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We comnsider a problem in signal processing which deals with the recovery of a high-
dimensional sparse signal based on a small number of measurements. Our goal is to apply
the least absolute deviations (LAD) method in an algorithm that would essentially follow
the steps of the orthogonal matching pursuit (OMP) algorithm that has been used mostly
in this setting. OMP can recover the signal with high probability in noiseless cases and
specific noise distributions such as bounded and Gaussian. In the presence of heavy-tailed
distributed noise, OMP algorithm needs a signal to be much larger than the noise in order
to recover it (puts too much constraint on a signal). We consider the algorithm using LAD
in all the cases above and compare the simulation results using both methods. OMP works
better, i.e., recovers a higher percentage of signals in noiseless, bounded and Gaussian noise
cases. On the other hand, our new LAD based method recovers a higher percentage of
signals in the case when the ¢(2)-heavy tailed noise is present. This provides an alternative
to the standard least-squares based methods especially in the presence of heavy tailed
noises. We also provide a sufficient condition on the design matrix in order for the LAD
based method to recover all signals precisely. Simulation shows the sufficient condition is
satisfied with high probability for Bernoulli and Gaussian random design matrices.



1 Introduction

This work is related to the problem in the Compressed Sensing topic which is finding
sparse solutions to vastly underdetermined linear systems. An underdetermined system of
linear equations has more unknowns than equations and generally has an infinite number
of solutions. However, if there is a unique sparse solution to the underdetermined system,
then the Compressed Sensing framework allows the recovery of that solution. There are also
significant connections of this project with the problem of recovering signals from highly
incomplete measurements. In electrical engineering, particularly in signal processing, this
problem is of great importance. The results found by David Donoho, Emmanuel Cands and
Terence Tao [7] are very important for establishing the field. They showed that the number
of the measurements can be small and still contain nearly all the useful information.

First we will provide background on the regression model and the least squares estima-
tion method as in [1] and [2]. Then we will say how the least squares regression is used
to develop the orthogonal matching pursuit algorithm. Finally, we will introduce the least
absolute deviations method and the corresponding algorithm.

2 Regression model. Least squares estimation method.

The regression model assumes that output y linearly depends on the input variables x1, xo, ..., xp,
p €N, ie.,

y=bix1+ -+ Bpzp.
This model is to be fit of n, n € N points

yi,xﬂ,xig,...,xip, 1= 1,2,...,n.

The observations y;, where ¢ = 1,2, ..., n will be represented by a vector Y. The unknowns
B1, B2, ..., Bp will be represented by a vector 5. Let X be a matrix
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For a given [, the vector of fitted or predicted values, 57, can be written ¥ = X 5. Using
the least squares estimation we will pick the coefficients 8 = (81, 82, ..., 8p)1 to minimize
the residual sum of squares

2
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= (Y - X8)"(Y - Xp).



Differentiating with respect to 5 we get

ORSS

Thus, RSS is minimal for X7 X = X7Y. Assuming that X has full column rank we get
that X7 X is nonsingular and thus the solution is unique

B=xXTX)"'xTy.
In this case R
Y =Xp=X(XTX)"1xTy.

Denote P = X (XTX)"1X7T and columns of X as x1,...,z, (n dimensional vectors). These
vectors span a subspace of R”. We will minimize RSS(8) = ||Y — X 8]|3 by choosing 3 so

that the residual vector Y — Y is orthogonal to this subspace. This can also be seen from
the equation that minimizes RSS"

Thus we get N
‘T;,T(Y_Y):O’ 7’_1’25 7p7
ie.,
<wi,(Y—§A/)> —0, i=1,2,....p.
We conclude that Y —V is orthogonal to all x1,x2, ..., x), i.e., space spanned by columns of

the matrix X. Hence, Y is the orthogonal projection of Y onto this subspace. The matrix
P computes orthogonal projection, and hence it is also called a projection matrix.

It might happen that the columns of X are not linearly independent, so that X is not
of full rank. This happens, for example, when the number of inputs p is bigger than the
number of measurements n and this case is of particular interest for this project. In the
next section we will present one way of reconstructing the signal 8 in this case if we add
more restrictions to the model as shown in [3].

