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Abstract. In this paper we study an incidence problem in finite geometry.

Suppose we are given a set X which is the union of some number of lines in
F3
q . We choose a subset Y of X, such that for each line ` in X, at least half of

its points are in Y . We show that |Y | is always at least some fraction of |X|.
Using the polynomial method and degree reduction, it was previously known
that such a statement holds for large and small |Y | (when |Y | ≥ q2 log q or

|Y | ≤ q2/ log q). We close the gap by proving the statement for the remaining

cases. We first note that such a statement holds for a set of points such that
each point lies on at most two lines. We then show that there cannot be

too many points with three or more lines lying on the zero set of a nonlinear

polynomial, and use this to prove the statement in the remaining cases.
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1. Introduction

The polynomial method has been used in recent years to prove results in inci-
dence geometry. Dvir use the polynomial method to obtain a solution to the finite
field Kakeya conjecture [2]. The solution to the Erdős distinct distances problem
in the plane by Guth and Katz also utilized this method [5].

The idea of the polynomial method is to find a polynomial of minimal degree
vanishing on a set of interest, and then use properties of polynomials to prove
statements about the set.

Our problem concerns a set of lines in finite space F3
q. Letting X denote the set

of points on these lines, we choose a subset Y such that for every line, at least half
of its points are in Y . The question is then: is Y always a significant fraction of
X? More precisely, our problem is the following:

Problem. Suppose `1, · · · , `n are distinct lines in F3
q, and X =

⋃
`i. For each

i = 1, · · · , n, let Si be a subset of `i such that |Si| ≥ q
2 . Let |Y | =

⋃
Si. Does there

exist a constant (independent of q) such that |X| ≤ c|Y |.

We answer this question in the affirmative. In a sense, this question is asking
about whether a set of lines can have too many points lying on many lines. For
example, if no two lines intersect, then each point is on exactly one line. In this
situation, the set Y is always at least half of X, since we must take q

2 points from
each line. In a similar fashion, we can show the following by just counting point-line
incidences:

Proposition. Let c be a constant. Suppose each point of X lies on at most c of
the lines in the list `1, `2, · · · , `n. Then |X| ≤ 2c|Y |.

Proof. Each point of Y lies on at most c lines, so the number point-line incidence
pairs #(p, `) in Y is at most c|Y |. Each line of Y has at least q

2 points, so the
number of point-line incidence pairs #(p, `) in Y is at least nq

2 .
Each point of X lies on at least 1 line, so the number of point-line incidence

pairs in X is at least |X|. Each line of X contains exactly q points, so the number
of point-line incidence pairs in X is exactly nq.

We then get

|X| ≤ nq = 2 · nq
2
≤ 2c|Y |,

as desired. �

The proof strategy for the problem is as follows. First, using the argument given
by Guth in his polynomial course lecture notes [4, Lecture 12], we can use the
polynomial method along with the probabilistic method to show the statement for
sufficiently large and sufficiently small |Y |. In the remaining gap, this argument
will show that there is a polynomial of low degree (. log q) vanishing on all but a
small subset of X containing at most 4|Y | elements.

To prove the statement in the gap, we are motivated by the previous proposition.
Instead of bounding the number of lines than can pass through any point, we wish
to show that there are not too many points with more than 2 lines through them.
Modifying the proof of the proposition to take into account these points will then
be enough to show the bound.

The proof that there are not too many points with many more than 2 lines
through them follows some theory of incidence geometry in R3. Here, it is known
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that for any given polynomial P , there exist a set of polynomials SP such that if
a point lies on at least three lines in the zero set of P , then the polynomials in
SP vanish at that point (see [4, Leture 14] for details). To get a similar argument
to work in finite fields, there are several obstacles to overcome. Due to a lack
of neighborhoods, we use the theory of formal power series to ‘expand’ P locally
around any point. To get the special polynomials SP , we need to take derivatives
of P . Due to problems with the characteristic being positive, we will need to change
these derivatives to Hasse derivatives. Moreover, we will need to consider other sets
of polynomials to deal with the obstacle related to the fact that in characteristic
p, the derivative of xp vanishes. Developing these tools for finite fields allows us
to get enough control over the number of points with more than two lines to prove
the desired bound.

The outline of the paper is as follows:
In Section 2, we give some preliminary results in order to use the polynomial

method. Here bounds are given for the degree of the polynomial of smallest degree
vanishing on a set of points or lines, the number of zeros a polynomial can have in n
dimensional space over a finite field, the number of common zeros two polynomials
can have in three dimensional space over a finite field, and a probability lemma
needed to apply the probabilistic method. These are largely from lecture notes of
Guth’s course on the polynomial method [4].

In Section 3, we give in detail the arguments in [4, Lecture 12] showing that the

statement holds for |Y | ≥ q2 log q and |Y | ≤ q2

log q . Moreover, it is shown that there

is a polynomial of degree . log q vanishing on all but a small subset of X in the

case when q2

log q ≤ |Y | ≤ q
2 log q.

Section 4 contains a largely self contained introduction to the theory of Hasse
derivatives. The results we will need from this section include the product rule
(Proposition 4.2.3(4)), the definition of a total derivative (Definition 4.2.9), and a
result showing the nature of Hasse derivatives in prime characteristic (Corollary
4.3.3).

Section 5 develops the theory of n-flat points. This theory allows us to detect
planes, which we then use to prove that a nonlinear irreducible polynomial P of
small degree d in Fq[x, y, z] can have at most ≈ qd3 points with at least three lines
through them lying on the zero set of P .

Section 6 finishes the proof of the main theorem. We first prove a statement for
a set of lines lying on an irreducible polynomial of small degree, and then use this
result to show the statement in all remaining cases.
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project mentor and helping us in our research project. We would like to thank
Larry Guth for suggesting the problem we worked on. We would like to thank
Pavel Etingof for the suggestion of using formal power series, and Pavel Etingof and
Jacob Fox for the weekly meetings. We would also like to thank Slava Gerovich for
organizing the SPUR program.

2. Preliminaries

In this section, we prove some of the basic results needed for the use of the
polynomial method. Most of this material is from Guth’s lecture notes [4]; they are
repeated here for completeness of exposition, and to set our notations.
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2.1. The degree of points and lines.

Definition 2.1.1. Let S be a set of points in n dimensional space Fn. The degree
deg(S) of S is the minimal degree of the nonzero polynomials vanishing on S.

Let Vd be the vector space of polynomials with degree ≤ d in n variables.

Proposition 2.1.2. For any finite set S, we have deg(S) ≤ n|S| 1n .

Proof. (From [4, Lecture 1, Pages 1-2]) The statement follows from a dimension
counting argument. The evaluation map E : Vd → F|S| given by p 7→ (p(s))s∈S is

a linear map. The dimension of Vd is
(
d+n
n

)
≥ dn

n! . For d = (n!)
1
n |S| 1n ≤ n|S| 1n , the

dimension of V (d) is greater than |S|, so there is a polynomial of degree less than

or equal to d vanishing on S. Thus, deg(S) ≤ n|S| 1n . �

When the set S has some sort of algebraic structure, we can hope to do better
than what we have for a generic set S. For example, we have the following:

Theorem 2.1.3. For any L lines in Fn, there is a nonzero polynomial of degree

≤ nL
1

n−1 vanishing on every line.

Proof. (From [4, Lecture 12, Page 1]) We wish to find a degree d such that dimVd >
(d + 1)L. If such a number exists, we can choose d + 1 points on each line for a
total of (d+ 1)L points. Then, since dimVd > (d+ 1)L, we can find a polynomial
of degree at most d vanishing on all (d+ 1)L points. Because our polynomial is of
degree at most d and vanishes on d+ 1 points of each line, it must vanish on each
line.

Now to get dimVd > (d+ 1)L, note that dimVd =
(
d+n
n

)
= 1

n! (d+ n) · · · (d+ 1).

Thus, dimV (d)
d+1 ≥ dn−1

n! . Taking d ≈ (n!)
1

n−1L
1

n−1 ≤ nL
1

n−1 will work. �

We can explicitly calculate Vd to get a better degree in specific cases. For exam-
ple, there is a quadratic vanishing on any 3 lines: here V2 = 10, while (2 + 1)3 = 9.

2.2. The Number of Zeros of a Polynomial. For a function f : Fnq → Fq, let
Z(f) denote the set of zeros of f , that is, the set of x ∈ Fq such that f(x) = 0. For
more than one function, f1, · · · , fk, let Z(f1, · · · , fk) denote the common zeros of
all k functions.

We have the following well-known bound on the number of zeros for polynomials
in finite space.

Theorem 2.2.1. Let P : Fnq → Fq be a nonzero polynomial in n variables x1, · · · ,
xn. The number of zeros of P is at most (degP )qn−1.

Proof. We use mathematical induction on the dimension of the space n.
When n = 1, this is just the statement that a d degree polynomial in one variable

can have at most d roots.
Suppose we have shown the theorem for n = k. Let P be a polynomial of degree

d in k + 1 variables. We can write

P =
∑̀
j=0

Pj(x1, · · · , xk)xjk+1,

where Pj is a polynomial in k variables of degree at most d− j, and P` 6= 0 where
` ≤ d. For any given (x1, · · · , xk), there are two cases:
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(1) If P`(x1, · · · , xk) 6= 0, then there are at most ` values of xk+1 for which
P = 0. Counting the total number of zeros possible from this case, we see
that there are at most qk elements of Fkq , so there are at most qk` zeros.

(2) If P`(x1, · · · , xk) = 0, then the worst that can happen is that all values
of xk+1 will give 0. By the induction hypothesis, P`(x1, · · · , xk) = 0 for
at most deg(P`)q

k−1 ≤ (d − `)qk−1 values of Fkq . Thus, there are at most

(d− `)qk zeros in this case.

