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Abstract

The theory of algebraically integrable systems is deeply connected to various areas
in mathematical physics and representation theory. For example, Prof. Etingof proved
that a certain class of algebraically integrable differential operators on an elliptic curve
with twofold or threefold symmetry corresponds to critical points of the classical crys-
tallographic elliptic Calogero-Moser potential. In this paper, we extend these results
by expressing an analogous class of differential operators with fourfold symmetry over
a lemniscatic elliptic curve E in terms of trivial monodromy relations. We show that if
the operators have eight poles, algebraically integrable operators correspond to critical
points of a potential function of the form ψ = p4 + A(z0)p

2 + B(z0)p + C(z0), where
A, B and C are meromorphic functions on E.

1 Introduction

A differential operator L = ∂n+a2(z)∂n−2+a3(z)∂n−3+· · ·+an(z) is algebraically integrable iff
there exists a nonzero differential operator M of relatively prime order that commutes with L.
The notion of an algebraically integrable system is related to certain explicit solutions related
to the Korteweg-de-Vries equation (see [1] and [4]). It is known that if L is algebraically
integrable, then the coefficients ai(z) are meromorphic on the complex plane and their poles
have order at most i (see Theorem 2.1 in [1]). For example, algebraically integrable operators
can be constructed with coefficients doubly periodic in {1, τ}, where τ /∈ R. These coefficients
can be identified with rational functions on an elliptic curve y2 = 4x3 − g2x − g3. It turns
out that in this special case, algebraic integrability is equivalent to the existence of a basis
of solutions

ψ(z) = eβz
m∏
i=1

θ(z − αi, τ)

θ(z − βi, τ)

of the differential equation Lψ = λψ, for a suitable choice of β,m, αi, βi for all but finitely

many λ. Here θ(z, τ) =
∑
n∈Z

eπiτn
2

zn. It is also equivalent to trivial monodromy of the

equation Lψ = λψ at all poles of the equation (see Theorem 2.5 in [1]). From this definition,
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it is easy to prove that any algebraically integrable doubly periodic second-order differential
operator with one pole must be of the form ∂2 −m(m+ 1)℘(z, τ).

Etingof and Rains considered in [1] operators of this form that are invariant under sym-
metries of an elliptic curve. There are four such symmetries (where wr = exp 2πi/r):

1. Twofold symmetry, on any elliptic curve. The action is −1 : (x, y) 7→ (x,−y).

2. Threefold symmetry, on an equianharmonic curve y2 = 4x3 − g3. The action is wj
3 :

(x, y) 7→ (wj3x, y).

3. Fourfold symmetry, on a lemniscatic curve y2 = 4x3− g2x. The action is wj
4 : (x, y) 7→

(w2j
4 x,w

j
4y).

4. Sixfold symmetry, on an equianharmonic curve y2 = 4x3 − g3. The action is wj
6 :

(x, y) 7→ (w2j
6 x,w

3j
6 y).

In particular, he found a correspondence between algebraically integrable second-order
operators with twofold symmetry and critical points of the Inozemtsev potential. Namely, if
L has poles at the fixed points W0 = 0,W1 = 1/2,W2 = τ/2,W3 = (1+τ)/2 of the Z2 action
with arbitrary indices −mj,mj+1 and poles at other points ±z0, ...,±zN−1 with indices −1, 2,
L is algebraically integrable iff the parameters correspond to critical points of:

3∑
i=0

N−1∑
j=0

(
mi +

1

2

)2

℘(zj −Wi) +
∑

0≤k 6=j≤N−1

(℘(zj − zk) + ℘(zj + zk))

Likewise, if L is a third-order operator on an equianharmonic curve with threefold sym-
metry, with poles of arbitrary indices at the fixed points of the Z3 action as well as on orbits
of other points with indices −1, 1, 3, L is algebraically integrable iff the parameters corre-
spond to critical points of the classical crystallographic elliptic Calogero-Moser potential (see
Proposition 4.7 in [1], and also [2]).

It is thus natural to consider fourth-order operators on a lemniscatic curve y2 = 4x3−g2x
with fourfold symmetry, with poles of arbitrary indices at the fixed points of the Z4 action as
well as on orbits of other points z0, z1, · · · , zN−1 (such that z4i /z

4
j 6= 1) with indices −1, 1, 2, 4.

