs that these formulas, taken from [?] are correct is not difficult, but it’s simpler to refer
to the relevant entries in [?]

We now mention how to think about these cases in terms of the second method. Recall that
the group SU(2) “lived” in one dimension in genus 1, so it might be better to think of the SU(2)
case within the number line paradigm instead of in terms of planar walks. To account for the extra
term in the moment sequences, we must simultaneously look at a walk on an auxiliary graph which
depends on the component group. In the cyclic and dihedral cases, this graph is a 2k-cycle; it’s
clear that for these cases this is identical, in essence, to the first model. On the other hand, we
aren’t forced to pass to diagonal lattice walks and SU(2) restricts as it did in genus 1.

4.2. G0 = U(1)

Groups in [?]: C1, C2, C3, C4, C6, D2, D3, D4, D6, T,O, J(C1), J(C2), J(C3),
J(C4), J(C6), J(D2), J(D3), J(D4), J(D6), J(T ), J(O), C2,1, C4,1, C6,1, D2,1, D4,1, D6,1,
D3,2, D4,2, D6,2, O1.

As shown in [?], these subgroups occur as finite subgroups of SO(3) × C2 (N(U(1))/U(1))
satisfying certain rationality conditions. Recall they are all subgroups of S4 ×C2 or D6 ×C2; thus
ideally any kind of combinatorial interpretation for the moment sequences of these groups would
respect the Hasse diagram (of the lattice of subgroups) of the Lie groups to which they correspond,
namely J(O) and J(D6). These Hasse diagrams are closely related to the lattice of subgroups of
these two maximal groups in USp(4) (but not completely, since subgroups might be conjugate in
USp(4) but not in J(O) or J(D6)). Their descriptions are included in the Appendix.
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Again, it will be possible to look in the plane or at the number line together with an auxiliary
graph. We’ve made this distinction clear before and the component groups for U(1) are much more
complicated than those for SU(2), so instead of classifying by method we’ll classify by maximal
subgroup.

4.2.1. G/G0 a subgroup of S4 × C2

First Method
The first way to try and make sense of this group will be to assign it an action on (diagonal)

lattice walks in the plane. As before, we should expect the U(1) component to restrict one of
the coordinate directions, and the component group the other. Unfortunately, there is no natural
“modularity condition” associated with S4, so we’ll work with an action of the group instead. Note
that S4 acts in the usual way on pairs of choices of vertical move. Indeed, for any two consecutive
steps we must choose a vertical movement direction for each, which can be done in 22 = 4 ways,
and S4 acts on these four possibilities. We can assign the C2 component of S4 × C2 an action
on the horizontal steps which identifies a sequence of horizontal moves with its reflection in the
y-axis. Then the moment sequence for J(O), whence comes S4 × C2, counts the number of paths
that return to the origin in the x-direction, up to the S4-action on the y-coordinate choices and the
reflection from C2. Again, horizontal and vertical choices are taken independently, so we can just
multiply the corresponding sequences. The sequence for U(1) is of course just bn; the proof that
the other term in the moment sequence from [?] the number of paths of length 2n along a single
direction up to this S4 action is tricky, so we’ll simply refer to the [?].

Many of the other component groups are subgroups of S4×C2. In many cases, the interpretation
carries over quite naturally; in particular, the groups A4, D4, C3, C2, C1 can embed in S4 in such a
way that their moment sequences count the number of inequivalent walks up to the action of the
corresponding subgroup of S4 on the pairs of vertical move choices. There is some art to picking
the embedding - for instance, C2 must embed as the group generated by a double transposition;
no ordinary transposition will do. Unfortunately, the subgroups C4 and D3 of S4 do not follow
this paradigm, so we have to look at them the way we looked at cyclic and dihedral groups before;
namely, as imposing restrictions on the vertical move choices in the walk. In this section, we
explain how the classification of the subgroups is deduced. Then, in the following one, we explain
an alternate equivalent counting problem (based on symmetries on a K4) and we give a proof of
our claim about the model working when restricted to a certain subgroup.

