On a \mathbb{Z}_4 -Symmetric Operator over a Lemniscatic Elliptic Curve

Philip Tynan and Praveen S. Venkataramana

March 14, 2013

Abstract

The theory of algebraically integrable systems is deeply connected to various areas in mathematical physics and representation theory. For example, Prof. Etingof proved that a certain class of algebraically integrable differential operators on an elliptic curve with twofold or threefold symmetry corresponds to critical points of the classical crystallographic elliptic Calogero-Moser potential. In this paper, we extend these results by expressing an analogous class of differential operators with fourfold symmetry over a lemniscatic elliptic curve E in terms of trivial monodromy relations. We show that if the operators have eight poles, algebraically integrable operators correspond to critical points of a potential function of the form $\psi = p^4 + A(z_0)p^2 + B(z_0)p + C(z_0)$, where A, B and C are meromorphic functions on E.

1 Introduction

A differential operator $L = \partial^n + a_2(z)\partial^{n-2} + a_3(z)\partial^{n-3} + \cdots + a_n(z)$ is algebraically integrable iff there exists a nonzero differential operator M of relatively prime order that commutes with L. The notion of an algebraically integrable system is related to certain explicit solutions related to the Korteweg-de-Vries equation (see [1] and [4]). It is known that if L is algebraically integrable, then the coefficients $a_i(z)$ are meromorphic on the complex plane and their poles have order at most i (see Theorem 2.1 in [1]). For example, algebraically integrable operators can be constructed with coefficients doubly periodic in $\{1, \tau\}$, where $\tau \notin \mathbb{R}$. These coefficients can be identified with rational functions on an elliptic curve $y^2 = 4x^3 - g_2x - g_3$. It turns out that in this special case, algebraic integrability is equivalent to the existence of a basis of solutions

$$\psi(z) = e^{\beta z} \prod_{i=1}^{m} \frac{\theta(z - \alpha_i, \tau)}{\theta(z - \beta_i, \tau)}$$

of the differential equation $L\psi = \lambda \psi$, for a suitable choice of $\beta, m, \alpha_i, \beta_i$ for all but finitely many λ . Here $\theta(z,\tau) = \sum_{n \in \mathbb{Z}} e^{\pi i \tau n^2} z^n$. It is also equivalent to trivial monodromy of the equation $L\psi = \lambda \psi$ at all poles of the equation (see Theorem 2.5 in [1]). From this definition,

it is easy to prove that any algebraically integrable doubly periodic second-order differential operator with one pole must be of the form $\partial^2 - m(m+1)\wp(z,\tau)$.

Etingof and Rains considered in [1] operators of this form that are invariant under symmetries of an elliptic curve. There are four such symmetries (where $w_r = \exp 2\pi i/r$):

- 1. Twofold symmetry, on any elliptic curve. The action is $-1:(x,y)\mapsto(x,-y)$.
- 2. Threefold symmetry, on an equianharmonic curve $y^2 = 4x^3 g_3$. The action is $\mathbf{w_3^j}$: $(x,y) \mapsto (w_3^j x,y)$.
- 3. Fourfold symmetry, on a lemniscatic curve $y^2 = 4x^3 g_2x$. The action is $\mathbf{w_4^j}: (x,y) \mapsto (w_4^{2j}x, w_4^jy)$.
- 4. Sixfold symmetry, on an equianharmonic curve $y^2 = 4x^3 g_3$. The action is $\mathbf{w_6^j}$: $(x,y) \mapsto (w_6^{2j}x, w_6^{3j}y)$.

In particular, he found a correspondence between algebraically integrable second-order operators with twofold symmetry and critical points of the Inozemtsev potential. Namely, if L has poles at the fixed points $W_0 = 0$, $W_1 = 1/2$, $W_2 = \tau/2$, $W_3 = (1+\tau)/2$ of the \mathbb{Z}_2 action with arbitrary indices $-m_j$, m_{j+1} and poles at other points $\pm z_0$, ..., $\pm z_{N-1}$ with indices -1, 2, L is algebraically integrable iff the parameters correspond to critical points of:

$$\sum_{i=0}^{3} \sum_{j=0}^{N-1} \left(m_i + \frac{1}{2} \right)^2 \wp(z_j - W_i) + \sum_{0 \le k \ne j \le N-1} (\wp(z_j - z_k) + \wp(z_j + z_k))$$

Likewise, if L is a third-order operator on an equianharmonic curve with threefold symmetry, with poles of arbitrary indices at the fixed points of the \mathbb{Z}_3 action as well as on orbits of other points with indices -1, 1, 3, L is algebraically integrable iff the parameters correspond to critical points of the classical crystallographic elliptic Calogero-Moser potential (see Proposition 4.7 in [1], and also [2]).