We add to get that there are at most dqk zeros, and the induction is done. �

What happens if we are looking at the common zeros of two polynomials? We
have the following result:

Theorem 2.2.2. Let P1, P2 be coprime polynomials F3
q → Fq. The number of

common roots of P1 and P2 does not exceed 3q(degP )(degQ).

The proof is a modification of a proof of Bezout’s theorem in the plane given in
[4, Lecture 13, Pages 1-2]. First, we prove a very handy lemma (see [4, Lecture 13,
Lemma 1.1]).

Lemma 2.2.3. Let X be a finite set in Fn, and I(X) be the ideal of polynomials
in F[x1, · · · , xn] which vanish on X. Then dim(F[x1, · · · , xn]/I(X)) = |X|.

Note that X must be finite.

Proof. If X is finite, the evaluation map E : F[x1, · · · , xn]→ Fun(X,F) is a surjec-
tive linear map with kernel I(X). The claim follows by noting dim(Fun(X,F)) =
|X|. �

Lemma 2.2.4. I(Fnq ) = (xq1 − x1, · · · , xqn − xn).

Proof. The proof can be gotten from dimension counting. Clearly I(Fnq ) ⊃ (xq1 −
x1, · · · , xqn−xn). But Fq[x1, · · · , xn]/(xq1−x1, · · · , xqn−xn) has a basis given by the
(images under the quotient map of the) monomials xm1

1 · · ·xmn
n , where 0 ≤ mi ≤

q − 1, so it has dimension qn. This is exactly |Fnq |, so I(Fnq ) cannot be larger than

(xq1− x1, · · · , xqn− xn). We then see that the evaluation map E applied to V3q−2 is
surjective. �

Proof of Theorem 2.2.2. The ideal of polynomials vanishing on the common zeros
of coprime polynomials P , Q in F3

q must contain (I(F3
q), P,Q). For our proof, the

only information from I(F3
q) we really need is that V3q−2 surjects onto Fun(F3

q,Fq).
Let D = dimP , and E = dimQ.

Let Id = (P ) ∩ Vd, and Rd = Vd/Id. Multiplication by P takes Vd−D bijectively
onto Id, so

dimRd = dimVd − dim Id = dimVd − dimVd−D =

(
d+ 3

3

)
−
(
d−D + 3

3

)
=

1

6

(
D(3d2 + 12d+ 11)−D2(3d+ 6) +D3

)
=

1

6

(
3Dd2 + (12D − 3D2)d+ (11D − 6D2 +D3)

)
.

Let Jd be the image of (Q) ∩ Vd under the quotient map π : Vd → Rd, and
Sd = Vd/Jd. We claim that multiplication by π(Q) takes Rd−E injectively into
Rd. Indeed, suppose rπ(Q) = 0 in Rd. Choosing a lift for the map, we can find a
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polynomial P1 in Vd−E such that P1Q = PP2 for some polynomial P2. But P and
Q are coprime, so P divides P1, and thus r = π(P1) = 0. Thus dim Jd ≥ dimVd−E ,
and

dimSd = dimRd − dim Jd ≤ dimRd − dimRd−E

=
1

6

(
6dDE − 3DE2 − 3D2E + 12DE

)
.

Because the evaluation map from V3q−2 surjects onto the space Fun(Z(P,Q),Fq)
with kernel containing I = (P,Q)∩V3q−2, we have that |Z(P,Q)| ≤ dimV3q−2/I =
dimS3q−2 ≤ 3qDE, as desired. �

2.3. Probability Lemma. To apply the probabilistic method, we shall need a
lemma in probability theory. Suppose you choose a subset of a set of n objects such
that each object is chosen independently with probability p. You expect to choose
np objects on average, and not to deviate too much from this (especially if n is
large, by the central limit theorem). The lemma gives bounds on the probabilities of
having more than 2np objects, and on having less than 1

2np objects in all situations.

Lemma 2.3.1. Let X be a random variable with a binomial distribution B(n, p).
(That is, the number of objects you get if you choose each object in a set of n objects
independently with probability p.) The mean is then µ = np. If p ≤ 1

2 , then

(1) the probability that X ≥ 2µ is at most exp(− 1
100np).

(2) the probability that X ≤ 1
2µ is at most exp(− 1

100np).

Proof. (From [4, Lecture 12, Page 6]) Let Xi = 1 if you choose the ith object, and
0 if you do not, so that X = X1 + · · ·+Xn. Consider the random variable Y = eβX

for some β ∈ R. By independence, we have

EeβX = Eeβ
∑

iXi = E
∏
i

eβXi =
∏
i

EeβXi = (1− p+ peβ)n.

On the other hand, if β ≥ 0, then EeβX ≥ e2βpnP (X ≥ 2µ). Thus,

P (X ≥ 2µ) ≤
(

1− p+ peβ

e2βp

)n
.

Plugging in β = 1, we get

P (X ≥ 2µ) ≤
(

1 + p(e− 1)

1 + 2p

)n
< e−

1
100pn,

since p((2− 1
100 − (e− 1))p− 1

50 ) > 0 for p ∈ [0, 1], so

1 + (e− 1)p ≤ 1 + (2− 1

100
)p− 1

50
p2 ≤ (1 + 2p)(1− 1

100
p+

1

20000
p2 − · · · ).

For the other inequality, we note that when β ≤ 0, we get EeβX ≥ e 1
2βpnP (E ≤

1
2µ). As above, this gives

P (X ≤ 1

2
µ) ≤

(
1− p+ peβ

e
1
2βp

)n
.

Take β = − 1
10 , and use power series to find that

P (X ≤ 1

2
µ) ≤

(
1− p+ p(1− 1

10 + 1
200 − · · · )

1− 1
20p+ · · ·

)n
≤
(

1− 19
200p

1− 1
20p

)n
≤ e− 1

100pn,
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as 1− 19
200p ≤ 1− 1

20p−
1

100p+ 1
2000p

2+(1− 1
20p)(

1
200000p

2−· · · ) = (1− 1
20p)e

− 1
100p. �

3. The Small and Large Cases

For quick reference, let us state our problem again.

Problem. Suppose `1, · · · , `n are distinct lines in F3
q, and X =

⋃
`i. For each

i = 1, · · · , n, let Si be a subset of `i such that |Si| ≥ q
2 . Let |Y | =

⋃
Si. Does there

exist a constant (independent of q) such that |X| ≤ c|Y |.

In this section, we will give the arguments showing that if |Y | ≤ q2

log q or if

|Y | ≥ q2 log q, then we can find a constant c independent of q such that |X| ≤ c|Y |.
The argument follows the one given in [4, Lecture 12, Proposition 2.1], but with
more detailed bookkeeping.

3.1. A Trivial Bound.

Proposition 3.1.1. In F3
q, we always have |X| ≤ q3|Y |.

Proof. The set Y has at least 1 point, while the set X has at most q3 points. �

The point of the trivial bound is to show that it suffices to prove |X| ≤ c|Y | for
all but finitely many q.

3.2. The two dimensional case. The proof when the lines are required to lie in
F2
q instead of F3

q does not rely on the polynomial method, but merely the fact that

there are not too many points in F2
q. As such, it carries over to the situations where

|X| is small in F3
q.

Theorem 3.2.1. If the lines are required to lie in F2
q, we must have |Y | & |X|.

Proof. Let L denote the number of lines in X, which is the same as the number of
lines in Y .

Case 1: L ≥ q
2 . First |X| ≤ q2, as there are only q2 points. Take q

2 points from
S1. Take q

2 − 1 points from S2 not already taken. Take q
2 − 3 points from S3 not

already taken, etc. We get that

|Y | ≥ q

2
+ (

q

2
− 1) + · · ·+ 1 =

1

8
(q2 + 2q).

Thus, |Y | ≥ 1
8 |X|.

Case 2: L < q
2 . This is similar to the above, except we terminate taking points

from lines after L steps. We have that |X| ≤ qL, and

|Y | ≥ q

2
+ (

q

2
− 1) + · · ·+ (

q

2
− (L− 1)) =

qL

2
− (L− 1)L

2
≥ qL

2
− qL

4
=
qL

4
.

Thus, |Y | ≥ 1
4 |X|. �

Let us view the essential components of the above proof.

(1) Two lines intersect in at most one point.
(2) Each line of Y has at least q

2 points.

(3) |X| ≤ q2.
(4) Each line of X has q points.

The proof thus carries over whenever |X| ≤ cq2 in F3
q. We then get

Theorem 3.2.2. If |X| ≤ cq2 for some constant c, then c|Y | & |X|.
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3.3. Degree Reduction. We use the method of degree reduction and then apply
the polynomial method. In degree reduction, the basic idea is to use the structure
of the problem to get a better upper bound on the degree of a polynomial vanishing
on the desired set. See [4, Lecture 12] for some examples of degree reduction.

In our problem, we have many lines, let us call this set L. The idea is to find a
small subset L1 of these lines which have a lot of incidences with the other lines.
Then, we use the probabilistic method to find a subset L2 of L1 with the property
that if a polynomial vanishes on all the lines of L2, then it must vanish on all the
lines in L−L1. We then use this polynomial to estimate the total number of points
in L − L1, and use the fact that L1 is “small” to get the rest.

Proposition 3.3.1. There exists a constant c such that if |Y | ≤ q2

log q or |Y | ≥
q2 log q, then |X| ≤ c|Y |. Otherwise, there is a polynomial P with degree at most

c log q vanishing on all but at most 4|Y |
q lines of Y .