Classification of the component groups of the subgroups of J(O)

Things are slightly more complicated when the component group is a subgroup of S4 × C2 with
non-trivial projection onto the C2 component. When the component group is of the form J(Ck) or
J(Dk) (i.e. we have a direct product) it is simply a matter of identifying paths with their reflections,
with the restriction inherited from the group Ck or Dk. In the exceptional cases C4 and D3, the
behavior is the same (i.e. direct product with C2 identifies walks on the number line with their
reflections), but again is best explained by the other model.

Sometimes, however, the subgroups are more interesting; they can be onto each component in
the product, but not onto overall. This essentially amounts to finding non-trivial homomorphisms
from the subgroups of S4 to C2.

From S4, there is only the sign homomorphism; indeed, A4 is the only normal subgroup of index
2 in S4, and is killed by the sign homomorphism. Since A4 has only the Klein four-group as a
normal subgroup, with index 3, A4 has no non-trivial homomorphisms to C2.



14 DHROOVA AIYLAM, CARLOS CORTEZ X MENTOR : DAVID CORWIN

All other subgroups of S4 are either cyclic or dihedral. The groups D2, D4 do in fact have non-
trivial homomorphisms onto C2. If we let x, y be the generators, so that xk = xyxy = y2 = 1,
then a nontrivial homomorphism is uniquely specified by the images of x and y; the condition that
this homomorphism be nontrivial requires that x and y are not both sent to 1. Thus there are
3 possible nontrivial homomorphisms onto C2. In the case of D2, these are interchanged by an
outer automorphism and all isomorphic to the sign homomophism. For D4, there are two distinct
nontrivial homomorphisms up to up to outer automorphism, one of which is isomorphic to the sign
homomorphism. These correspond to the groups D4,1, D4,2.

All that remain are the cyclic groups. None of these have index 2 in S4 or A4, and so they are
normal subgroups only of the dihedral groups. When they occur as subgroups of a dihedral group,
(notice there is a unique embedding of Ck in Dk up to conjugation) they can or not inherit a sign
assignment depending on what this was on the dihedral supergroup. It is this way that C2,1 and
C4,1 arise and the specifics of which of the Di,j they come from are shown in the Appendix.

Second Method

Unlike in the SU(2) case, the second interpretation involving a number line walk coupled with
a walk on an auxiliary graph is more subtle and genuinely different from planar action. We will
use an auxiliary K4, the complete pseudograph (i.e. with loops) on four vertices. We explain this
interpretation now. We begin with a remark that will shorten the work to be done.

Remark 4. The groups whose notation includes a J (corresponding to the adjoining of the matrix
called J in [?]) correspond to a component group that inherits from the C2 in SO(3) × C2. In
every case, this is interpreted as identifying symmetric across the origin walks in the number line
part of the counting problem. Except for J(O) and J(D6), which we include for being the maximal
groups, we thus limit our mention of these groups, as it suffices to describe the group to which J
was adjoined.

We consider, as an auxiliary graph, a K4 (cocmplete graph in 4 vertices) with loops at each
of its vertices. The basic idea is to let S4 (or a subgroup of it) act on this K4 and determine
which symmetries to ignore while a presence of the C2 identifies paths in the number line that are
reflections over the origin of each other. A more detailed description follows, starting by J(O).

Proposition 4.1. The 2n-th trace moment for J(O) counts the number of closed walks of length n
in a K4 with loops at each vertex where two walks are considered equivalent if one can be obtained
from the other by applying an S4 symmetry to the vertices of K4, coupled with an independent
origin-returning walk of length 2n on the number line up to reflection across the origin.

Proof. As usual, the origin returning walks on the number line up to reflection introduce a factor
of 1

2bn, so we restrict our attention to the S4 portion.

In order to count the number of non-isomorphic walks in the K4, label the vertices in the graph
as a, b, c, d. Then a closed walk of length n corresponds to a word of length n with the characters
a, b, c, d: the i-th letter corresponds to the vertex which the walk is at after taking i steps. Since
we are ignoring S4 symmetries, we could without lost of generality choose the initial vertex such
that it coincides with the final one, thus making the walk closed. So, for instance, the word ”bcd”
corresponds to the closed walk d → b → c → d of length 3 and it is equivalent to other 23 walks
which are in its S4 orbit.
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Hence, the problem is equivalent to counting the number of words of length n on a 4-letter
vocabulary where 2 words are considered equivalent if related by a S4 symmetry on the letters.
This is equivalent to partitioning the set {1, 2, . . . , n} into at most 4 parts (each corresponds to
a letter and the S4 symmetries come from not distinguishing between the part) . [?] sequence
A124303 counts exactly this quantity, and its closed form is the same as the one for J(O) in [?].