It is thus natural to consider fourth-order operators on a lemniscatic curve $y^2 = 4x^3 - g_2x$ with fourfold symmetry, with poles of arbitrary indices at the fixed points of the \mathbb{Z}_4 action as well as on orbits of other points z_0, z_1, \dots, z_{N-1} (such that $z_i^4/z_j^4 \neq 1$) with indices -1, 1, 2, 4. With the added constraint that the indices at the fixed points with stabilizer 2 are of the form $\{a, a+2, 1-a, 3-a\}$, algebraically integrable operators of this form are conjectured in [1] to correspond to critical points of the classical crystallographic elliptic Calogero-Moser Hamiltonian for the group \mathbb{Z}_4 .

In this paper, we take the first step towards formulating such a theory by classifying algebraically integrable operators if this form when N = 1.

2 Trivial monodromy relations

Consider a fourth-order Fuchsian differential equation $Lf = \lambda f$, where $L = \partial^4 + a\partial^2 + b\partial + c$ and a, b, c are meromorphic functions on the complex plane. Fix a point $z_0 \in \mathbb{C}$ and expand

a, b and c in Laurent series:

$$a = \sum_{j=-2}^{\infty} a_j (z - z_0)^j$$
$$b = \sum_{j=-3}^{\infty} b_j (z - z_0)^j$$
$$c = \sum_{j=-4}^{\infty} c_j (z - z_0)^j$$

Furthermore, suppose that $a_{-2} = -4, b_{-3} = 8, c_{-4} = -8$. This is to ensure that the indices are -1, 1, 2, 4. For the monodromy of this equation to be trivial at z_0 , there must exist a basis of solutions $\{\phi_1, \phi_2, \phi_3, \phi_4\}$ analytic in a punctured neighborhood of z_0 .

Theorem 1: The equation $Lf = \lambda f$ has trivial monodromy at z_0 iff:

- 1) $a_1 = -c_{-1}$
- $(2) c_{-2} = -\frac{1}{4}(c_{-3}^2 + 8a_0)$
- 3) $4b_0 c_{-3}c_{-2} + 4c_{-1} = 0$
- 4) $-32a_3 + 16b_2 + 8a_2c_{-3} 4b_1c_{-3} + c_{-3}^2c_{-1} 16c_1 = 0$
- 5) $a_{-1} = 0$
- 6) $b_{-1} = 0$
- 7) $b_{-2} c_{-3} = 0$

Proof: This is a routine application of Frobenius' method best done with a computer algebra system such as Mathematica.

Corollary 1: The equation $Lf = \lambda f$ has trivial monodromy at z_0 iff it has a basis of meromorphic solutions $\{\phi_1, \phi_2, \phi_3, \phi_4\}$. Furthermore, the orders of the poles of ϕ_j at z_0 are -1, 1, 2, 4 respectively.

3 Elliptic Functions

Here I will primarily deal with the elliptic curve $E: y^2 = 4x^3 - 4x$, and its associated \wp -function. Recall that the \wp -function is doubly periodic with periods ρ and $i\rho$, where

$$\rho = \frac{1}{\sqrt{8\pi}} \Gamma(1/4)^2$$

Consider the fourth-order differential operator $L = \partial^4 + a\partial^2 + b\partial + c$, where each a, b, c are meromorphic on E such that L has foufold symmetry, with poles of arbitrary indices at the fixed points of the \mathbb{Z}_4 action as well as on the other four points $z_0, iz_0, -z_0, -iz_0$ with indices -1, 1, 2, 4. The fixed points shall be denoted $\eta_0 = 0, \eta_1 = i\rho/2, \eta_3 = \rho/2, \eta_2 = (1+i)\rho/2$. Given that $L = \partial^4 + a\partial^2 + b\partial + c$ is invariant under the action of \mathbb{Z}_4 on the elliptic curve, it follows that:

$$a(z) = a_F(z) + \sum_{\omega} (-4\wp(z - \omega z_0))$$
$$b(z) = b_F(z) + \sum_{\omega} (-4\wp'(z - \omega z_0) + p\omega^{-1}\wp(z - \omega z_0))$$

$$c(z) = c_F(z) + \sum_{\omega} \left(-\frac{4}{3}\wp''(z - \omega z_0) + \frac{p}{2}\omega^{-1}\wp'(z - \omega z_0) + \gamma\omega^2\wp(z - \omega z_0) - \alpha\omega\zeta_e(z - \omega z_0)\right)$$

where ω ranges over fourth roots of unity, and:

$$a_F(z) = \sum_{\ell} \wp(z - \eta_{\ell}) f_{\ell}$$
$$b_F(z) = \sum_{\ell} \wp'(z - \eta_{\ell}) g_{\ell}$$
$$c_F(z) = \sum_{\ell} \wp''(z - \eta_{\ell}) h_{\ell}$$