Proof. (Follows [4, Lecture 12, Proposition 2.1]) Let L denote the lines of Y (which
are the same as the lines of X.) Choose an ordering for the lines in L, so we have
a list `1, · · · , `n. We make a subset L1 of L as follows: first we put `1 in L1. Then,
for each `i, we put `i into L1 if and only if it has at least q

4 points (in Y ) not already
in L1. Applying this procedure for each of i = 2, · · · , n, we get a subset L1 of L.
As we add a line into L1 only if it contains at least q

4 points not already in L1, we

get that q
4 |L1| ≤ |Y |, so |L1| ≤ 4

q |Y |. Moreover, every line not in L1 has at least q
4

points in L1.
Take d to be the smallest integer such that

d2 ≥ (16 · 20 · 104)2 ·max(1,
|Y | log q

q2
,
|Y |2

q4
).

For simplicity of notation, we let C denote the constant 16 · 20 · 104. Note that

1 ≤ |Y | log qq2 when |Y | ≥ q2

log q , that 1 ≤ |Y |
2

q4 when |Y | ≥ q2, and that |Y | log qq2 ≤ |Y |
2

q4

when |Y | ≥ q2 log q. Thus, we can take

d ≈


C if |Y | ≤ q2

log q ,

C · |Y |
1
2 (log q)

1
2

q if q2

log q ≤ |Y | ≤ q
2 log q

C · |Y |q2 if |Y | ≥ q2 log q.

Now we use the probabilistic method. Choose a subset L2 of L1 by independently

choosing each line in L1 with probability p = 1
20

d2

|L1| .

First, we show that the proposition is true whenever this is not possible, i.e.
20|L1| ≤ d2.

If |L1| ≤ 1
20C

2, then there is a polynomial P of degree at most d̃ = 3
2
√
5
C

vanishing on L1. As q
4 is asymptotically larger than the constant d̃, we may assume

that for each line in L − L1, the polynomial vanishes on more than d̃ points, so it
vanishes on the whole line. Thus, the polynomial P vanishes on every line in L.

This implies that |X| ≤ d̃q2, so a bound of the form |X| ≤ c|Y | is given by the
same argument as in the 2 dimensional case (see Theorem 3.2.2).

If |L1| ≤ 1
20C

2 · |Y |
2

q4 , then there exists a polynomial of degree at most 3C
2
√
5

|Y |
q2

vanishing on all lines L1. If q
4 ≥

3C
2
√
5

|Y |
q2 , then the polynomial must vanish on all
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lines of L. Thus, by Theorem 2.2.1, the number of points in X is at most 3C
2
√
5
|Y |.

If q4 ≤
3C
2
√
5

|Y |
q2 , then 6C√

5
|Y | ≥ q3. Since |X| ≤ q3, we also have a bound in this case.

Now suppose that |L1| ≤ 1
20C

2 · |Y | log qq2 . In this situation, we may assume that

q2

log q ≤ |Y | ≤ q2 log q. There is a polynomial of degree 3C
2
√
5

|Y |
1
2 (log q)

1
2

q ≤ 3C
2
√
5

log q

vanishing on all of L1. Now, for all sufficiently large q, we have that q
4 ≥

3C
2
√
5

log q,

so this polynomial vanishes on every line in L, and the proposition holds.

We may now assume that p = 1
20

d2

|L1| < 1, so that we may choose a subset L2 of L1

by choosing each line independently with probability p. The probability that there
are more than 1

10d
2 lines in L2 is at most exp(− 1

100 ·
1
20 ·d

2) ≤ exp(− 1
100 ·

1
20 ·C

2) =

exp(− 1
2000 · (16 · 20 · 104)2) ≤ exp(−107). As a polynomial of degree d vanishes on

any 1
10d

2 lines (Theorem 2.1.3), the probability that there is not a polynomial of

degree d vanishing on L2 is at most exp(−107).
Each line ` in L − L1 intersects L1 in at least q

4 points. Recalling that |L1| ≤
4
q |Y | and that d ≤ C |Y |

2

q2 , the expected number of points on ` in L2 is then at

least qp
4 = qd2

4·20|L1| ≥
q2d2

16·20|Y | ≥
Cd

16·20 = 104d. Recalling that d2 ≤ |Y | log q
q2 , the

probability that there are less than d points of L2 on ` is at most exp(− 1
100 ·

qp
4 ) ≤

exp(− 1
100 ·

q2d2

16·20|Y | ) ≤ exp(− 1
100·16·20C

2 log q) ≤ q−107 .

Now there are q2(q2 + q+ 1) total lines in F3
q. Thus, the probability that we can

find an L2 such that there is a polynomial of degree d vanishing on L2 and such that
every line in L−L1 has more than d points of L2 on it is at least 1− exp(−107)−
q−10

7+5 > 0. Because such an event happens with nonzero probability, there exists
a subset L2 of L1 with the desired properties. Thus, we can find a polynomial P
with degree d vanishing on all lines of L − L1.

We now finish the proof of the proposition.

If |Y | ≤ q2

log q , then d ≈ C. As P vanishes on all of L−L1, the number of points

in L− L1 is at most dq2. By an argument similar to the 2 dimensional case, there
is a constant c such that the number of points in L − L1 is at most c|Y |. Because
|L1| ≤ 4

q |Y |, there are at most 4|Y | points in L1. Thus, the proposition works in

this case.

When q2

log q ≤ |Y | ≤ q
2 log q, there is a polynomial of degree d ≈ C · |Y |

1
2 (log q)

1
2

q ≤
C log q vanishing on L − L1. As |L1| ≤ 4

q |Y |, the proposition is also proved in this
case.

When |Y | ≥ q2 log q, we have a polynomial of degree d ≈ C · |Y |q2 vanishing

on L − L1. Thus, by Theorem 2.2.1, there are at most C|Y | points in L − L1.
Combining this with the fact that there are at most 4|Y | points in L1, we get the
desired conclusion. �

4. Hasse Derivatives

We wish to extend certain notions, such as being flat, from the real case to the
finite field case. These notions are defined in terms of higher order derivatives.
The naive definition of these higher order derivatives in nonzero characteristic is
to compose taking the first derivative the proper number of times. However, this
definition is unsatisfactory for our purposes. For example, the derivative of xp in a
field of characteristic p is given by pxp−1 = 0, so using derivatives in this manner
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will never detect the difference between f(x) and f(x) + xp. Moreover, taking p
successive derivatives will always result in 0, so very limited information can be
gotten from knowing all the higher derivatives at a point. These problems are
related to the following: given a formal power series in one variable P (x) over R,
we can Taylor expand about x to get

P (x+ t) =

∞∑
n=0

1

n!
P (n)(x)tn = P (x) + P ′(x)t+

1

2!
P ′′(x)t2 + · · · .

In characteristic p, dividing by p! and higher factorials is forbidden as p = 0 is
not invertible. These issues are dealt with using the Hasse derivatives, which are
essentially defined so that a Taylor-like formula holds. For a reference on Hasse
derivatives, see [6, Section 5.10] or [3].

4.1. Hasse Derivatives in one variable. Let A be a commutative ring with 1,
and consider the A-algebra of polynomials in one variable A[x].

Definition 4.1.1 (Hasse Derivative). We define a sequence of A-linear operators
d(0), d(1), d(2), · · · from A[x] to A[x] by setting

d(k)xn =

(
n

k

)
xn−k,

and then extending to A[x] by linearity. That is,

d(k)
n∑
i=0

aix
i =

n∑
i=0

ai

(
i

k

)
xi−k =

n−k∑
i=0

ai+k

(
i+ k

k

)
xi.

The operator d(k) is called the k-th Hasse derivative.

Remark 4.1.2. When the characteristic of A is 0, the k-th Hasse derivative is a
nonzero multiple of the k-th derivative: d(k)P = 1

k!P
(k). In any characteristic, we

can see that k!d(k)P = P (k). Most notably, the first Hasse derivative is the same
as the first derivative.

Note that for k > n, we have d(k)xn = 0, so the k-th Hasse derivative vanishes
on polynomials of degree less than k. (The converse is not true, as d(1)xn = 0 in
characteristic n.)

Our main reason to use the Hasse derivative is because a Taylor-series like for-
mula holds:

Proposition 4.1.3. (Taylor Expansion) Let P (x) ∈ A[x]. Then

P (x+ t) =

∞∑
k=0

d(k)P (x)tk.

Note that d(k)P vanishes for k > degP , so the sum on the right is finite.
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Proof. We just expand. Let P (x) = a0 + a1x+ · · ·+ anx
n. Then,

P (x+ t) =

n∑
i=0

ai(x+ t)i

=

n∑
i=0

i∑
k=0

ai

(
i

k

)
xi−ktk

=

n∑
k=0

n∑
i=k

ai

(
i

k

)
xi−ktk

=

n∑
k=0

d(k)P (x)tk.

The conclusion follows since d(k)P = 0 for k > degP . �

Corollary 4.1.4. If, for some x ∈ A, we have d(k)P (x) = 0 for all k > n, then
degP ≤ n.

Proof. Write P (t) = P (x+ (t− x)) and Taylor expand. �

Remark 4.1.5. Corollary 4.1.4 gives us a method for overcoming the previously
alluded to fact that in nonzero characteristic n, the kernel of d(1) consist of more
than just the constant functions. That is, we cannot use the fact that the first
derivative is identically zero to conclude that the original was constant. Instead,
to prove something is constant, we need to verify that d(1), d(2), · · · all vanish at
some point.

For example, an argument to show that in characteristic 0 it suffices to check
d(1)P = 0 via Hasse derivatives could proceed as follows: if d(1)P = 0, then d(2)P =
1
2d

(1)d(1)P = 1
2d

(1)0 = 0. Similarly d(3)P = 1
3d

(1)d(2)P = 1
3d

(1)0 = 0. We can

inductively show that d(n)P = 0 for all n ≥ 1. Letting x = 0 (or any other element
of A) in the Taylor expansion shows that P is constant.