With the added constraint that the indices at the fixed points with stabilizer 2 are of the
form {a, a + 2, 1 − a, 3 − a}, algebraically integrable operators of this form are conjectured
in [1] to correspond to critical points of the classical crystallographic elliptic Calogero-Moser
Hamiltonian for the group Z4.

In this paper, we take the first step towards formulating such a theory by classifying
algebraically integrable operators if this form when N = 1.

2 Trivial monodromy relations

Consider a fourth-order Fuchsian differential equation Lf = λf , where L = ∂4 +a∂2 + b∂+ c
and a, b, c are meromorphic functions on the complex plane. Fix a point z0 ∈ C and expand
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a, b and c in Laurent series:

a =
∞∑

j=−2

aj(z − z0)j

b =
∞∑

j=−3

bj(z − z0)j

c =
∞∑

j=−4

cj(z − z0)j

Furthermore, suppose that a−2 = −4, b−3 = 8, c−4 = −8. This is to ensure that the
indices are −1, 1, 2, 4. For the monodromy of this equation to be trivial at z0, there must
exist a basis of solutions {φ1, φ2, φ3, φ4} analytic in a punctured neighborhood of z0.

Theorem 1: The equation Lf = λf has trivial monodromy at z0 iff:
1) a1 = −c−1
2) c−2 = −1

4
(c2−3 + 8a0)

3) 4b0 − c−3c−2 + 4c−1 = 0
4) −32a3 + 16b2 + 8a2c−3 − 4b1c−3 + c2−3c−1 − 16c1 = 0
5) a−1 = 0
6) b−1 = 0
7) b−2 − c−3 = 0
Proof: This is a routine application of Frobenius’ method best done with a computer

algebra system such as Mathematica.

Corollary 1: The equation Lf = λf has trivial monodromy at z0 iff it has a basis of
meromorphic solutions {φ1, φ2, φ3, φ4}. Furthermore, the orders of the poles of φj at z0 are
−1, 1, 2, 4 respectively.

3 Elliptic Functions

Here I will primarily deal with the elliptic curve E : y2 = 4x3 − 4x, and its associated
℘-function. Recall that the ℘-function is doubly periodic with periods ρ and iρ, where

ρ =
1√
8π

Γ(1/4)2

Consider the fourth-order differential operator L = ∂4+a∂2+b∂+c, where each a, b, c are
meromorphic on E such that L has foufold symmetry, with poles of arbitrary indices at the
fixed points of the Z4 action as well as on the other four points z0, iz0,−z0,−iz0 with indices
−1, 1, 2, 4. The fixed points shall be denoted η0 = 0, η1 = iρ/2, η3 = ρ/2, η2 = (1 + i)ρ/2.
Given that L = ∂4 + a∂2 + b∂ + c is invariant under the action of Z4 on the elliptic curve, it
follows that:
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a(z) = aF (z) +
∑
ω

(−4℘(z − ωz0))

b(z) = bF (z) +
∑
ω

(−4℘′(z − ωz0) + pω−1℘(z − ωz0))

c(z) = cF (z) +
∑
ω

(−4

3
℘′′(z − ωz0) +

p

2
ω−1℘′(z − ωz0) + γω2℘(z − ωz0)− αωζe(z − ωz0))

where ω ranges over fourth roots of unity, and:

aF (z) =
∑
`

℘(z − η`)f`

bF (z) =
∑
`

℘′(z − η`)g`

cF (z) =
∑
`

℘′′(z − η`)h`

The symmetry implies that f1 − f3 = g1 − g3 = h1 − h3 = 0. Here ζe and σe are the
Weierstrass zeta and sigma functions. Consider the Laurent expansions of a, b, c around the
pole z0:

a(z) =
∑
j

(z − z0)jaj, b(z) =
∑
j

(z − z0)jbj, c(z) =
∑
j

(z − z0)jcj

Then algebraic integrability is equivalent to these four relations, obtained from trivial
monodromy by solving the differential equation Lψ = λψ with the Frobenius method, as
seen before:

1) a1 = −c−1
2) c−2 = −1

4
(c2−3 + 8a0)

3) 4b0 − c−3c−2 + 4c−1 = 0
4) −32a3 + 16b2 + 8a2c−3 − 4b1c−3 + c2−3c−1 − 16c1 = 0
The first two relations define γ and α:

γ = −p
2

4
− 2(aF (z0)− 4

∑
ω 6=ω4=1

℘((1− ω)z0))