3 Orthogonal matching pursuit algorithm.
Assume the presence of noise in the model so that

Y = X0 +e,

where the observation Y € R", the matrix X € R™*P and the errors ¢ € R™. Let the
columns of X be normalized i.e., ||z;||]2 =1 for all i = 1,2,...,p. The goal is to reconstruct
B € R"™if X and Y are given, p > n, and we know that in this model the vector [ is sparse.
Sparsity is defined in the following way:

Definition 1 For a given vector € RP, the support of B is defined to be the set supp(3) =
{i:B; # 0} and B is said to be k-sparse if |supp(p)| < k.



Now, we will consider the orthogonal matching pursuit algorithm for the recovery of
this kind of 3, high-dimensional sparse signal, based on a small number of measurements.
We still have the assumption that the columns of X are normalized. For any subset
S c {1,2,...,p}, denote by X(S) a submatrix of X consisting of the columns z; with
i € S. As defined in the paper [3] we will call x; a correct variable if the corresponding
Bi # 0 and call xz; an incorrect variable otherwise. The OMP algorithm is the following:

e Step 1: Initialize the residual ro = Y and initialize the set of selected variables
X(eg) = 0. Set the iteration counter i = 1.
e Step 2: Find the variable (column) z, which solves the maximization problem

max [ ria],
and add the variable x4, to the set of selected variables: ¢; = ¢;_1 U {¢;}.

e Step 3: Set P, = X (¢;)(X(¢;)TX(¢;))7 X (c;)T the projection onto the linear space
spanned by the columns of X (¢;). Now change (update) r; = (I — P,)Y.

e Step 4: If the stopping rule is achieved, stop the algorithm. Otherwise, set ¢ =i+ 1
and return to step 2.

This algorithm selects in the second step the column of X which is most correlated
with the current residual. The column chosen in this way is not already selected because
the current residual is orthogonal to all already selected columns so the scalar product of
the current residual and an already selected column would be zero, hence certainly not
the maximum. This column is then added to the set of selected columns. The algorithm
updates the residual by projecting the observation Y onto the linear space spanned by the
columns that have already been selected (Step 3) and then the algorithm iterates (Step 4).
The stopping rule in Step 4 depends on the noise structure and in the noiseless case the
stopping rule is naturally 7; = 0. The paper [3] considers three types of noise. The first
is lo bounded noise, i.e., ||e|]| < by for some constant by > 0. Another is I, bounded noise
where || XT¢|| < by for some constant b, > 0. The third one is Gaussian noise where ¢;
i.id. N(0,0?) is considered.

One of the important restrictions that the matrix X should have in order for the sparse
signal to be recovered is the Mutual Incoherence Property (MIP). The Mutual Incoherence
is defined as:

p= 13@?;})\(%%”,

and it measures the maximum correlation between two columns. The MIP requires the
mutual incoherence p to be small i.e., the columns of the matrix X are slightly correlated
(we cannot take them to be orthogonal under the condition p > n but we can take them to
be ”almost orthogonal” by requiring u to be small). It is shown in [4] that in the noiseless
case the condition u < %%1 is sufficient for recovering a k-sparse signal (5 i.e., under MIP the
OMP algorithm presented can completely recover the vector 5. In this case the algorithm
will select all correct variables z; (corresponding /3; # 0) and none of the incorrect ones.

Another condition used in [4] is called the Exact Recovery Condition (ERC). Let T' =
{i: B; # 0} be the support of 8 and let X (T") be the set of columns of X corresponding to



the support T'. Define

T -1 T
M= _max (XX (D)7 XT) el
The condition M < 1 is called the Exact Recovery Condition. It is shown in [4] that the
ERC is a sufficient condition for the exact recovery of the support of the signal 5 in the
noiseless case. The value M is not computable as it depends on the unknown support 7.
Generating random matrices with MIP puts some limits on n, k and p. From [5] we see
that in order for the MIP to hold for a random matrix where all x;; are i.id., roughly the

sparsity k should satisfy
ket )"
4\/ logp

For example, if we take k = 2, we get logp < ﬁ = g1, Which implies n < p < esi. The

smallest n that satisfies this property is n = 381 in which case p has to satisfy 381 < p < 385.
We need p > n thus n needs to be bigger than this lower bound. For n = 1,000 we get
1,000 < p < 6,107,328 which makes p much bigger than n. Because the MIP condition
puts too much constraint on the dimensions of the data matrix X, we see from the following
theorem from [6] that OMP can recover a k-sparse signal when the number of measurements
n is nearly proportional to k£ but with some probability.