Remark 4.1.6. The Taylor expansion formula (Proposition 4.1.3) shows that we
could have alternatively defined the k-th Hasse derivative as

d(k)P (x) = [tk]P (x+ t),

where [tk] : A[x][t]→ A[x] gives the coefficient of tk in an element of the polynomial
ring A[x][t]. This alternate definition is essentially saying: we define the Hasse
derivative so that the Taylor expansion formula holds. We prefer using this alternate
definition in our proofs, as they would otherwise be a sequence of unmotivated
calculations.

Proposition 4.1.7 (Composition of Hasse derivatives). We have:

(1) d(k1)d(k2)P =
(
k1+k2
k1

)
d(k1+k2)P , or more generally,

(2) d(k1) · · · d(kn)P =
(
k1+···+kn
k1,··· ,kn

)
d(k1+···+kn)P .

Proof. We prove (1) using the alternate definition given in Remark 4.1.6. Then (2)
follows from (1) by induction.

We have

d(k1)d(k2)P (x) = d(k1)[tk2 ]P (x+ t) = [sk1tk2 ]P (x+ t+ s).
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Now P (x + t + s) =
∑
d(k)P (x)(t + s)k. The terms of this sum are homogeneous

in s and t, so the only one which could have a coefficient for the monomial sk1tk2

is the one with k = k1 + k2. Then,

d(k1)d(k2)P (x) = [sk1tk2 ](t+ s)k1+k2d(k1+k2)P (x) =

(
k1 + k2
k1, k2

)
d(k1+k2)P (x),

as desired. �

Corollary 4.1.8. The operators d(0), d(1), · · · commute.

Proposition 4.1.9 (Product Rule). We have:

(1) d(k)(P1P2) =
∑
k1+k2=k

d(k1)P1 · d(k2)P2, or, more generally,

(2) d(k)(P1 · · ·Pn) =
∑
k1+···+kn=k d

(k1)P1 · · · d(kn)Pn.

Here, the ki are constrained to be nonnegative.

Proof. These statements are almost immediate using the alternate definition in
Remark 4.1.6. Note that statement (2) follows from statement (1) by induction.

We get

d(k)(P1P2)(x) = [tk](P1(x+ t)P2(x+ t))

=
∑

k1+k2=k

([tk1 ]P1(x+ t))([tk2 ]P2(x+ t))

=
∑

k1+k2=k

d(k1)P1(x) · d(k2)P2(x),

which was what we wanted. �

Proposition 4.1.10 (Chain Rule). We have the following formula for calculating
the Hasse derivatives for a composition of two polynomials:

d(k)(P ◦Q) =
∑

∑k
i=1 iai=k

(
a1 + · · ·+ ak
a1, · · · , ak

)
((d(a1+···+ak)P ) ◦Q) ·

k∏
j=1

(d(j)Q)aj .

In particular,

d(1)(P ◦Q) = ((d(1)P ) ◦Q) · d(1)Q.

Proof. Again, we use the alternate definition found in Remark 4.1.6.
Using the Taylor expansion formula twice, we get

d(k)(P ◦Q)(x) = [tk]P (Q(x+ t))

= [tk]P

 ∞∑
j=0

d(j)Q(x)tj


= [tk]

∞∑
i=0

d(i)P (Q(x))

 ∞∑
j=1

d(j)Q(x)tj

i

.

Let N∞ denote the set of sequences of natural numbers a = (a1, a2, · · · ) which are
eventually zero. Fix an i, and consider all sequences a1, a2, · · · whose sum is equal
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to i. The binomial theorem for power series gives ∞∑
j=1

d(j)Q(x)tj

i

=
∑
a∈N∞∑
an=i

(
i

a1, a2, · · ·

)∏
j

(d(j)Q(x)tj)aj

=
∑
a∈N∞∑
an=i

(
i

a1, a2, · · ·

)∏
j

(d(j)Q(x))aj

 t
∑
nan .

(We are ultimately allowed to use such a binomial theorem because for any given
m, there are only finitely many sequences a1, a2, · · · in N∞ with

∑
nan = m and∑

an = i) Now, each sequence in N∞ has a fixed sum. We can then rewrite the
above series to get

d(k)(P ◦Q)(x) = [tk]
∑
a∈N∞

( ∑
an

a1, a2, · · ·

)
(d(

∑
an)P )◦Q(x)

∏
j

(d(j)Q(x))aj

 t
∑
nan .

(We are allowed to do this, as for any givenm, there are only finitely many sequences
with

∑
nan = m.) Taking the coefficient of tk then gives us the desired formula. �

Corollary 4.1.11. Applying the chain rule to P (ax+ b) gives

d(k)(P (ax+ b)) = ak(d(k)P )(ax+ b).

4.2. Hasse Derivatives in other Algebras. Having done much of single variable
differential calculus, we now move on to multiple variables and to power series. In
an attempt to streamline the argument, we shall work somewhat abstractly at first
so as to get partial derivatives, directional derivatives, total derivatives, etc. all in
one go.

Definition 4.2.1. Let A be a ring with 1. Let B and R be A-algebras, and let R[[t]]
denote the formal power series in one variable t over R. For any homomorphism of
A-algebras φ : B → R[[t]] (so that φ(1) = 1), we may define the Hasse derivatives
D(k) : B → R as

D(k)b = [tk]φ(b).

Example 4.2.2 (Polynomials in One Variable). For the Hasse derivatives in the
polynomials of one variable, we have B = R = A[x], and the homomorphism
φ : A[x]→ A[x][[t]] is given by sending x 7→ x+ t.

Actually, it is sometimes better to view B = R = A[x, dx], and then take φ :
A[x, dx]→ A[x, dx][[t]] by sending x 7→ x+ t dx and dx 7→ dx. In this situation dx
is just the name of a variable, and we will use the shorthand dxi := (dx)i. Then,
our derivative on monomials becomes D(k)(xn) =

(
n
k

)
xn−k dxk. This slight change

in notation becomes more important when we work in several variables and want
to take a total derivative. In that situation, we want to be able to keep track of
what happens in each of the different variables.

Proposition 4.2.3. We have the following

(1) The maps D(k) : B → R are linear in A.
(2) The map D(0) : B → R is a homomorphism of A-algebras.
(3) For k = 1, 2, · · · , the maps D(k) : B → R are zero on A ⊂ B, that is,

D(k)(a) = 0.
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(4) (Product Rule) D(k)(b1b2) =
∑
k1+k2=k

(D(k1)b1)(D(k2)b2).

Proof. The first three items follow readily from the definition. Statement (4) follows
just like in the one variable case:

D(k)(b1b2) = [tk]φ(b1b2)

= [tk]φ(b1)φ(b2)

=
∑

k1+k2=k

([tk1 ]φ(b1))([tk2 ]φ(b2))

=
∑

k1+k2=k

(D(k1)b1)(D(k2)b2),

thus giving us the product rule. �

Remark 4.2.4. A sequence of mapsD(0), D(1), · · · fromB → R satisfying statements
(1)-(4) in Proposition 4.2.3 are called higher derivations from B to R over A of
order ∞ (see [7, Definition 1.1]). It can be shown that higher derivations of order
∞ are in bijection with A-algebra homomorphisms B → R[[t]]. (One way has
been given by Proposition 4.2.3. To go the other way just define the map φ by
φ(b) =

∑∞
k=0D

(k)b tk and check it is an A-algebra homomorphism. See [7, Lemma
1.7] for details.) This guarantees that any sequence of derivatives we might define
satisfying th product rule can be gotten from a map into a formal power series.

Proposition 4.2.5 (Expansion). We have: φ(b) =
∑∞
k=0D

(k)(b)tk.

Definition 4.2.6 (Derivatives of power series in one variable). Consider B = R =
A[[x]][dx], and let φ : B → R[[t]] be given by the maps x 7→ x+ t dx and dx 7→ dx.
(Note that x+t dx ∈ (x, t) and A[[x]][dx][[t]] is complete with respect to the topology
generated by the ideal (x, t), so we may do this.) The resulting maps d(k) are the
Hasse derivatives for power series.

Definition 4.2.7 (Partial Derivatives). Let

B = R = A[[x1, · · · , xn]][dx1, · · · , dxn].

We define the partial derivatives ∂
(k)
xi with respect to the variable xi using the map

φi : B → R[[t]] sending xi 7→ xi + t dxi and fixing all other variables.

Definition 4.2.8 (Directional Derivatives). Let

B = R = A[[x1, · · · , xn]][du].

Let u = (u1, · · · , un) be an ordered n-tuple of elements in A. We define the direc-
tional derivatives ∂ku in the direction of u to be the Hasse derivatives gotten from
the map sending xi 7→ xi + uit du and du 7→ du.

Definition 4.2.9 (Total Derivatives). Let

B = R = A[[x1, · · · , xn]][dx1, · · · , dxn].

We define the total derivatives D(k) by using the map sending xi 7→ xi + t dxi and
dxi 7→ dxi.

Remark 4.2.10. Looking at the total derivative case, we think of dxi to be a small
change in the xi direction. Sending xi 7→ xi + t dxi then changes the xi coordinate
slightly in that direction. The interpretation of t is as an algebraic object allowing
us to count the degree of the newly introduced changes, and then applying [tk] gives
us those changes of degree k.
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Definition 4.2.11 (Derivatives in Multiple Dimensions). Let B and R be the
m-fold product of A[[x1, · · · , xn]][dx1, · · · , dxn] with itself:

B = R =

m∏
i=1

A[[x1, · · · , xn]][dx1, · · · , dxn].