The symmetry implies that $f_1 - f_3 = g_1 - g_3 = h_1 - h_3 = 0$. Here ζ_e and σ_e are the Weierstrass zeta and sigma functions. Consider the Laurent expansions of a, b, c around the pole z_0 :

$$a(z) = \sum_{j} (z - z_0)^j a_j, b(z) = \sum_{j} (z - z_0)^j b_j, c(z) = \sum_{j} (z - z_0)^j c_j$$

Then algebraic integrability is equivalent to these four relations, obtained from trivial monodromy by solving the differential equation $L\psi = \lambda \psi$ with the Frobenius method, as seen before:

- 1) $a_1 = -c_{-1}$
- $(2) c_{-2} = -\frac{1}{4}(c_{-3}^2 + 8a_0)$
- 3) $4b_0 c_{-3}c_{-2} + 4c_{-1} = 0$
- 4) $-32a_3 + 16b_2 + 8a_2c_{-3} 4b_1c_{-3} + c_{-3}^2c_{-1} 16c_1 = 0$

The first two relations define γ and α :

$$\gamma = -\frac{p^2}{4} - 2(a_F(z_0) - 4\sum_{\omega \neq \omega^4 = 1} \wp((1 - \omega)z_0))$$
$$\alpha = a'_F(z_0) - 4\sum_{\omega \neq \omega^4 = 1} \wp'((1 - \omega)z_0)$$

The other two relations narrow the set of possible values for z_0 and p.

4 Computations

4.1 Differential and difference operators

From now on, $x = \wp(z), y = \wp'(z), X = \wp(z_0), Y = \wp'(z_0)$. For $(a, b) \in \mathbb{R}^2$ such that $b^2 = 4a^3 - 4a$, let:

$$E(a,b) = \frac{-4a^3 + 4a^2x + 4ax^2 + b^2 - 4x}{4(a-x)^2} + y\frac{b}{2(a-x)^2}$$

So if $\wp(w) = a$ and $\wp'(w) = b$, then $E(a,b) = \wp(z-w)$. This identity is well-known and can be proven by Liouville's theorem. The main differential operator I use in this paper corresponds to differentiation on the lattice of the elliptic curve, and is given by:

$$D(p(x) + yq(x)) = (-2 + 6x^{2}) q(x) + 4(-x + x^{3}) q'(x) + yp'(x)$$

4.2 The fixed points

Identifying the point z with (x, y), the three fixed points of our \mathbb{Z}_4 -action (disregarding the point at infinity) are (1,0), (0,0), and (-1,0). These are also the half-periods of the curve. Hence we have the following:

$$a_F = f(0)x + f(1)(E(1,0) + E(-1,0)) + f(2)E(0,0)$$

$$b_F = D(g(0)x + g(1)(E(1,0) + E(-1,0)) + g(2)E(0,0))$$

$$c_F = D(D(h(0)x + h(1)(E(1,0) + E(-1,0)) + h(2)E(0,0)))$$

However, E at the fixed points evaluates to something especially simple:

$$E(-1,0) = \frac{1-x}{1+x}$$
$$E(0,0) = -\frac{1}{x}$$
$$E(1,0) = \frac{x+1}{x-1}$$

Therefore,

$$a_F = \frac{f(0)x^4 - f(0)x^2 + 4f(1)x^2 - f(2)x^2 + f(2)}{(x - 1)x(x + 1)}$$

$$b_F = \frac{y(g(0)x^6 - 2g(0)x^4 - 4g(1)x^4 + g(2)x^4 + g(0)x^2 - 4g(1)x^2 - 2g(2)x^2 + g(2))}{(x - 1)^2x^2(x + 1)^2}$$

$$c_F = \frac{2\left(3h(0)x^8 - 7h(0)x^6 + 4h(1)x^6 - h(2)x^6 + 5h(0)x^4 + 40h(1)x^4 + 5h(2)x^4 - h(0)x^2 + 4h(1)x^2 - 7h(2)x^2 + 3h(2)\right)}{(x - 1)^2x^2(x + 1)^2}$$

Similarly, evaluating a, b and c give the following:

 $a = \frac{1}{(x-1)x(x+1)(x-X)^2(x+X)^2} (f(0)x^8 - 2f(0)x^6X^2 - f(0)x^6 + 4f(1)x^6 - f(2)x^6 + f(0)x^4X^4 + 2f(0)x^4X^2 - 8f(1)x^4X^2 + 2f(2)x^4X^2 + f(2)x^4 - f(0)x^2X^4 + 4f(1)x^2X^4 - f(2)x^2X^4 - 2f(2)x^2X^2 + f(2)X^4 - 48x^6X^2 + 16x^6 - 16x^4X^4 + 96x^4X^2 - 16x^4 + 16x^2X^4 - 48x^2X^2)$ $b = (y(g(0)x^{12} - 3g(0)x^{10}X^2 - 2g(0)x^{10} - 4g(1)x^{10} + g(2)x^{10} + 3g(0)x^8X^4 + 6g(0)x^8X^2 + 12g(1)x^8X^2 - 3g(2)x^8X^2 + g(0)x^8 - 4g(1)x^8 - 2g(2)x^8 - g(0)x^6X^6 - 6g(0)x^6X^4 - 12g(1)x^6X^4 + 3g(2)x^6X^4 - 3g(0)x^6X^2 + 12g(1)x^6X^2 + 6g(2)x^6X^2 + g(2)x^6 + 2g(0)x^4X^6 + 4g(1)x^4X^6 - g(2)x^4X^6 + 3g(0)x^4X^4 - 12g(1)x^4X^4 - 6g(2)x^4X^4 - 3g(2)x^2X^6 + 4g(1)x^2X^6 + 2g(2)x^2X^6 + 3g(2)x^2X^4 - g(2)X^6 + 48x^{10}X^2 - 16x^{10} + 192x^8X^4 - 288x^8X^2 + 32x^8 + 16x^6X^6 - 432x^6X^4 + 432x^6X^2 - 16x^6 - 32x^4X^6 + 288x^4X^4 - 192x^4X^2 + 16x^2X^6 - 48x^2X^4))/((x-1)^2x^2(x+1)^2(x-X)^3(x+X)^3) + \frac{2pyY(x^2+X^2)}{(x-X)^2(x+X)^2}$ $c = \frac{1}{3(x-1)^2x^2(x+1)^2(x-X)^3(x+X)^4} 2(9h(0)x^{16} - 48X^2x^{14} - 3pYx^{14} + 6X\gamma x^{14} - 36X^2h(0)x^{14} - 3x^2x^{14} + 3x^2x^{14} - 3x^2x^$