�

We could expect that this same counting problem would work for any subgroup of J(O) by
restricting to the appropriate component group for the symmetries. Recall the subgroups of S4 are
A4, D4, D3, D2, C4, C3, C2, C1. This is almost true, except for two aspects:

(1) Care must be taken with groups of the form Ci,j , Di,j as the j represents a particular
homomorphism from the component group onto C2.

(2) The model does not hold for the cases related toD3 and C4 (J(D3), D3, D3,2, J(C4), C4, C4,1).
We provide provisionary explanations for these.

Indeed, except for these cases, this ’restriction of symmetries’ model respects the Hasse diagram
of J(O). We first deal with the T,Dk, Ck cases (we remarked above how the presence of a J affect
these), then explain the Ci,j , Di,j ones and finally provide the provisionary explanations for those
related to D3, C4.

Proposition 4.2. Restricting the counting problem from J(O) to the appropriate group of symme-
tries provides a counting problem for T,D4, D2, C4, C2, C1.

Proof. For all cases, the zeroth moment is 1 so we won’t consider it (although if appropriately
interpreted what follows applies).

We begin with T , the component group A4. Recall A4 consists of the set of 3-cycles (8 of these),
double transpositions (3 of these) and the identity. Recall the interpretation of this problem in
terms of counting words. As we are counting the number of orbits on length n words under the
action of A4, by Burnside’s lemma it suffices to count how many words are fixed by each element
of A4. Clearly, the identity fixes all 4n words. Each 3-cycle fixes precisely one word, that which
consists entirely of the letter not permuted by the 3− cycle. The double transpositions do not fix
any words. Thus, Burnside’s lemma gives the counting formula 1

12(22n+ 8) for n ≥ 1 and the claim
follows.

For D4, the generators are a 4-cycle, e.g. (abcd), and a non-adjacent transposition such as (ac).
In this case, every word has orbit of size 8 except those which consist of only two non-adjacent
letters. There are 2n of these, each with an orbit of size 4. Thus, we have 1

8(22n + 2 · 2n) for n ≥ 1.

For D2, we need to be careful with the choice of generators. We use the D2 consisting of the
identity and the double transpositions. Then, every word has an orbit of size 4 and the formula
1
4(22n) follows.

For C2, every word has orbit of size 2 and we obtain (1
2)22n.

C1 acts trivially, so there are 22n inequivalent words in this case.
�

This takes care of proving that this model holds for the basic cases we claimed. We now talk
about the first bullet point above, namely, how to extend this interpretation to the Di,j , Ci,j cases.

Extension of the combinatorial problems to O1 and Di,j , Ci,j
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Recall the work made classifying the subgroups of J(O). In particular, remember the j in Di,j

specifies a certain sign assignment to the elements of Di. The key idea is:

Proposition 4.3. The kernel of the homomorphism onto C2 (sign assignment) defines what sym-
metries to consider on the auxiliary graph K4. The presence of such homomorphism identifies
symmetric walks with respect to the origin in the number line. This gives a counting problem for
O1, D4,2, D4,1, D2,1, C2,1.