Note that R[[t]] ∼=
∏
A[[x1, · · · , xn]][dx1, · · · , dxn][[t]] when we let t = (t, · · · , t).

To get the partial derivatives ∂
(k)
xi , use the map from B to R[[t]] given by taking

the n-fold product of the map φi in Definition 4.2.7 with itself. To get the total
derivatives D(k), use the map which is the n-fold product of the map φ in Definition
4.2.9 with itself.

Next, we wish to show various facts about what happens when you take two
derivatives in succession. For example, in the one variable case, we had the relation
d(k1)d(k2)P =

(
k1+k2
k1

)
d(k1+k2)P . Recalling our method of proving this in Theorem

4.1.7, we see that we made use of two variables s and t. This suggests that the
proofs will require us to “adjoin more than one variable”. The following definition
allows us to make such symbolic manipulations easier.

Definition 4.2.12. Let B be an A-algebra. Suppose we are given a homomorphism
φ : B → B[[t]] of A-algebras. Let C be a power series over B (in a finite number of
variables).

Note that if we are given a homomorphism ρ : R→ S of A-algebras, we can get a

homomorphism R[[t]]→ S[[t]] by first mapping R
ρ−→ S ↪→ S[[t]] and then extending

this to R[[t]] by sending t 7→ t. Thus, we can extend the map φ : B → B[[t]] to a
map φ : C → C[[t]].

For an element s ∈ C of order at least 1, let φs : C → C denote the composition
map of first applying φ : C → C[[t]], and then sending t to s.

Remark 4.2.13. This is a rather technical definition, which is probably easier to
explain in words. Basically, we have several maps φ1, φ2 : B → B[[t]]. We can map
an element b ∈ B to a power series in the variable t using φ1. Now we want to
apply φ2 to this power series, by applying φ2 to all the coefficients (and not act on
t). In the definition, the extension of φ from a map B → B[[t]] to a map C → C[[t]]
serves the purpose of lining up the domains so we can do this (that is, use φ2 on a
power series in B without affecting the variables).

Now when we use φ2 on an element of B[[t]], we have two choices: either use a
new variable s (so that φ2 acts on the coefficients as a map B → B[[s]]), or use
the old variable t. The superscript notation φs2 and φt2 allows us to specify which
choice we made.

Proposition 4.2.14. Let φ1 and φ2 be A-algebra homomorphisms from B to B[[t]]

and D
(k)
1 and D

(k)
2 be the associated Hasse derivatives. Then

D
(k2)
2 D

(k1)
1 b = [sk2tk1 ]φs2 ◦ φt1(b).

Proof. First,

D
(k2)
2 D

(k1)
1 b = D

(k2)
2 [tk1 ]φt1(b) = [sk2 ]φs2([tk1 ]φt1(b)).

Now note that φs2(tm) = tm for all m, so φs2[tk1 ] = [tk1 ]φs2. Thus,

D
(k2)
2 D

(k1)
1 b = [sk2tk1 ]φs2 ◦ φt1(b),

as desired. �
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Proposition 4.2.15. Let D
(k)
1 and D

(k)
2 be the Hasse derivatives associated with

the maps φ1 and φ2 from B to B[[t]]. We have

(1) If φs1 ◦ φt1 = φs+t1 , then the derivative D
(k)
1 has a composition law:

D
(k1)
1 D

(k2)
1 =

(
k1 + k2
k1

)
D

(k1+k2)
1 .

(2) If φs1 ◦ φt2 = φt2 ◦ φs1, then the Hasse derivatives commute:

D
(k1)
1 D

(k2)
2 = D

(k2)
2 D

(k1)
1 .

Proof. For (1), we have,

D
(k1)
1 D

(k2)
1 b = [sk1tk2 ]φs1 ◦ φt1b = [sk1tk2 ]φs+t1 b.

By the expansion formula, Proposition 4.2.5, we then get

[sk1tk2 ]φs+t1 b = [sk1tk2 ]

∞∑
i=0

D
(i)
1 b (s+ t)i =

(
k1 + k2
k1

)
D

(k1+k2)
1 b.

For (2), we get

D
(k1)
1 D

(k2)
2 b = [sk1tk2 ]φs1 ◦ φt2(b) = [sk1tk2 ]φt2 ◦ φs1(b) = D

(k2)
2 D

(k1)
1 b,

as desired. �

Corollary 4.2.16. Applying these to the previously defined partial, directional, and
total derivatives, we get

(1) Each set of partial derivatives ∂
(k)
xi , each set of directional derivatives ∂

(k)
u ,

and the total derivatives D(k) satisfy the composition law given in Proposi-
tion 4.2.15.

(2) The partial derivatives ∂
(k)
xi and total derivatives D(k) all commute with

each other.

Proposition 4.2.17. Let D(k), ∂
(k)
1 , · · · , ∂(k)n be the Hasse derivatives associated

with the maps φ, φ1, · · · , φn from B to B[[t]]. If φt = φt1 ◦ · · · ◦ φtn, then

D(k) =
∑

k1+···+kn=k

∂
(k1)
1 · · · ∂(kn)n .

Proof. We have

D(k)b = [tk]φt(b) = [tk]φt1 ◦ · · · ◦ φtn(b).

We note that φt1 ◦ · · · ◦ φtn is the same as the composition of φt11 ◦ · · · ◦ φtnn with the
map sending ti 7→ t. The monomials in t1, · · · , tn mapping to tk are precisely those
tk11 · · · tknn with k1 + · · ·+ kn = k. Thus,

D(k)b =
∑

k1+···+kn=k

[tk11 · · · tknn ]φt11 ◦ · · · ◦ φtnn (b) =
∑

k1+···+kn=k

∂
(k1)
1 · · · ∂(kn)n (b),

which was what we wanted. �

Corollary 4.2.18. The total derivative can be written as a sum of partials:

D(k) =
∑

k1+···+kn=k

∂(k1)x1
· · · ∂(kn)xn

.
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Remark 4.2.19. In fact, the partial derivative is of the form

∂(k1)x1
· · · ∂(kn)xn

P = Pk1···kndx
k1
1 · · · dxknn ,

for some element Pk1···kn ∈ A[[x1, · · · , xn]]. Note that this is the only term in D(k)P

with a nonzero dxk11 · · · dxknn coefficient. Thus, if D(k)P = 0, then ∂
(k1)
x1 · · · ∂

(kn)
xn P =

0 for all k1 + · · ·+ kn = k.

4.3. Prime Characteristic. We now prove some statements which are only true
in a prime characteristic p.

Lemma 4.3.1. Suppose A has prime characteristic p, and D(k) : B → R be any set
of Hasse derivatives satisfying the composition rule D(k1)D(k2) =

(
k1+k2
k1

)
D(k1+k2).

Let m be a nonnegative integer, and mj · · ·m0 denote the base p representation

of m, so that m = m0 + m1p + · · · + mjp
j and 0 ≤ mi < p. Then, D(m) =

cmD
(mjp

j) · · ·D(m1p)D(m0), where cm is a nonzero constant in Z/pZ.

Proof. AsD(mjp
j) · · ·D(m0) =

(
m

mjpj ,··· ,m0

)
D(m), it suffices to show that the number(

m
mjpj ,··· ,m0

)
is not divisible by p. Let vp(m) denote the number of times the factor p

appears in the prime factorization of a positive integerm. Let σp(m) = m0+· · ·+mj

denote the sum of the digits in the base p representation of m. We see that

vp(m!) =

⌊
m

p

⌋
+

⌊
m

p2

⌋
+ · · ·

= (m1 +m2p+ · · ·+mjp
j−1) + (m2 + · · ·+mjp

j−2) + · · ·+ (mj)

= m1 +m2(p+ 1) + · · ·+mj(p
j−1 + · · ·+ 1)

=
1

p− 1
(m0(1− 1) +m1(p− 1) +m2(p2 − 1) + · · ·+mj(p

j − 1))

=
m− σp(m)

p− 1
.

Then, it is easy to see

vp(m!) =
m− σp(m)

p− 1
=

j∑
i=0

mip
i −mi

p− 1
=

j∑
i=0

vp((mip
i)!) = vp(

j∏
i=0

(mip
i)!),

thus implying
(

m
mjpj ,··· ,m0

)
is invertible in A. �

Lemma 4.3.2. Suppose A has prime characteristic p, and let D(k) : B → R be any
set of Hasse derivatives satisfying the rule D(k1)D(k2) =

(
k1+k2
k1

)
D(k1+k2). Let m

and n be nonnegative integers with base p representations given by m =
∑∞
i=0mip

i

and n =
∑∞
i=0 nip

i. If D(m)b = 0, and ni ≥ mi for all i, then D(n)b = 0.

Proof. Let nj denote the largest nonzero place of n in its base p expansion. Using
the composition rule, we get

j∏
i=0

(
ni
mi

)
D(m)b = D(nj−mj) · · ·D(n0−m0)D(m)b = 0.

The lemma follows when you note ni < p, so
(
ni

mi

)
is invertible for all i. �

Corollary 4.3.3. Let F be a field with characteristic p, and let f ∈ F[[x, y]]. Let
D(k) denote the total derivatives in two variables. We have
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• If D(2)f = 0, then D(m)f = 0 for all m 6≡ 0, 1 mod p. Moreover,

D(p)f = fp,0(x, y)dxp + f0,p(x, y)dyp

for some fp,0 and f0,p in F[[x, y]]. (Note, this is tautologically true in
characteristic 2.)

• If D(2)f = D(p)f = · · · = D(pk−1)f = 0, then D(m)f = 0 for all m 6≡ 0, 1
mod pk. Moreover,

D(pk)f = fpk,0(x, y)(dx)p
k

+ f0,pk(x, y)(dy)p
k

for some fpk,0 and f0,pk in F[[x, y]].