 $21h(0)x^{14} + 12h(1)x^{14} - 3h(2)x^{14} + 16x^{14} - 1488X^4x^{12} + 1376X^2x^{12} - 33pX^2Yx^{12} + 15pYx^{12} + 15pYx^{12} + 15pYx^{12} + 16x^{14} +$ $3XY\alpha x^{12} + 6X^3\gamma x^{12} - 30X\gamma x^{12} + 54X^4h(0)x^{12} + 84X^2h(0)x^{12} + 15h(0)x^{12} - 48X^2h(1)x^{12} + 15h(0)x^{12} + 15h(0)x^{12}$ $120h(1)x^{12} + 12X^{2}h(2)x^{12} + 15h(2)x^{12} - 80x^{12} - 1488X^{6}x^{10} + 6528X^{4}x^{10} - 4096X^{2}x^{10} +$ $27pX^{4}Yx^{10} + 93pX^{2}Yx^{10} - 21pYx^{10} - 9X^{3}Y\alpha x^{10} - 6XY\alpha x^{10} - 30X^{5}\gamma x^{10} + 18X^{3}\gamma x^{10} +$ $42X\gamma x^{10} - 36X^6h(0)x^{10} - 126X^4h(0)x^{10} - 60X^2h(0)x^{10} - 3h(0)x^{10} + 72X^4h(1)x^{10} - 480X^2h(1)x^{10} +$ $12h(1)x^{10} - 18X^4h(2)x^{10} - 60X^2h(2)x^{10} - 21h(2)x^{10} + 112x^{10} - 48X^8x^8 + 4256X^6x^8 10080X^4x^8 + 4256X^2x^8 + 9pX^6Yx^8 - 87pX^4Yx^8 - 87pX^2Yx^8 + 9pYx^8 + 9X^5Y\alpha x^8 + 18X^3Y\alpha x^8$ $3XY\alpha x^8 + 18X^7\gamma x^8 + 54X^5\gamma x^8 - 54X^3\gamma x^8 - 18X\gamma x^8 + 9X^8h(0)x^8 + 84X^6h(0)x^8 + 90X^4h(0)x^8 + 18X^5\gamma x^8 - 18$ $12X^{2}h(0)x^{8} - 48X^{6}h(1)x^{8} + 720X^{4}h(1)x^{8} - 48X^{2}h(1)x^{8} + 12X^{6}h(2)x^{8} + 90X^{4}h(2)x^{8} +$ $84X^{2}h(2)x^{8} + 9h(2)x^{8} - 48x^{8} + 112X^{8}x^{6} - 4096X^{6}x^{6} + 6528X^{4}x^{6} - 1488X^{2}x^{6} - 21pX^{6}Yx^{6} + 6528X^{6}x^{6} + 6522X^{6}x^{6} + 652X^{6}x^{6} + 652X^{6}x^{6} + 652X^{6}x^{6} + 652X^{6}x^{6} + 6$ $93pX^{4}Yx^{6} + 27pX^{2}Yx^{6} - 3X^{7}Y\alpha x^{6} - 18X^{5}Y\alpha x^{6} - 9X^{3}Y\alpha x^{6} - 42X^{7}\gamma x^{6} - 18X^{5}\gamma x^{6} +$ $30X^3\gamma x^6 - 21X^8h(0)x^6 - 60X^6h(0)x^6 - 18X^4h(0)x^6 + 12X^8h(1)x^6 - 480X^6h(1)x^6 + 72X^4h(1)x^6 - 480X^6h(1)x^6 - 480$ $3X^{8}h(2)x^{6} - 60X^{6}h(2)x^{6} - 126X^{4}h(2)x^{6} - 36X^{2}h(2)x^{6} - 80X^{8}x^{4} + 1376X^{6}x^{4} - 1488X^{4}x^{4} + 1376X^{6}x^{4} - 1488X^{6}x^{4} - 1488X^{6}x^{4} - 1488X^{6}x^{4} - 1488X^{6}x^{4} - 1488X^{6}x^{4} - 1488X^{6}x^{6} - 126X^{6}x^{6} - 126X^{6}x^{6}$ $15pX^6Yx^4 - 33pX^4Yx^4 + 6X^7Y\alpha x^4 + 9X^5Y\alpha x^4 + 30X^7\gamma x^4 - 6X^5\gamma x^4 + 15X^8h(0)x^4 +$ $12X^{6}h(0)x^{4} + 120X^{8}h(1)x^{4} - 48X^{6}h(1)x^{4} + 15X^{8}h(2)x^{4} + 84X^{6}h(2)x^{4} + 54X^{4}h(2)x^{4} + 10X^{6}h(2)x^{4} + 10X^{6}h(2)x^{6} + 10X^{6}h(2$ $16X^8x^2 - 48X^6x^2 - 3pX^6Yx^2 - 3X^7Y\alpha x^2 - 6X^7\gamma x^2 - 3X^8h(0)x^2 + 12X^8h(1)x^2 - 21X^8h(2)x^2 - 48X^6x^2 - 3pX^6Yx^2 - 3X^7Y\alpha x^2 - 6X^7\gamma x^2 - 3X^8h(0)x^2 + 12X^8h(1)x^2 - 21X^8h(2)x^2 - 4X^8y^2 - 21X^8h(2)x^2 - 21X^8h(2)$ $36X^6h(2)x^2 + 9X^8h(2)$

Evaluating γ and α based on the first two equations gives:

$$\alpha + \frac{1}{2X^2(X^2-1)^2}Y(2f(0)X^6 - 4f(0)X^4 - 8f(1)X^4 + 2f(2)X^4 + 2f(0)X^2 - 8f(1)X^2 - 4f(2)X^2 + 2f(2) + 3X^6 + X^4 + X^2 + 3) = 0$$

$$\gamma + \frac{1}{4}(\frac{8(f(0)X^4 - f(0)X^2 + 4f(1)X^2 - f(2)X^2 + f(2) - X^4 - 2X^2 - 1)}{X(X^2 - 1)} + p^2) = 0$$
 Substituting,

 $c = (18X^2h(0)x^{16} - 18h(0)x^{16} - 72X^4x^{14} - 3p^2X^3x^{14} + 176X^2x^{14} + 3p^2Xx^{14} - 24X^4f(0)x^{14} + 24X^2f(0)x^{14} - 96X^2f(1)x^{14} + 24X^2f(2)x^{14} - 24f(2)x^{14} - 72X^4h(0)x^{14} + 30X^2h(0)x^{14} + 42h(0)x^{14} + 24X^2h(1)x^{14} - 6X^2h(2)x^{14} + 6h(2)x^{14} - 8x^{14} - 2988X^6x^{12} - 3p^2X^5x^{12} + 5644X^4x^{12} + 18p^2X^3x^{12} - 3140X^2x^{12} - 15p^2Xx^{12} - 48X^6f(0)x^{12} + 192X^4f(0)x^{12} - 144X^2f(0)x^{12} + 576X^2f(1)x^{12} - 96X^2f(2)x^{12} + 96f(2)x^{12} + 108X^6h(0)x^{12} + 60X^4h(0)x^{12} - 138X^2h(0)x^{12} - 30h(0)x^{12} - 96X^4h(1)x^{12} + 336X^2h(1)x^{12} - 240h(1)x^{12} + 24X^4h(2)x^{12} + 6X^2h(2)x^{12} - 30h(2)x^{12} + 108X^6h(0)x^{12} + 108X$