α = a′F (z0)− 4
∑

ω 6=ω4=1

℘′((1− ω)z0)

The other two relations narrow the set of possible values for z0 and p.
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4 Computations

4.1 Differential and difference operators

From now on, x = ℘(z), y = ℘′(z), X = ℘(z0), Y = ℘′(z0). For (a, b) ∈ R2 such that
b2 = 4a3 − 4a, let:

E(a, b) =
−4a3 + 4a2x+ 4ax2 + b2 − 4x

4(a− x)2
+ y

b

2(a− x)2

So if ℘(w) = a and ℘′(w) = b, then E(a, b) = ℘(z − w). This identity is well-known
and can be proven by Liouville’s theorem. The main differential operator I use in this paper
corresponds to differentiation on the lattice of the elliptic curve, and is given by:

D(p(x) + yq(x)) =
(
−2 + 6x2

)
q(x) + 4

(
−x+ x3

)
q′(x) + yp′(x)

4.2 The fixed points

Identifying the point z with (x, y), the three fixed points of our Z4-action (disregarding the
point at infinity) are (1, 0), (0, 0), and (−1, 0). These are also the half-periods of the curve.
Hence we have the following:

aF = f(0)x+ f(1)(E(1, 0) + E(−1, 0)) + f(2)E(0, 0)

bF = D(g(0)x+ g(1)(E(1, 0) + E(−1, 0)) + g(2)E(0, 0))

cF = D(D(h(0)x+ h(1)(E(1, 0) + E(−1, 0)) + h(2)E(0, 0)))

However, E at the fixed points evaluates to something especially simple:

E(−1, 0) =
1− x
1 + x

E(0, 0) = −1

x

E(1, 0) =
x+ 1

x− 1

Therefore,

aF =
f(0)x4 − f(0)x2 + 4f(1)x2 − f(2)x2 + f(2)

(x− 1)x(x+ 1)

bF =
y (g(0)x6 − 2g(0)x4 − 4g(1)x4 + g(2)x4 + g(0)x2 − 4g(1)x2 − 2g(2)x2 + g(2))

(x− 1)2x2(x+ 1)2

cF =
2
(
3h(0)x8 − 7h(0)x6 + 4h(1)x6 − h(2)x6 + 5h(0)x4 + 40h(1)x4 + 5h(2)x4 − h(0)x2 + 4h(1)x2 − 7h(2)x2 + 3h(2)

)
(x− 1)2x2(x+ 1)2
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Similarly, evaluating a, b and c give the following:

a =
1

(x− 1)x(x+ 1)(x−X)2(x+X)2
(f(0)x8−2f(0)x6X2−f(0)x6+4f(1)x6−f(2)x6+

f(0)x4X4 + 2f(0)x4X2 − 8f(1)x4X2 + 2f(2)x4X2 + f(2)x4 − f(0)x2X4 + 4f(1)x2X4 −
f(2)x2X4−2f(2)x2X2+f(2)X4−48x6X2+16x6−16x4X4+96x4X2−16x4+16x2X4−48x2X2)

b = (y(g(0)x12− 3g(0)x10X2− 2g(0)x10− 4g(1)x10 + g(2)x10 + 3g(0)x8X4 + 6g(0)x8X2 +
12g(1)x8X2−3g(2)x8X2+g(0)x8−4g(1)x8−2g(2)x8−g(0)x6X6−6g(0)x6X4−12g(1)x6X4+
3g(2)x6X4 − 3g(0)x6X2 + 12g(1)x6X2 + 6g(2)x6X2 + g(2)x6 + 2g(0)x4X6 + 4g(1)x4X6 −
g(2)x4X6 + 3g(0)x4X4 − 12g(1)x4X4 − 6g(2)x4X4 − 3g(2)x4X2 − g(0)x2X6 + 4g(1)x2X6 +
2g(2)x2X6+3g(2)x2X4−g(2)X6+48x10X2−16x10+192x8X4−288x8X2+32x8+16x6X6−
432x6X4 + 432x6X2 − 16x6 − 32x4X6 + 288x4X4 − 192x4X2 + 16x2X6 − 48x2X4))/((x −

1)2x2(x+ 1)2(x−X)3(x+X)3) +
2pyY (x2 +X2)