Proof. The statements about the total derivative D(m) follow directly from Lemma

4.3.2. For the partial derivatives, note that D(2)f = · · · = D(pk−1)f = 0 implies that

∂
(2)
x f = · · · = ∂

(pk−1)
x f = 0 and ∂

(2)
y f = · · · = ∂

(pk−1)
y f = 0, so ∂

(m)
x f = ∂

(m)
y f = 0

for m 6≡ 0, 1 mod pk. �

5. Flat Points and Lines through them

In this section we carry over the notions critical points, flat points, et cetera in
R3 over to the finite field case.

5.1. Critical and Flat Points. Let F be a field, and P be a polynomial in F[x, y, z]
of degree d. Using the expansion formula for the total derivative, we may expand
out P (x+ dx, y + dy, z + dz) as

P (x+ dx, y + dy, z + dz) = D(0)P (x, y, z) +D(1)P (x, y, z, dx, dy, dz)

+D(2)P (x, y, z, dx, dy, dz)

+ · · ·+D(d)P (x, y, z, dx, dy, dz),

where D(i)P is a homogeneous polynomial of degree i in the variables dx, dy, dz.
Given any F-algebra, A, and an element (a, b, c) in A3, we letD(i)P (a, b, c) denote

the homogeneous polynomial of degree i in dx, dy, dz inside the ring A[dx, dy, dz]
gotten by sending x 7→ a, y 7→ b and z 7→ c. We shall make the following definitions:

Definition 5.1.1. We say (a, b, c) is a zero of P if

D(0)P (a, b, c) = P (a, b, c) = 0,

as an element of A.

Definition 5.1.2. We say (a, b, c) is a critical point of P if

D(1)P (a, b, c) = Px(a, b, c)dx+ Py(a, b, c)dy + Pz(a, b, c)dz = 0,

as an element of A[dx, dy, dz], i.e. Px(a, b, c) = Py(a, b, c) = Pz(a, b, c) = 0.

Definition 5.1.3. We say (a, b, c) is a flat point of P if (a, b, c) is not a critical
point, and D(1)P (a, b, c) divides D(2)P (a, b, c) in A[dx, dy, dz]. More generally, we
say that (a, b, c) is an n-flat point of P if (a, b, c) is not critical, and

D(1)P (a, b, c)|D(n)P (a, b, c)

in A[dx, dy, dz].
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In the case of F = A = R, there was a set of special polynomials SP given by

∂ei×∇P (x,y,z)∇P (x, y, z)×∇P (x, y, z),

which vanishes if and only if (x, y, z) was a critical or a flat point in R3. Here,
the ei range over the three unit vectors in the directions of the x-, y-, and z-axes.
We do not treat why these particular polynomials work here; see [4, Lecture 14,
Section 4] for details. We do, however, show that there is a similar statement in
our situation: that there are sets of polynomials SPn which “detect” whether or
not a point is n-flat.

Theorem 5.1.4. Suppose F is a field, and K is a field extension of F. Let P
be a polynomial in F[x, y, z] of degree d. For every n, there exist a set SPn of
polynomials in F[x, y, z] such that SPn(a, b, c) = 0 if and only if (a, b, c) ∈ K3 is
either a critical point or a n-flat point. Moreover, each polynomial in SPn has
degree at most (n+ 1)d− 2n.

Definition 5.1.5. We shall call the set of polynomials SPn the n-special poly-
nomials.

To prove Theorem 5.1.4, note that our definition of n-flat is the condition that
a linear polynomial D(1)P divides some higher degree polynomial D(n)P . This
suggests the use of the resultant. Given two polynomials f , g, the resultant r(f, g)
is essentially a polynomial in the coefficients of f and g which vanishes when f and
g have a common factor. We develop enough of this theory to prove the desired
statements. Chapter 2 of [6] gives some elimination theory. Our statements here
slightly modify the arguments in [1] to get certain statements for integral domains.

Lemma 5.1.6. Let k be a field. Let f = a1x + a0 be a linear polynomial, and
g = cnx

n + · · · + c0 be a polynomial of degree n in k[x]. There is a polynomial r
with coefficients in Z such that r(a1, a0, cn, · · · , c0) = 0 if and only if one of the
following is true:

(1) f = 0, (i.e. a1 = a0 = 0).
(2) f divides g.

Moreover, the polynomial r is homogeneous of degree n over a1 and a0 and homo-
geneous of degree 1 over cn, · · · , c0.

Definition 5.1.7. We shall call this polynomial r the resultant of f and g.

Proof of Lemma 5.1.6. Let r be given by the determinant of the matrix

S =



a1 0 0 · · · 0 cn
a0 a1 0 · · · 0 cn−1
0 a0 a1 · · · 0 cn−2
0 0 a0 · · · 0 cn−3
...

...
...

. . .
...

...
0 0 0 · · · a1 c1
0 0 0 · · · a0 c0


.

(This matrix is the transpose of the Sylvester matrix of f and g.)
First, if a1 = a0 = 0, then the determinant is clearly zero. Next, if f divides g,

then there is a polynomial, h = bn−1x
n−1 + · · ·+b0 such that f ·h = g. Multiplying
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out and equating coefficients, this implies that

a1 0 0 · · · 0 cn
a0 a1 0 · · · 0 cn−1
0 a0 a1 · · · 0 cn−2
0 0 a0 · · · 0 cn−3
...

...
...

. . .
...

...
0 0 0 · · · a1 c1
0 0 0 · · · a0 c0





bn−1
bn−2
bn−3
bn−4

...
b0
−1


=



0
0
0
0
...
0
0


.

Thus, there is a nontrivial solution to the linear equation S~v = 0, so the determinant
of S is zero.

Next, suppose r = 0. Then, there is a nontrivial solution ~v0 to S~v = 0. If the
last component of ~v0 is not zero, we can scale it so that the last component is −1.
Then we get a linear equation as above, and we can take bn−1, · · · , b0 to be the first
n components of ~v0 to get a (bn−1x

n−1 + · · ·+ b0)f = g. If the last component were
zero, then a1 = 0, since otherwise we could solve to get bn−1 = bn−2 = · · · = b0 = 0,
a contradiction to the fact that ~v0 is not the zero vector. If a0 is not also zero,
then clearly f = a0 is a constant, so f divides g. Otherwise, we would have that
a1 = a0 = 0.

Finally, as a determinant, the coefficients of r are in Z. Moreover, the first n
columns of S are homogeneous in a1 and a0, while the last column is homogeneous
in cn, · · · , c0, so the determinant is homogeneous of degree n over a1 and a0 and of
degree 1 over cn, · · · , c0. �

Lemma 5.1.8. Let A be an integral domain. Let f = a1x + a0 and g = cnx
n +

· · · + c0 be polynomials in A[x]. If a1 is invertible, then f divides g if and only if
r(a1, a0, cn, · · · , c0) = 0.

Proof. Let K be the field of fractions of A. If f divides g in A[x], then f divides g
in K[x], so r(a1, a0, cn, · · · , c0) = 0.

Now suppose r(a1, a0, cn, · · · , c0) = 0. Then by Lemma 5.1.6, we see that f
divides g in K[x]. Let (bn−1x

n−1 + · · · + b0)f = g, where bi ∈ K. From the
equation

a1bn−1 − cn = 0,

and the fact that a1 is invertible, we can conclude that bn−1 is in A. From the
equation

a1bn−2 + a0bn−1 − cn−1 = 0

and the facts that a0, bn−1, cn−1 are in A and a1 is invertible, we see that bn−2 is
in A. Proceeding in this manner, we can inductively show that bn, bn−1, · · · , b0 are
all in A, so f divides g in A[x]. �

Now, we have the tools to build the polynomials SPn in Theorem 5.1.4.

Proof of Theorem 5.1.4. Note that

D(1)P = Pxdx+ Pydy + Pzdz

and

D(n)P =
∑

n1+n2+n3=n

Pn1n2n3dx
n1dyn2dzn3
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are polynomials in F[x, y, z][dx, dy, dz]. Also note that if the degree of P is d, then
the degrees of Px, Py, and Pz is at most d − 1, and the degrees of Pn1n2n3 where
n1 + n2 + n3 = n is at most d− n.

We first view D(1)P and D(n)P as polynomials in dx. Expanding the deter-
minant for the resultant along the last column shows it is homogeneous of de-
gree n in dy and dz. We put the coefficients of each of the n + 1 monomials
dyn, dyn−1dz, · · · , dzn to SPn. The other polynomials in SPn are gotten by re-
peating this procedure by viewing D(1)P and D(n)P as polynomials in dy, and then
as polynomials in dz. Counting the degrees of the polynomials in SPn, we see that
they are at most n(d− 1) + d− n = (n+ 1)d− 2n.

Now if D(1)P (a, b, c) divides D(n)P (a, b, c) as polynomials in K[dx, dy, dz], then
D(1)P (a, b, c) divides D(n)P (a, b, c) when viewed as polynomials in the variable dx,
as polynomials in dy, and as polynomials in dz. Thus, we get that SPn(a, b, c) = 0.
If D(1)P (a, b, c) = 0 as a polynomial in K[dx, dy, dz], then it is 0 as a polynomial
in each of the variables separately. We therefore also get SPn(a, b, c) = 0 in this
situation.