Theorem 2 (OMP with Gaussian Measurements): Fiz § € (0,0.36), and choose n >
Ck ln(%). Suppose that B is an arbitrary k-sparse signal in RP. Draw n measurement vectors
X1, Xo, ..., X, independently from the standard Gaussian distribution on RP. Given the
data {(B8,X;) i =1,2,...,n}, OMP can reconstruct the signal with probability exceeding
1 —26. The constant satisfies C' < 20. For large values of k, it can be reduced to C = 4.

In [6] it is also shown from the simulation results that this theoretical bound is qualita-
tively correct even though it is slightly pessimistic.

4 Least absolute deviations method.

For this method we will use the same model as used to describe the least squares estimation.
Here, we will try to minimize RS A, residual sum of absolute values, i.e.,

n p
RSA=Y |y — Y Bl =Y — X8|

i=1 j=1
Differentiating RS A with respect to 8 we get

ORSA
o5 = ~XTsm(Y — X8),

for all real vectors 8 for which the function is differentiable. The sign function for a random
variable is defined as

-1 :z<0
sgn(z) =4 0 cx =0
1 x> 0.



Also, we are using sgn(r) = (sgn(r1),sgn(re),...,sgn(ry,)) for r = (r1,re,...,r,) a real
vector. In order to minimize RSA we need to find 5 so that these partial derivatives are as
close as possible to zero. Thus, we will change the OMP algorithm in the following way:

e Step 1: Initialize the residual ro = Y and initialize the set of selected variables
X (co) = 0. Set the iteration counter ¢ = 1.

e Step 2: Find the variable (column) x;, not already in ¢;—; which solves the maxi-
mization problem

T
max x; sgn(ri_1)],
1<t<p and t¢0i71| t 56 ( ! 1)‘

and add the variable x4, to the set of selected variables: ¢; = ¢;—1 U {¢;}.

e Step 3: Find the new residual using LAD method: calculate the new residual
ri =Y — X(c;)Be; by minimizing the corresponding RSA = [|Y — X(¢;) |4 -

e Step 4: If i > k stop the algorithm. Otherwise, set ¢ = i + 1 and return to Step 2.

In Step 2, we find a column which is most correlated with the sign of the current residual,
but not already selected. Also, in Step 3, we do not use projections (this is specific for the
least squares estimation), but we use the package quantile regression in R, which computes
coefficients and residuals in this case.

The stopping times for the cases with noise in OMP algorithm used in [3] do not use the
sparsity level as given. They recover the signal without having k£ as input. The stopping
times used there depend on the norm of the residual and noise type, but they are constructed
only for the specific noise distributions mentioned in Section 3. The case of #(2) distributed
noise is not considered in [3] because OMP does not work very well with this noise type
(heavy-tailed), i.e., it could recover the signal only if its the non-zero components are very
large, so that the noise would be much smaller compared with the signal. This restriction
on the signal is too big, so that is mainly why we consider alternative methods to deal with
this type of noise. We take that the sparsity of 5 is given as input (k is known), so we have
exactly k iterations in the algorithm.

Now, we want to find the conditions on the matrix X for which LAD would recover the
signal. From the model we have

Y =218 + 2282 + -+ + 21k

In this case the set of true variables is Xp = (x1,...,2x) and the set of incorrect variables
is denoted as Xp = (2p41,...,2p). In order for the algorithm to select the correct variable
in the first step we need to have

1XFsgn(Y)loo > | XFsgn(Y) oo (1)
If we put 8* = (1, ..., Bk) then we can write Y = Xp*, and the above inequality becomes
1 XFsgn(X75) oo > || X Fsgn(Xr8")]|co-
By using Holder’s inequality we get:

18* 11| X Tsgn(XrB*)|lso > (B*, Xfsgn(XpB%)).