(x−X)2(x+X)2

c = 1
3(x−1)2x2(x+1)2(x−X)4(x+X)4

2(9h(0)x16− 48X2x14− 3pY x14 + 6Xγx14− 36X2h(0)x14−
21h(0)x14+12h(1)x14−3h(2)x14+16x14−1488X4x12+1376X2x12−33pX2Y x12+15pY x12+
3XY αx12 + 6X3γx12− 30Xγx12 + 54X4h(0)x12 + 84X2h(0)x12 + 15h(0)x12− 48X2h(1)x12 +
120h(1)x12 + 12X2h(2)x12 + 15h(2)x12 − 80x12 − 1488X6x10 + 6528X4x10 − 4096X2x10 +
27pX4Y x10 + 93pX2Y x10 − 21pY x10 − 9X3Y αx10 − 6XY αx10 − 30X5γx10 + 18X3γx10 +
42Xγx10−36X6h(0)x10−126X4h(0)x10−60X2h(0)x10−3h(0)x10+72X4h(1)x10−480X2h(1)x10+
12h(1)x10 − 18X4h(2)x10 − 60X2h(2)x10 − 21h(2)x10 + 112x10 − 48X8x8 + 4256X6x8 −
10080X4x8+4256X2x8+9pX6Y x8−87pX4Y x8−87pX2Y x8+9pY x8+9X5Y αx8+18X3Y αx8+
3XY αx8+18X7γx8+54X5γx8−54X3γx8−18Xγx8+9X8h(0)x8+84X6h(0)x8+90X4h(0)x8+
12X2h(0)x8 − 48X6h(1)x8 + 720X4h(1)x8 − 48X2h(1)x8 + 12X6h(2)x8 + 90X4h(2)x8 +
84X2h(2)x8 +9h(2)x8−48x8 +112X8x6−4096X6x6 +6528X4x6−1488X2x6−21pX6Y x6 +
93pX4Y x6 + 27pX2Y x6 − 3X7Y αx6 − 18X5Y αx6 − 9X3Y αx6 − 42X7γx6 − 18X5γx6 +
30X3γx6−21X8h(0)x6−60X6h(0)x6−18X4h(0)x6+12X8h(1)x6−480X6h(1)x6+72X4h(1)x6−
3X8h(2)x6− 60X6h(2)x6− 126X4h(2)x6− 36X2h(2)x6− 80X8x4 + 1376X6x4− 1488X4x4 +
15pX6Y x4 − 33pX4Y x4 + 6X7Y αx4 + 9X5Y αx4 + 30X7γx4 − 6X5γx4 + 15X8h(0)x4 +
12X6h(0)x4 + 120X8h(1)x4 − 48X6h(1)x4 + 15X8h(2)x4 + 84X6h(2)x4 + 54X4h(2)x4 +
16X8x2−48X6x2−3pX6Y x2−3X7Y αx2−6X7γx2−3X8h(0)x2+12X8h(1)x2−21X8h(2)x2−
36X6h(2)x2 + 9X8h(2))

Evaluating γ and α based on the first two equations gives:
α+ 1

2X2(X2−1)2Y (2f(0)X6−4f(0)X4−8f(1)X4+2f(2)X4+2f(0)X2−8f(1)X2−4f(2)X2+

2f(2) + 3X6 +X4 +X2 + 3) = 0

γ + 1
4
(
8(f(0)X4−f(0)X2+4f(1)X2−f(2)X2+f(2)−X4−2X2−1)

X(X2−1) + p2) = 0
Substituting,
c = (18X2h(0)x16−18h(0)x16−72X4x14−3p2X3x14+176X2x14+3p2Xx14−24X4f(0)x14+