Suppose SPn(a, b, c) = 0. If D(1)P (a, b, c) = 0, then (a, b, c) is a critical point,
and we are done. Otherwise, one of Px(a, b, c), Py(a, b, c) or Pz(a, b, c) is not zero.
Without loss of generality, suppose it is Px(a, b, c). By Lemma 5.1.8, we see that
D(1)P (a, b, c) divides D(n)P (a, b, c) as polynomials in K[dy, dz][dx], which means
the same is true in K[dx, dy, dz]. �

Corollary 5.1.9. Suppose A is a F-algebra and an integral domain. Let (a, b, c) ∈
A3. If SPn(a, b, c) = 0 and at least one of Px(a, b, c), Py(a, b, c) or Pz(a, b, c) is

invertible, then D(1)P (a, b, c) divides D(n)P (a, b, c).

Proof. The proof is the same as the last part of the proof of Theorem 5.1.4. �

Definition 5.1.10. Let P be a polynomial in F[x, y, z]. We say that P is totally
flat if P divides every polynomial in SP 2. We say that P is totally n-flat if P
divides every polynomial in SPn.

It is clear from the definition and Theorem 5.1.4 that every point in the zero set
of an totally n-flat polynomial P is either critical or n-flat.

5.2. Lines on the Zero Set of a Polynomial. Let F be a field, and P be
a polynomial with degree d less than the number of elements in F. Suppose
(x0, y0, z0) ∈ F3 is on the zero set of P , which we denote by Z(P ). We wish to find
the number of lines through (x0, y0, z0) and contained in Z(P ). Looking in the di-
rection (dx, dy, dz) 6= 0, we see that P vanishes on the line (x0, y0, z0)+(dx, dy, dz)t
if and only if

P (x0 + t dx, y0 + t dy, z0 + t dz) = D(0)P (x0, y0, z0) +D(1)P (x0, y0, z0, dx, dy, dz)t

+D(2)P (x0, y0, z0, dx, dy, dz)t
2

+ · · ·+D(d)P (x0, y0, z0, dx, dy, dz)t
d

= 0,

for every t ∈ F. Since the degree d of P is less than the number of elements in F, this
happens if and only if D(i)P (x0, y0, z0)(dx, dy, dz) = 0 for all i. Now the direction
(dx, dy, dz) is only determined up to a multiplicative constant, and D(i)P (x0, y0, z0)
is a homogeneous polynomial of degree i in the variables dx, dy, and dz. We can
then conclude:
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Proposition 5.2.1. Let P be a polynomial in F[x, y, z] with degree less than the
number of points in F. The number of lines through (x0, y0, z0) ∈ F3 on the
zero set of P is equal to the number of common zeros of D(0)(x0, y0, z0), · · · ,
D(d)P (x0, y0, z0) in the projective plane FP 2.

Remark 5.2.2. We can interpret the meaning of some of these derivatives being
equal to zero:

• D(0)P (x0, y0, z0) = P (x0, y0, z0), so this is zero if and only if (x0, y0, z0) is
a zero of P .
• D(1)P (x0, y0, z0) = Px(x0, y0, z0)dx + Py(x0, y0, z0)dy + Pz(x0, y0, z0)dz.

This is saying that either (x0, y0, z0) is critical, or all lines through it lying
on P must be on the tangent plane.
• D(d)P (x0, y0, z0) is actually a polynomial in F[dx, dy, dz] which does not

depend on the value of (x0, y0, z0). This polynomial vanishes if and only if
P vanishes at infinity in the direction (dx, dy, dz).

Lemma 5.2.3. A point (x0, y0, z0) ∈ F3 which is not critical or flat can be on at
most 2 distinct lines in Z(P ). (Here, we assume degP < |F|.)

Proof. If (x0, y0, z0) is not critical, then D(1)P (x0, y0, z0) is not zero. If (x0, y0, z0)
is not flat, then D(1)P (x0, y0, z0) does not divide D(2)P (x0, y0, z0). But then
D(1)P (x0, y0, z0) and D(2)P (x0, y0, z0) are coprime and have degrees 1 and 2 with
respect to the variables dx, dy and dz, so by Bezout’s theorem, they can have at
most 2 common points in the projective plane. �

Corollary 5.2.4. If a noncritical point (x0, y0, z0) is on 3 or more distinct lines
in Z(P ), then it is flat.

To further study the number of lines through a given noncritical point, we look
at the power series expansion about that point. Indeed, if P is not critical at
(x0, y0, z0), we can translate so that the point becomes the origin by replacing P
with P (x − x0, y − y0, z − z0). Without loss of generality, suppose P (0, 0, 0) = 0,
and Pz(0, 0, 0) 6= 0. By the theory of power series, we can write

P (x, y, z) = (z − f(x, y))Q(x, y, z),

where f(x, y) is a power series in x and y with f(0, 0) = 0, and Q is in F[[x, y]][z]
satisfying Q(0, 0, 0) = Pz(0, 0, 0) 6= 0. We can then see that Q(0, 0, f(0, 0)) 6= 0, so
Q(x, y, f(x, y)) is a unit in the ring of power series F[[x, y]].

The following proposition relates the flatness properties of P with the Hasse
derivatives of f .

Lemma 5.2.5. Let F be a field with characteristic p. We have the following:

• P is totally flat, then D(2)f = 0.

• If P is totally flat, totally p-flat, · · · , and totally pk-flat, then D(pk)f =
0. (Note: the totally flat and totally p-flat conditions are redundant in
characteristic 2.)

Proof. We use Corollary 5.1.9 by sending x 7→ x, y 7→ y and z 7→ f(x, y) in F[[x, y]].
Since Pz(0, 0, f(0, 0)) = Pz(0, 0, 0) 6= 0, we set that the power series Pz(x, y, f(x, y))
has nonzero constant term and is therefore invertible in F[[x, y]].

Now suppose P is totally flat. Then P divides every polynomial in SP 2. Because
P = (z−f(x, y))Q(x, y, z) as power series, z−f(x, y) divides every element of SP 2.
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Thus, SP 2(x, y, f(x, y)) = 0 in F[[x, y]]. We can then apply Corollary 5.1.9 to con-
clude that D(1)P (x, y, f(x, y)) divides D(2)P (x, y, f(x, y)) as formal power series.
Similarly, if P is totally n-flat, then D(1)P (x, y, f(x, y)) divides D(n)P (x, y, f(x, y)).

Now using the product rule on P = (z − f(x, y))Q, we get

D(1)P (x, y, z) = D(1)(z − f(x, y))Q+ (z − f(x, y))D(1)Q,

and

D(2)P (x, y, z) = D(2)(z− f(x, y))Q+D(1)(z− f(x, y))D(1)Q+ (z− f(x, y))D(2)Q.

Plugging in z = f(x, y), we get that

D(1)P (x, y, f(x, y)) = (dz −D(1)f(x, y))Q(x, y, f(x, y)),

and

D(2)P (x, y, f(x, y)) = −D(2)f(x, y)Q(x, y, f(x, y))

+(dz −D(1)f(x, y))D(1)Q(x, y, f(x, y)).

Noting again that Q(x, y, f(x, y)) is a unit in F[[x, y]], we conclude that if the power
series D(1)P (x, y, f(x, y)) divides the power series D(2)P (x, y, f(x, y)), then

dz −D(1)f(x, y) |D(2)f(x, y).

But D(2)P (x, y, f(x, y)) has no dz term, so this is only possible if D(2)f(x, y) is
zero.

The proof of the second point is similar, and uses induction. Supposing P is
totally flat, totally p-flat, · · · and totally pk−1-flat, we get that D(2)f = D(p)f =

· · · = D(pk−1)f = 0. By Corollary 4.3.3, all the derivatives D(2)f , D(3)f , · · · ,
D(pk−1)f are zero. Thus, using the product rule, we get

D(pk)P = (−D(pk)f)Q+ (dz −D(1)f)D(pk−1)Q+ (z − f(x, y))D(pk)Q.

Plugging in z = f(x, y) and then noting that because P is totally pk-flat, we have

D(1)P (x, y, f(x, y)) divides D(pk)P (x, y, f(x, y)). Because Q(x, y, f(x, y)) is a unit,

dz −D(1)f(x, y)|D(pk)f(x, y).

But D(pk)f(x, y) has no dz dependence, so it must be 0. �

Remark 5.2.6. If the characteristic of F were 0, then the first point still holds. Now
D(2)f = 0 implies D(n)f = 1

(n
2)
D(2)f = 0 for n ≥ 2. Thus, f is a linear polynomial,

so P looks locally like a plane, that is, P factors as (z − f(x, y))Q in F[x, y, z].
The lemma gives a method of doing something similar in characteristic p, as the
following corollary shows.

Corollary 5.2.7. Suppose P has degree d, and let pk be the largest power of p less
than or equal to d. If P is totally flat, totally p-flat, · · · , and totally pk-flat, then f
is linear in x and y, and P factors as (z + ax+ by)Q(x, y, z) in the polynomials.

Proof. Note that D(n)P = 0 for n > d. Thus, we have that P is automatically
p`-flat for powers p` of p greater than d. Using the lemma, we see that 0 = D(2)f =

D(p)f = D(p2)f = · · · , which in turns implies that D(n)f = 0 for all n ≥ 2. Thus,
we see that f is a linear polynomial, and the result follows. �
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Lemma 5.2.8. Let Fq be a finite field with characteristic p > 0, and P be a
polynomial with degree d < q. Suppose (x0, y0, z0) is not a critical point of P .
Then,

• If (x0, y0, z0) is on 3 or more distinct lines in Z(P ), then it is a flat point.
• If P is totally flat and (x0, y0, z0) is on 2 or more distinct lines in Z(P ),

then it is a p-flat point.
• If P is totally flat, totally p-flat, · · · , and totally pk−1-flat and (x0, y0, z0)

is on 2 or more distinct lines in Z(P ), then it is a pk-flat point.

Proof. Translate so that (x0, y0, z0) is at the origin, and assume without loss of
generality that Pz(0, 0, 0) is not zero. The first point is Corollary 5.2.4.