 $4x^{12} - 2988X^8x^{10} + 15p^2X^7x^{10} + 15972X^6x^{10} - 24p^2X^5x^{10} - 20996X^4x^{10} - 12p^2X^3x^{10} +$ $8956X^2x^{10} + 21p^2Xx^{10} + 192X^8f(0)x^{10} - 288X^6f(0)x^{10} - 120X^4f(0)x^{10} + 216X^2f(0)x^{10} +$ $192X^{6}f(1)x^{10} - 768X^{4}f(1)x^{10} - 864X^{2}f(1)x^{10} - 48X^{6}f(2)x^{10} + 96X^{4}f(2)x^{10} + 72X^{2}f(2)x^{10} - 768X^{2}f(2)x^{10} + 72X^{2}f(2)x^{10} +$ $120f(2)x^{10} - 72X^{8}h(0)x^{10} - 180X^{6}h(0)x^{10} + 132X^{4}h(0)x^{10} + 114X^{2}h(0)x^{10} + 6h(0)x^{10} +$ $144X^{6}h(1)x^{10} - 1104X^{4}h(1)x^{10} + 984X^{2}h(1)x^{10} - 24h(1)x^{10} - 36X^{6}h(2)x^{10} - 84X^{4}h(2)x^{10} + 100X^{10} + 100X^$ $78X^{2}h(2)x^{10} + 42h(2)x^{10} + 16x^{10} - 132X^{10}x^{8} - 9p^{2}X^{9}x^{8} + 8716X^{8}x^{8} - 18p^{2}X^{7}x^{8} - 28528X^{6}x^{8} + 18p^{2}X^{7}x^{8} - 18p^{2}X^{7}x^{8} 54p^2X^{5}x^{8} + 28192X^{4}x^{8} - 18p^2X^{3}x^{8} - 9196X^{2}x^{8} - 9p^2Xx^{8} - 144X^{10}f(0)x^{8} - 144X^{8}f(0)x^{8} +$ $624X^{6}f(0)x^{8} - 240X^{4}f(0)x^{8} - 96X^{2}f(0)x^{8} + 1536X^{4}f(1)x^{8} + 384X^{2}f(1)x^{8} + 144X^{6}f(2)x^{8} 240X^{4}f(2)x^{8} + 48X^{2}f(2)x^{8} + 48f(2)x^{8} + 18X^{10}h(0)x^{8} + 150X^{8}h(0)x^{8} + 12X^{6}h(0)x^{8} - 156X^{4}h(0)x^{8} - 12X^{6}h(0)x^{8} + 12X^{6}h(0)x$ $24X^{2}h(0)x^{8} - 96X^{8}h(1)x^{8} + 1536X^{6}h(1)x^{8} - 1536X^{4}h(1)x^{8} + 96X^{2}h(1)x^{8} + 24X^{8}h(2)x^{8} + 24X^{8}$ $156X^{6}h(2)x^{8} - 12X^{4}h(2)x^{8} - 150X^{2}h(2)x^{8} - 18h(2)x^{8} - 12x^{8} + 36X^{12}x^{6} + 284X^{10}x^{6} +$ $21p^2X^9x^6 - 8632X^8x^6 - 12p^2X^7x^6 + 21200X^6x^6 - 24p^2X^5x^6 - 15612X^4x^6 + 15p^2X^3x^6 +$ $3204X^{2}x^{6} + 24X^{12}f(0)x^{6} + 264X^{10}f(0)x^{6} - 288X^{8}f(0)x^{6} - 192X^{6}f(0)x^{6} + 192X^{4}f(0)x^{6} - 192X^{6}f(0)x^{6} + 192X^{$ $96X^{10}f(1)x^6 - 576X^6f(1)x^6 - 768X^4f(1)x^6 + 24X^{10}f(2)x^6 - 72X^8f(2)x^6 - 96X^6f(2)x^6 + 24X^{10}f(2)x^6 + 24X^{10}f(2)x^6 - 72X^8f(2)x^6 + 24X^{10}f(2)x^6 + 24X^{$ $192X^{4}f(2)x^{6} - 48X^{2}f(2)x^{6} - 42X^{10}h(0)x^{6} - 78X^{8}h(0)x^{6} + 84X^{6}h(0)x^{6} + 36X^{4}h(0)x^{6} +$ $24X^{10}h(1)x^6 - 984X^8h(1)x^6 + 1104X^6h(1)x^6 - 144X^4h(1)x^6 - 6X^{10}h(2)x^6 - 114X^8h(2)x^6 - 114X^8h($ $18p^2X^7x^4 - 5764X^6x^4 - 3p^2X^5x^4 + 2844X^4x^4 - 48X^{12}f(0)x^4 - 96X^{10}f(0)x^4 + 240X^8f(0)x^4 - 48X^{12}f(0)x^4 - 48X^{12}f(0)x$ $96X^{6}f(0)x^{4} + 192X^{10}f(1)x^{4} + 384X^{6}f(1)x^{4} - 48X^{10}f(2)x^{4} + 144X^{8}f(2)x^{4} - 48X^{6}f(2)x^{4} - 48X^{6}f(2)x^{4} - 48X^{6}f(2)x^{4} + 144X^{8}f(2)x^{4} - 48X^{6}f(2)x^{4} - 48X^{6}f(2)x^{4} + 144X^{6}f(2)x^{4} - 48X^{6}f(2)x^{4} - 48X^$ $48X^{4}f(2)x^{4} + 30X^{10}h(0)x^{4} - 6X^{8}h(0)x^{4} - 24X^{6}h(0)x^{4} + 240X^{10}h(1)x^{4} - 336X^{8}h(1)x^{4} +$ $96X^{6}h(1)x^{4} + 30X^{10}h(2)x^{4} + 138X^{8}h(2)x^{4} - 60X^{6}h(2)x^{4} - 108X^{4}h(2)x^{4} + 36X^{12}x^{2} + 20X^{10}x^{2} + 10X^{10}x^{2} + 10X^{10}x^$ $3p^2X^9x^2 - 164X^8x^2 - 3p^2X^7x^2 + 108X^6x^2 + 24X^{12}f(0)x^2 - 24X^{10}f(0)x^2 - 96X^{10}f(1)x^2 +$ $24X^{10}f(2)x^2 - 72X^8f(2)x^2 + 48X^6f(2)x^2 - 6X^{10}h(0)x^2 + 6X^8h(0)x^2 + 24X^{10}h(1)x^2 - 24X^8h(1)x^2 - 24X^8h(1)x^2$ $42X^{10}h(2)x^2 - 30X^8h(2)x^2 + 72X^6h(2)x^2 + 18X^{10}h(2) - 18X^8h(2))/(3(x-1)^2x^2(x+1)^2(x-1)^2x^2(x+1)^2(x-1)^2x^2(x+1)^2(x-1)^2x^2(x+1)^2(x-1)^2x^2(x+1)^2(x-1)^2x^2(x+1)^2(x-1)^2x^2(x+1)^2(x-1)^2x^2(x+1)^2(x-1)^2x^2(x+1)^2(x-1)^2x^2(x+1)^2(x-1)^2x^2(x+1)^2(x-1)^2x^2(x+1)^2(x-1)^2x^2(x+1)^2(x-1)^2x^2(x+1)^2(x-1)^2x^2(x+1)^2x^2$ $(X)^4(x+X)^4(X^2-1) - (2p(x^6+12X^2x^4-3x^4+3X^4x^2-12X^2x^2-X^4)Y)/((x-X)^3(x+X)^3)$ The algebraic integrability equations thus reduce to:

$$-\frac{4y\left(x^{6}(f(0)-g(0))+x^{4}(-2f(0)-4f(1)+f(2)+2g(0)+4g(1)-g(2))+x^{2}(f(0)-4f(1)-2f(2)-g(0)+4g(1)+2g(2))+f(2)-g(2)\right)}{x^{2}(x^{2}-1)^{2}}-\frac{p\left((2f(0)-5)x^{4}-2(f(0)-4f(1)+f(2)-3)x^{2}+2f(2)-5\right)}{x(x^{2}-1)}-\frac{p^{3}}{4}=:A=0$$

 $-\frac{1}{x^3(x^2-1)^3}2y(3x^{10}(4f(0)-16g(0)+32h(0)+3)-9x^8(4f(0)-16g(0)+32h(0)+3)+2x^6(26f(0)-224f(1)-14f(2)-72g(0)+384g(1)+24g(2)+144h(0)-768h(1)-48h(2)+1)-2x^4(14f(0)+224f(1)-26f(2)-24g(0)-384g(1)+72g(2)+48h(0)+768h(1)-144h(2)-1)-9x^2(4f(2)-16g(2)+32h(2)+3)+12f(2)-48g(2)+96h(2)+9)-\frac{1}{x^2(x^2-1)^2}8p(3x^8(f(0)-g(0))+x^6(-7f(0)+4f(1)-f(2)+7g(0)-4g(1)+g(2))+5x^4(f(0)+8f(1)+f(2)-g(0)-8g(1)-g(2))+x^2(-f(0)+4f(1)-7f(2)+g(0)-4g(1)+7g(2))+3(f(2)-g(2)))-\frac{1}{2x^2(x^2-1)^2}p^2y((2f(0)-5)x^6+(-4f(0)-8f(1)+2f(2)+9)x^4+(2f(0)-8f(1)-4f(2)+9)x^2+2f(2)-5)=:B=0$ It is easy to shock that D(A)=3P/3p, so that these are the set of critical points of a