Proof. For the homomorphisms corresponding toO1, D4,2, D4,1, D2,1, C2,1, the kernels areA4, C4, D2,
C2, C1, respectively. We can see that, indeed, their formulae in Table 10 of [?] are those for
T,C4, D2, C2, C1 (the connected components of Sato-Tate groups such that these connected com-
ponents are isomorphic to the mentioned kernels) multiplied by a factor of 1

2 . The halving comes
from identifying symmetric walks in the number line. �

The cases D3 and C4

We mentioned above that the cases D3 and C4 are not well explained by the symmetry group
they induce as a subgroup of S4. Instead, we profit more by interpreting them using the auxiliary
graph picture that applies to cyclic and dihedral groups as the model for J(D6) presented below.
Thus D3 acts on a 6-cycle, and C4 on an 8-cycle, each taken together with the usual walk on the
number line. All the problematic cases mentioned in bullet point (2) above can be resolved by a
mixture of this interpretation and the idea of choosing an appropriate cycle according to the kernel.
More precisely

Proposition 4.4. The kernel of the homomorphism onto C2 (sign assignment) defines what cyclic
graph to consider and which symmetries to ignore. The presence of such homomorphism identifies
symmetric walks with respect to the origin in the number line. This gives a counting problem for
D3, C4, D3,2, C4,1.

Proof. For the homomorphisms corresponding to D3, C4, D3,2, C4,1, the kernels are D3, C4, C6

C2, respectively. The corresponding problems count closed walks in a 6-cycle, 8-cycle, 12-cycle, 4-
cycle, respectively (and the formulae for these can be found on the OEIS), and up to D3, C4, C6, C2

symmetries (which mean fixing a vertex in the cyclic cases and identifying reflections across this
vertex in the dihedral one). In the last two cases, the presence of a non-trivial homomorphism onto
C2 identifies walks in the number line in the usual manner, thus halving the result. �

4.2.2. Subgroups of J(D6)

Groups in [?]: J(D6), J(D3), D6,2, D6,1, J(C6), D6, C6, C6,1D3, D3,2, J(C3), D2, D2,1, J(C2), J(C1),
C1

Remark 5. As mentioned under “The cases D3 and C4” the method described here provides a
combinatorial problem for all the Sato-Tate groups of the forms J(Ck), J(Dk), Ci,j , Di,j , Ck, Dk

(that is, all the U(1) cases except T , O, O1, J(T ), J(O)).

Remark 6. As mentioned before, in this case, the first method and second method are just two
different ways of interpreting the same counting problem, so we’ll just describe the method which
uses the auxiliary graph.

We’ll need the following lemma:
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Lemma 4.5. Let ζ be a primitive 2k-th root of unity. Then the number of closed walks of length
n starting at a fixed vertex in a 2k − cycle is

1

2k

2k−1∑
j=0

(ζj + ζ−j)n

Proof. Letting x represent a step clockwise and x−1 a step counterclockwise, a standard generating
function argument reveals we’re interested in the sum∑

t

[x2kt](x+ x−1)n

where t varies over Z. We can now apply the usual roots of unity filter, so that the sum in question
is 1/(2k) times the sum we get by substituting for x the powers ζj , 0 ≤ j ≤ 2k − 1, and the result
follows. �

Notice that as described in section 5.1.1 of [?], the way of computing the distributions (and
therefore the trace moment sequences) involves averaging various powers of sums of roots of unity
(called r(h) in [?]) in the same way as the lemma above does.

Proposition 4.6. We find a combinatorial interpretation for the trace moment sequences of all
subgroups of J(D6) as follows:

(1) As in all the U(1) cases, we count the closed walks of length 2n in the number line.
(2) If the group is of the form J(Ck), J(Dk), Ci,j , Di,j, meaning the inherited homomorphism

onto C2 (sign assignment) from SO(3)×C2 is non-trivial, we identify reflections across the
origin on this walk on the number line. Else, we don’t.

(3) The kernel of this homomorphism is Ck or Dk. In either case, we consider closed walks of
length 2n in a 2k-cycle. We ignore Ck or Dk symmetries, respectively.

Proof. We limit ourselves to describe what each of the bullet points counts:

(1) This corresponds to the central binomial coefficients, bn.
(2) When we identify reflected walks, we are multiplying by a factor of 1

2 .