For the second point, if P is totally flat, we can write

D(p)P = (−D(p)f)Q+ (dz −D(1)f)D(p−1)Q+ (z − f(x, y))D(p)Q.

Recall that Q(0, 0, 0) = Pz(0, 0, 0) ∈ Fq is a nonzero constant. Also, note that in a
power series Fq[[x, y, z]][dx, dy, dz], we are always allowed to send (x, y, z) 7→ (0, 0, 0)
to get an element of Fq[dx, dy, dz]. Thus,

D(p)P (0, 0, 0) = −(D(p)f(0, 0))Q(0, 0)+(dz−fx(0, 0)dx−fy(0, 0)dy)D(p−1)Q(0, 0).

Recalling that

D(1)P (x, y, z) = (dz −D(1)f(x, y))Q(x, y, z) + (z − f(x, y))D(1)Q(x, y, z),

We get D(1)(0, 0, 0) = (dz − fx(0, 0)dx − fy(0, 0)dy)Q(0, 0). Thus, the common

roots of D(1)P (0, 0, 0) and D(p)P (0, 0, 0) are the common roots of dz−fx(0, 0)dx−
fy(0, 0)dy and D(p)f(0, 0).

Now because P is flat, we have that D(2)f = 0, so D(p)f(0, 0) = fxp(0, 0)dxp +
fyp(0, 0)dyp by Corollary 4.3.3. Using the Frobenius automorphism, we see that

D(p)f(0, 0) = ((fxp(0, 0))
q
p dx+ (fyp(0, 0))

q
p dy)p.

If this is not zero, then dz − fx(0, 0)dx − fy(0, 0)dy and D(p)f(0, 0) can have at
most 1 common zero in the projective plane. But this is impossible if (0, 0, 0) has
two or more lines in Z(P ) through it. Hence, D(p)f(0, 0) = 0, and we can conclude
that D(1)P (0, 0, 0) divides D(p)P (0, 0, 0).

The proof of the last is similar to the proof of the second point, except we write

D(pk)f(0, 0) = ((f
xpk (0, 0))

q

pk dx+ (f
ypk

(0, 0))
q

pk dy)p
k

,

where pk ≤ d < q. (In the case pk > d, every point is pk flat, so the statement is
vacuously true.) �

We can now prove a theorem estimating the number of points in Z(P ) lying on
at least three lines in Z(P ).

Theorem 5.2.9. Let Fq be a finite field, and P ∈ Fq[x, y, z] be an irreducible
polynomial with degree d. Suppose P is not zero and not linear. Then, there are at
most 3qd2(d− 1) points with at least 3 lines on Z(P ).

Proof. Let p be the characteristic of Fq, and let pk be the largest power of p less
than d. The polynomial P cannot be totally flat, totally p-flat, · · · , totally pk-flat,
since that means it factors P = (z + ax+ by)Q, a contradiction.

If P is not totally flat, then since P is irreducible, it does not divide some element
of SP 2. But the degree of the polynomials in SP 2 is at most (2 + 1)d − 2 · 2 ≤
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(d+ 1)d− 2d = d2 − d. Thus, using Theorem 2.2.2, we see that there are at most
qd2(d− 1) flat points. Since all points with three lines are flat, we are done in this
case.

If P is totally flat, but not totally p-flat, then P does not divide some element
of SP p. The degree of the polynomials in SP p is at most (p+ 1)d− 2 · p ≤ d2 − d,
so there are at most qd2(d − 1) points which are p-flat. As P is totally flat, every
point with three lines must be totally p-flat, so we are also done in this case.

In a similar manner, we must have that P is totally flat, totally p-flat, · · · ,
totally p`−1-flat, but not totally p`-flat for some ` ≤ k. Then P does not divide

some polynomial in SP p
`

, so there are at most qd(p` + 1)d − 2 · p` ≤ qd2(d − 1)
points which have three lines through them. �

6. Proof of the Theorem

In this section we finish proof of the main theorem of our paper. Recall that

Proposition 3.3.1 leaves only the gap q2

log q ≤ |Y | ≤ q
2 log q.

6.1. Irreducible Polynomials.

Theorem 6.1.1. Let P be an irreducible polynomial in Fq[x, y, z], with degree d at
most c log q for some constant c. Suppose X is a union of lines `1, · · · , `n on the
zero set Z(P ) of P . Let Si ⊂ `i with |Si| ≥ q

2 , and let Y =
⋃
Si. Then there exists

a constant C such that |X| ≤ C|Y |.

Proof. The case when P is linear is the same as the statement in the two dimensional
case. We thus assume P is not linear.

Using Proposition 3.3.1, we may assume that |Y | ≥ q2

log q .

We look at the number of point-line incidence pairs #(p, `) in Y . We break this
up into three types of points:

(1) The normal points np, which are points which have at most 2 lines through
them.

(2) The special points sp, which are noncritical points with at least 3 lines.
(3) The critical points cp. We divide the lines through these points as the

critical lines cl, which are lines all of whose points are critical points, and
the non-critical lines ncl, which are those lines through critical points that
are not critical lines.

We then get

#(p, `) = #(np, `) + #(sp, `) + #(cp, cl) + #(cp, ncl).

We look at each of these terms in turn:

(1) There are at most |Y | normal points in Y , and these can have at most 2
lines through them, so #(np, `) ≤ 2|Y |.

(2) By Theorem 5.2.9, there are at most 3qd3 special points. The lines through
a noncritical point must all lie on the tangent plane. It is known that two
coprime polynomials of degrees d1, d2 less than q in Fq[x, y, z] can have
at most d1d2 common lines (see [4, Lecture 13, Theorem 4.1] for details).
Thus, a plane and an nonlinear irreducible polynomial of degree d < q can
have at most d lines in common, so we can bound #(sp, `) by 3qd4.
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(3) A critical line is a line on which P , Px, Py and Pz all vanish. Because
Px has degree less than P , and P is irreducible, P and Px are coprime
unless Px = 0. Now if Px = Py = Pz = 0, then P is a polynomial in xp,
yp, and zp, so P is a perfect p-th power by the Frobenius automorphism.
This contradicts the fact that P is irreducible. Thus P is coprime with one
of Px, Py or Pz, so there are at most d2 critical lines. We thus get that
#(cp, cl) ≤ qd2.

(4) A noncritical line can have at most d − 1 critical points, because if the
polynomials Px, Py, Pz of degree d−1 vanish on d points, they must vanish
on the whole line. Letting L denote the total number of lines, we see that
#(cp, ncl) ≤ dL.

Now each line must have at least q
2 points on it, so we have

qL

2
≤ #(p, l) ≤ 2|Y |+ 3qd4 + qd2 + dL.

Moving the dL term to the left side, we get

(
q

2
− d)L ≤ 2|Y |+ 3qd4 + qd2.

Recall that d ≤ c log q. For large enough q, the left side is greater than 0. Multi-
plying by q

q
2−d

, we get

qL ≤ q
q
2 − d

(2|Y |+ 3qd4 + qd2).

Each line of X has q points, so |X| ≤ qL. The limit as q → ∞ of q
q
2−d

is 2, so we

can bound this from above by a constant. Recalling that |Y | ≥ q2

log q , we see that

as q →∞, the term 2|Y | dominates 3qc4(log q)4 and qc2(log q)2. Therefore

|X| ≤ qL ≤ q
q
2 − d

(2|Y |+ 3qd4 + qd2) ≤ C|Y |,

for some constant C, as desired. �

6.2. The General Case.

Theorem 6.2.1. Suppose `1, · · · , `n are distinct lines in F3
q, and X =

⋃
`i. For

each i = 1, · · · , n, let Si be a subset of `i such that |Si| ≥ q
2 . Let |Y | =

⋃
Si. Then

there exists a constant c independent of q such that |X| ≤ c|Y |.

Proof. By Proposition 3.3.1, we only need to prove the case where q2

log q ≤ |Y | ≤
q2 log q. In this situation, we know there is a polynomial P with degree at most
C log q which vanishes on all but 4

q |Y | lines, which contain at most 4|Y | points.

Factor P into a product of irreducibles P = P1 · · ·Pn. We may assume all the
irreducibles are distinct, since we can remove any repeats to get a polynomial with
lower degree vanishing on the same lines.

Let ` be any line on Z(P ). We claim that ` is on Pi for some i. If not, then P1

can contribute at most degP1 zero points, P2 can contribute at most degP2 zero
points, etc. In total, the line ` can have at most degP = C log q points which are
zero on P , which contradicts the fact that all of its points are zero on P .

Let L denote the lines on Z(P ) which are in X. Let Li denote the lines of L
on Pi, let Xi denote the set of points in Li, and let Yi denote the set Y ∩Xi. By
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Theorem 6.1.1, there is a constant K such that |Xi| ≤ K|Yi| for all i. Then

|X| − 4|Y | ≤
n∑
i=1

|Xi| ≤ K
n∑
i=1

|Yi|.

Now
∑n
i=1 |Yi| is the sum of |Y | and the number of times a point repeatedly counted.

We thus get
n∑
i=1

|Yi| ≤ |Y |+
∑
i 6=j

|Yi ∩ Yj |.

The points Yi ∩ Yj are common zeros of the coprime polynomials Pi and Pj , so
there are at most 3q(degPi)(degPj) of them. Expanding (

∑
Pi)

2 shows that∑
i=neqj(degPi)(degPj) ≤ (degP )2 ≤ C2(log q)2. Thus,

|X| − 4|Y | ≤ K|Y |+ C2Kq(log q)2.

As |Y | ≥ q2

log q , we may conclude that there is a constant c such that

|X| ≤ c|Y |,
which is what we set out to prove. �
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