It is easy to check that $D(A) = \partial B/\partial p$, so that these are the set of critical points of a potential function. Solving the differential equation gives the following expression:

$$A = \partial \psi / \partial p$$

$$B = D(\psi)$$

where
$$\psi = \frac{1}{2x^2(x^2-1)^2}(-24f(0)x^8 + 48f(0)x^6 + 8f(0)x^4 - 896f(1)x^4 - 56f(2)x^4 - 32f(0)x^2 + 80f(2)x^2 - 24f(2) + 96g(0)x^8 - 192g(0)x^6 + 96g(0)x^4 + 1536g(1)x^4 + 96g(2)x^4 - 192g(2)x^2 + 96g(2) - 192h(0)x^8 + 384h(0)x^6 - 192h(0)x^4 - 3072h(1)x^4 - 192h(2)x^4 + 384h(2)x^2 - 192h(2) - 18x^8 + 36x^6 - 68x^4 + 36x^2 - 18) + \frac{1}{2x^2(x^2-1)^2}p(-8f(0)x^6y + 16f(0)x^4y + 32f(1)x^4y - 8f(2)x^4y - 8f(0)x^2y + 32f(1)x^2y + 16f(2)x^2y - 8f(2)y + 8g(0)x^6y - 16g(0)x^4y - 32g(1)x^4y + 8g(2)x^4y + 8g(0)x^2y - 32g(1)x^2y - 16g(2)x^2y + 8g(2)y) + \frac{1}{2x^2(x^2-1)^2}p^2(-2f(0)x^7 + 4f(0)x^5 - 8f(1)x^5 + 2f(2)x^5 - 2f(0)x^3 + 8f(1)x^3 - 4f(2)x^3 + 2f(2)x + 5x^7 - 11x^5 + 11x^3 - 5x) - \frac{p^4}{16}$$

5 Future Work and Open Questions

- We would like to find out how many algebraically integrable operators exist for a certain symmetry group. In particular, does this number always coincide with the number of critical points of the classical crystallographic elliptic Calogero-Moser Hamiltonian?
- We conjecture that over a lemniscatic elliptic curve, algebraically integrable operators correspond to critical points of a potential if and only if there is only one orbit of poles that are not fixed points, in which case the potential is not exactly the Calogero-Moser Hamiltonian (see equation 4.3 in [2]). Does the same hold true for operators with sixfold symmetry over an equianharmonic elliptic curve?
- A similar analysis can be done for ℓth-order differential equations with rational coefficients that vanish at infinity, with ℓth-order rotational symmetry, for any fixed value of ℓ. In this case, trivial monodromy is equivalent to algebraic integrability. Is there a simple way to find out for which ℓ does algebraic integrability correspond to Calogero-Moser critical points?
- Is there a physical explanation for why algebraically integrable operators correspond to critical points of the classical crystallographic elliptic Calogero-Moser Hamiltonian for threefold symmetry, and is there a way to generalize it to fourfold symmetry?

6 Acknowledgements

The second author wishes to thank Prof. Pavel Etingof for helpful and in-depth discussions. Both authors wish to thank Slava Gerovitch and Prof. Etingof for creating the opportunity to write this paper.

7 References

- 1. Etingof, P. and Rains, E. On Algebraically Integrable Differential Operators on Elliptic Curves. arXiv:1011.6410v3
- 2. Etingof, P., Felder, G., Ma, X., Veselov, A. On Elliptic Calogero-Moser Systems for Complex Crystallographic Reflection Groups. arXiv:1003.4689v2
- 3. Babelon, O., Bernard, D., and Talon, M. *Introduction to classical integrable systems*, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2003. MR 1995460 (2004e:37085)
- 4. Krichever, I. M., Integration of nonlinear equations by methods of algebraic geometry. Funct. Anal. Appl. 11 (1977), no. 1, 12-26.
- 5. Krichever, I. M., Elliptic solutions of the Kadomcev-Petviashvili equations, and integrable systems of particles. Funct. Anal. Appl. 14 (1980), no. 4, 282-290.