From (8%, Xtsgn(X7r6%)) = (8%)T XFsgn(X75*) = || X76*|)1 and using the inequality above
we get

XrB*|1h
| XFsgn(Xr ) > LTI
18*(11
so the sufficient condition for the recovery of a correct variable in the first step becomes
X7B*|1 «
P ) X Esgn(2r8°) . 2
18* 1
Because the condition in (2) should hold for all 5* € R¥ we get that (1) holds for Y
equals any linear combination of the true variables x1,...,xr. Thus, we can write

IXTsgn(r)lloe > [|1X Fsgn(r) oo,

where 7 is any of the residuals (a residual is some linear combination of the true variables).
From here, we get that in all iterations the column which is most correlated with the sign
of the current residual is a true variable, i.e., one of the first & columns. We need to make
sure it is not an already selected true variable. This can be accomplished if we change the
definition of the sign function so that sgn(0) can be any number between —1 and 1. The
derivative of ||Y — X (¢;)B |1 is equal to —X (c;)Tsgn(Y — X (c;)B,;) in all points 3., € R’
in which the function is differentiable. The new definition of the sign function allows us to
have the value of —X (¢;)Tsgn(Y — X (c;)8,,;) at the point ., = min arg(||Y — X (¢;)Be, 1) to
be exactly 0. This means that the sign vector (using the new definition of the sign function)
of each new residual Y — X(¢;)f,, is orthogonal to all already selected columns. Thus we
get that none of the column can be selected twice. It means that the condition in (2) is
sufficient for the exact recovery of all true variables in LAD algorithm in the noiseless case.

Let us see what the inequality in (2) becomes in the following cases of k =1 and k = 2.

e For £ = 1 we have that Y = z161, and in order to select the corect variable in the
first (and only) step we need to have

|z1 5111

|51

If we assume that all columns of the matrix X have the same {; norm and that all entries
of the matrix X are non-zero, we get exact recovery if x;, for all ¢ > 2, have the sign vector
different than the sign vector of x; and different than the sign vector of —z;.

o If sparsity equals 2, we have Y = x181 + 2282, where 51 # 0 and f2 # 0. In order for
LAD algorithm in the first step to select a correct variable (x; or x3) the sufficient condition
is

= [lzalls > [(sgn(Y), )| = [(sgn(e1), z)[, forall 2 <t <p.

|z1 51 + z282||1
81| + [B2]

Now, we need to put a condition on a matrix X, so that the inequality in (2) would be
true for all 5* € R*. For OMP algorithm we have seen that it is enough to have the Mutual
Incoherence Propery on the data matrix, but for LAD it is harder to simplify the above
inequality. Thus, the idea is to bound LHS and RHS of (2) with a lower and upper bound
respectively (finding the infimum of the LHS and the supremum of the RHS over all real

> |(zy,sgn(x1 81 + x252))|, for all t > 3.



vectors * of length k is what we will consider), and then see in what cases we can compare
these two bounds.
Let us now define the following quantities.

Definition 3 For a n X k matriz A, we say that its infimum-norm equals

n)= iy 1AL
verr\foy lIvll1

Note that the quantity defined above is not a norm on R™*¥ (vector space of all matrices
with n rows and k columns).

Definition 4 For a n x| matriz B, we will call the restricted matriz norm the following
quantity
BT sgn(Av
S
vERF\{0}s.t. Av£0 Hsgn( U)HOO

depending on an X k matriz A.

The matrix operator £(B) 4 is defined similarly to the ||+ ||c,c0 norm of a matrix BT, but
the supremum in £(B) 4 is not taken over the whole space R™. In Definition 4 the supremum
is taken over the sign space of the subspace of R™. That subspace depends on a matrix A;
it is spanned by the columns of A. Let us denote that subspace as S4, and also define

sgn(S4) ={s:s€R" and (Jv € S4)(s =sgn(v))},

for a n x k matrix A. Then, Definition 4 becomes

BTs]|
{(BJa=  sup 15 sllo
sesen(SaN{0} II8lleo

Using these two definitions we get the following bounds

1 X751

— e > n(Xr), forall g* € R*,
1811

and
HX%sgn(XTﬁ*)Hoo < &(XFp)x,, forall g* e R,

If we put the condition
n(Xr) > {(XF)x, (3)

on the data matrix X we get the recovery of a true variable in the first step. We see that this
condition is similar to the Exact Recovery Condition (mentioned in Section 3, introduced
in [4]) in the sense that it is not computable because it depends on the set of true variables.
In the following section we will see how likely a random data matrix X is to satisfy this
inequality.