24X2f(0)x14 − 96X2f(1)x14 + 24X2f(2)x14 − 24f(2)x14 − 72X4h(0)x14 + 30X2h(0)x14 +
42h(0)x14+24X2h(1)x14−24h(1)x14−6X2h(2)x14+6h(2)x14−8x14−2988X6x12−3p2X5x12+
5644X4x12+18p2X3x12−3140X2x12−15p2Xx12−48X6f(0)x12+192X4f(0)x12−144X2f(0)x12+
576X2f(1)x12− 96X2f(2)x12 + 96f(2)x12 + 108X6h(0)x12 + 60X4h(0)x12− 138X2h(0)x12−
30h(0)x12−96X4h(1)x12+336X2h(1)x12−240h(1)x12+24X4h(2)x12+6X2h(2)x12−30h(2)x12+
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4x12 − 2988X8x10 + 15p2X7x10 + 15972X6x10 − 24p2X5x10 − 20996X4x10 − 12p2X3x10 +
8956X2x10 + 21p2Xx10 + 192X8f(0)x10 − 288X6f(0)x10 − 120X4f(0)x10 + 216X2f(0)x10 +
192X6f(1)x10−768X4f(1)x10−864X2f(1)x10−48X6f(2)x10+96X4f(2)x10+72X2f(2)x10−
120f(2)x10 − 72X8h(0)x10 − 180X6h(0)x10 + 132X4h(0)x10 + 114X2h(0)x10 + 6h(0)x10 +
144X6h(1)x10−1104X4h(1)x10 + 984X2h(1)x10−24h(1)x10−36X6h(2)x10−84X4h(2)x10 +
78X2h(2)x10+42h(2)x10+16x10−132X10x8−9p2X9x8+8716X8x8−18p2X7x8−28528X6x8+
54p2X5x8 + 28192X4x8− 18p2X3x8− 9196X2x8− 9p2Xx8− 144X10f(0)x8− 144X8f(0)x8 +
624X6f(0)x8−240X4f(0)x8−96X2f(0)x8 +1536X4f(1)x8 +384X2f(1)x8 +144X6f(2)x8−
240X4f(2)x8+48X2f(2)x8+48f(2)x8+18X10h(0)x8+150X8h(0)x8+12X6h(0)x8−156X4h(0)x8−
24X2h(0)x8 − 96X8h(1)x8 + 1536X6h(1)x8 − 1536X4h(1)x8 + 96X2h(1)x8 + 24X8h(2)x8 +
156X6h(2)x8 − 12X4h(2)x8 − 150X2h(2)x8 − 18h(2)x8 − 12x8 + 36X12x6 + 284X10x6 +
21p2X9x6 − 8632X8x6 − 12p2X7x6 + 21200X6x6 − 24p2X5x6 − 15612X4x6 + 15p2X3x6 +
3204X2x6 + 24X12f(0)x6 + 264X10f(0)x6 − 288X8f(0)x6 − 192X6f(0)x6 + 192X4f(0)x6 −
96X10f(1)x6 − 576X6f(1)x6 − 768X4f(1)x6 + 24X10f(2)x6 − 72X8f(2)x6 − 96X6f(2)x6 +
192X4f(2)x6 − 48X2f(2)x6 − 42X10h(0)x6 − 78X8h(0)x6 + 84X6h(0)x6 + 36X4h(0)x6 +
24X10h(1)x6− 984X8h(1)x6 + 1104X6h(1)x6− 144X4h(1)x6− 6X10h(2)x6− 114X8h(2)x6−
132X6h(2)x6 +180X4h(2)x6 +72X2h(2)x6−72X12x4−172X10x4−15p2X9x4 +3068X8x4 +
18p2X7x4−5764X6x4−3p2X5x4+2844X4x4−48X12f(0)x4−96X10f(0)x4+240X8f(0)x4−
96X6f(0)x4 + 192X10f(1)x4 + 384X6f(1)x4− 48X10f(2)x4 + 144X8f(2)x4− 48X6f(2)x4−
48X4f(2)x4 + 30X10h(0)x4 − 6X8h(0)x4 − 24X6h(0)x4 + 240X10h(1)x4 − 336X8h(1)x4 +
96X6h(1)x4+30X10h(2)x4+138X8h(2)x4−60X6h(2)x4−108X4h(2)x4+36X12x2+20X10x2+
3p2X9x2 − 164X8x2 − 3p2X7x2 + 108X6x2 + 24X12f(0)x2 − 24X10f(0)x2 − 96X10f(1)x2 +
24X10f(2)x2−72X8f(2)x2+48X6f(2)x2−6X10h(0)x2+6X8h(0)x2+24X10h(1)x2−24X8h(1)x2−
42X10h(2)x2−30X8h(2)x2 +72X6h(2)x2 +18X10h(2)−18X8h(2))/(3(x−1)2x2(x+1)2(x−
X)4(x+X)4(X2−1))−(2p(x6+12X2x4−3x4+3X4x2−12X2x2−X4)Y )/((x−X)3(x+X)3)

The algebraic integrability equations thus reduce to:

−4y(x6(f(0)−g(0))+x4(−2f(0)−4f(1)+f(2)+2g(0)+4g(1)−g(2))+x2(f(0)−4f(1)−2f(2)−g(0)+4g(1)+2g(2))+f(2)−g(2))
x2(x2−1)2 −

p((2f(0)−5)x4−2(f(0)−4f(1)+f(2)−3)x2+2f(2)−5)
x(x2−1) − p3

4
=: A = 0

− 1
x3(x2−1)3 2y(3x10(4f(0) − 16g(0) + 32h(0) + 3) − 9x8(4f(0) − 16g(0) + 32h(0) + 3) +

2x6(26f(0)− 224f(1)− 14f(2)− 72g(0) + 384g(1) + 24g(2) + 144h(0)− 768h(1)− 48h(2) +
1)−2x4(14f(0)+224f(1)−26f(2)−24g(0)−384g(1)+72g(2)+48h(0)+768h(1)−144h(2)−
1)−9x2(4f(2)−16g(2)+32h(2)+3)+12f(2)−48g(2)+96h(2)+9)− 1

x2(x2−1)2 8p(3x8(f(0)−
g(0))+x6(−7f(0)+4f(1)−f(2)+7g(0)−4g(1)+g(2))+5x4(f(0)+8f(1)+f(2)−g(0)−8g(1)−
g(2))+x2(−f(0)+4f(1)−7f(2)+g(0)−4g(1)+7g(2))+3(f(2)−g(2)))− 1

2x2(x2−1)2p
2y((2f(0)−

5)x6 + (−4f(0)− 8f(1) + 2f(2) + 9)x4 + (2f(0)− 8f(1)− 4f(2) + 9)x2 + 2f(2)− 5) =: B = 0
It is easy to check that D(A) = ∂B/∂p, so that these are the set of critical points of a

potential function. Solving the differential equation gives the following expression:

A = ∂ψ/∂p
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B = D(ψ)

where

ψ =
1

2x2(x2 − 1)2
(−24f(0)x8 + 48f(0)x6 + 8f(0)x4− 896f(1)x4− 56f(2)x4− 32f(0)x2 +

80f(2)x2− 24f(2) + 96g(0)x8− 192g(0)x6 + 96g(0)x4 + 1536g(1)x4 + 96g(2)x4− 192g(2)x2 +
96g(2)−192h(0)x8+384h(0)x6−192h(0)x4−3072h(1)x4−192h(2)x4+384h(2)x2−192h(2)−
18x8 + 36x6 − 68x4 + 36x2 − 18) +

1

2x2(x2 − 1)2
p(−8f(0)x6y + 16f(0)x4y + 32f(1)x4y −

8f(2)x4y−8f(0)x2y+32f(1)x2y+16f(2)x2y−8f(2)y+8g(0)x6y−16g(0)x4y−32g(1)x4y+

8g(2)x4y+8g(0)x2y−32g(1)x2y−16g(2)x2y+8g(2)y)+
1

2x2(x2 − 1)2
p2(−2f(0)x7+4f(0)x5−

8f(1)x5 + 2f(2)x5 − 2f(0)x3 + 8f(1)x3 − 4f(2)x3 + 2f(2)x+ 5x7 − 11x5 + 11x3 − 5x)− p4

16

5 Future Work and Open Questions

• We would like to find out how many algebraically integrable operators exist for a certain
symmetry group. In particular, does this number always coincide with the number of
critical points of the classical crystallographic elliptic Calogero-Moser Hamiltonian?

• We conjecture that over a lemniscatic elliptic curve, algebraically integrable operators
correspond to critical points of a potential if and only if there is only one orbit of poles
that are not fixed points, in which case the potential is not exactly the Calogero-Moser
Hamiltonian (see equation 4.3 in [2]). Does the same hold true for operators with
sixfold symmetry over an equianharmonic elliptic curve?

• A similar analysis can be done for `th-order differential equations with rational co-
efficients that vanish at infinity, with `th-order rotational symmetry, for any fixed
value of `. In this case, trivial monodromy is equivalent to algebraic integrability. Is
there a simple way to find out for which ` does algebraic integrability correspond to
Calogero-Moser critical points?

• Is there a physical explanation for why algebraically integrable operators correspond
to critical points of the classical crystallographic elliptic Calogero-Moser Hamiltonian
for threefold symmetry, and is there a way to generalize it to fourfold symmetry?
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