Ck fixes a vertex and counts closed walks starting there. Dk additionally identifies walks that are
reflections of each other across this vertex. The number of closed walks of length 2n in a 2k-cycle
can be computed according to the lemma below and equals the required values from [?] because of
the explanation that follows this lemma. �

5. Further directions

5.1. Role of Lie groups in combinatorial interpretations

Although most combinatorial itnerpretations have been determined and we know that for the
connected groups it consists on counting origin-returning walks in the Weyl chamber of the group,
it is of interest to systematically understand how the component group comes into play. For most
basic cases in genus 1 this occurs by the component group imposing a series of symmetries to be
ignored. However, since more complicated groups (e.g. S4 × C2 which is the component group
for a Sato-Tate group with connectedcomponent of the identity U(1)) do not act naturally in the
plane, the current combinatorial interpretations become somewhat more ad hoc. The objective is
to develop a theory that applies to all 55 Sato-Tate groups and could possibly generalize to provide
the moment sequences of Sato-Tate groups of curves of higher genus.
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5.2. Looking at a2

In genus 2 the characteristic polynomial of the Frobenius map is of the form Lp(t) = t4 + a1t
3 +

a2t
2 + a1t + 1. Formulae for the moment sequences of the distribution of the a2 in genus 2 are

known, but their combinatorial interpretations are not well understood. It can be expected that
there exist some as these sequences correspond to multiplicities of the trivial representation in the
tensor powers of the second-wedge power of the standard representation.

5.3. Looking at genus 3

There exist 15 possible identity components. However, neither is there full data about the
possible component groups available nor is it practical to analyze it, as the partial progress has
found hundreds of them. Some beginning steps would consist of finding interpretations for the
sequences obtained from the connected cases and possibly some of their most simple variations.

Indeed, the cases in which the normalizer of G0 has finite index in USp(6) seem to behave
similarly by letting each restriction or symmetry take place in one of the coordinates.
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7. Appendix

7.1. Hasse diagram for J(O)

(1) J(D3), J(T ), O1, O, J(D4) are the maximal subgroups of J(O)
(2) J(C3), T, J(D2) are the maximal subgroups of J(T )
(3) T,D3,2, D4,1 are the maximal subgroups of O1

(4) T,D3, D4 are the maximal subgroups of O
(5) D4, D4,1, J(C4), D4,2, J(D2) are the maximal subgroups of J(D4)
(6) J(C3), D3, D3,2, J(C2) are the maximal subgroups of J(D3)
(7) D2, C4 are the maximal subgroups of D4

(8) D2, D2,1, C4,1 are the maximal subgroups of D4,1

(9) J(C2), C4, C4,1 are the maximal subgroups of D4,1

(10) D2,1, C4 are the maximal subgroups of D4,2

(11) D2, D2,1, J(C2) are the maximal subgroups of J(D2)
(12) C3, J(C1) are the maximal subgroups of J(C3)
(13) C3, C2 are the maximal subgroups of D3

(14) C3, C2,1 are the maximal subgroups of D3,2

(15) C2 is the maximal subgroup of D2

(16) C2 and C2,1 are the maximal subgroups of D2,1

(17) C2, J(C1), C2,1 are the maximal subgroups of J(C2)
(18) C2 is the maximal subgroup of C4 and C4,1

(19) C1 is the maximal subgroup of C3, C2, J(C1) and C2,1

7.2. Hasse diagram for J(D6)

(1) J(D3), J(C6), D6, D6,1, D6,2 are the maximal subgroups of J(D6)
(2) D3, C6, D2 are the maximal subgroups of D6

(3) D3,2, D3, C6,1, D2,1 are the maximal subgroups of D6,1

(4) D3,2, C6, D2,1 are the maximal subgroups of D6,2

(5) J(C3), J(C2), C6,1, C6 are the maximal subgroups of J(C6)
(6) D3, D3,2, J(C3), J(C2) are the maximal subgroups of J(D3)
(7) C3, C2 are the maximal subgroups of D3

(8) C3, C2 are the maximal subgroups of C6

(9) C3, C2,1 are the maximal subgroups of C6,1

(10) C3, C2,1 are the maximal subgroups of D3,2

(11) C3, J(C1) are the maximal subgroups of J(C3)
(12) C2 is the maximal subgroup of D2

(13) C2, C2,1 are the maximal subgroups of D2,1

(14) C2, C2,1, J(C1) are the maximal subgroups of J(C2)
(15) C1 is the maximal subgroup of D2, D2,1, and J(C1)
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