5 LAD Recovery Condition for Bernoulli and Gaussian data
matrices.

Let us call the conditon in (3) LAD Recovery Condition. We want to see how strong the
condition is, and that is why we will compute these bounds for a standard normal data
matrix and a Bernoulli data matrix. The setup is the following. In each step we generate a
n X p matrix X and compute n(X7) and {(XF)x, for a fixed value of k. The data matrix X
is a random matrix so we can take the first k£ columns to be the correct variables. Thus, we
get the matrix X7 to be n x k submatrix of X, i.e., X7 contains exactly first &k columns of X.

Then X is n x (p— k) submatrix of X and contains the last (p— k) columns of X. Now we
[ Xvlls
l[ollx
v, 1 < i < k, of the vector v is chosen from the uniform [—1,1] distribution. Similary,

¢(XF)x, is computed as the maximum of || X sgn(X7v)||s over 100 vectors v € R* whose
coordinates are chosen as previously. Alse we compute the average values of n(Xr) and
&(XF)x, for 100 data matrices X all of the same size n x p . Moreover, we measure how
many out of 100 data matrices satisfy the inequality n(X7) > £(Xr)x,

For p = 256, £ = 4 and a Bernoulli matrix X we get that for n > 150 the inequality
is satisfied for over 90 matrices. Also, for n > 150 the inequality is satisfied for over 90
matrices in the case of a standard normal matrix X. These results are presented in Table 1.
Also, the results for p = 1024 are presented in Table 2 and Table 3 for both Gaussian and
Bernoulli data matrix X.

From these results we see that LAD Recovery Condition is likely to happen for n large
enough. For example for p = 256 we get that the condition is satisfied with a probability over
0.9 for n > 150. So, for these values of n and p we get from these experimental results that
the recovery would be exact. For example, if we use theoretical bound for MIP condition,

which is a computable condition for OMP, we see that we need 16k < —Z~ (elaborated in

In(256)
Section 3, from [5]). From this we get 16k% < 1n(§56) < ln%25§6)’ i.e., we conclude that we can

recover only the sparsity & = 1 using theoretical estimations (in that case n is almost the
same value as p). MIP is a simplified condition for OMP algorithm and easily computable,
but we see that these theoretical bounds are too pesimistic and we usually need numerical
results. For LAD method we do not have a single computable condition for the data matrix
X (the condition that does not depend on the set of correct variables), but the inequality
in (3) we got for LAD recovery is very likely to happen in specific data matrices, such as
Bernoulli and Gaussian. This propery makes the condition very useful for applications.

over 100 vectors v € R*. Each of the coordinates

compute 7(X7) as the minimum of

n < 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240
Bernoulli | 0 2 |15 |60 |88 |93 |99 | 100 | 100 | 100
Gaussian | 0 0 |5 44 176 |96 |99 |98 | 100 | 100

Table 1: The table showing how many out of 100 measurement matrices X satisfty the
inequality n(Xr) > £(Xp)x, for different values of n (X is of dimension n x 256, k = 4).
Here we present the results when X is a standard normal matrix and a Bernoulli matrix.

In Figures 1, 2 and 3 we present the mean values of both n(Xr) and {(Xr)x, for the
following cases (p = 256,k = 4), (p = 1024,k = 5), and (p = 1024,k = 10) for different



n <120 | 140 | 160 | 180 | 200 | 220 | 240 | 260 | >280
Bernoulli | 0 6 42 173 |96 | 97 | 100 | 100 | 100
Gaussian | 0 3 22 149 |8 |96 |97 |99 | 100

Table 2: The table showing how many out of 100 measurement matrices X satisfty the
inequality n(Xr7) > £(XF)x, for different values of n (X is of dimension n x 1024, k = 5).
Here we present the results when X is a standard normal matrix and a Bernoulli matrix.

n <240 | 260 | 280 | 300 | 320 | 340 | 360 | 380 | 400 | 420 | 440 | >500
Bernoulli | 0 1 10 |25 |44 |65 |87 |92 |94 |98 |99 | 100
Gaussian | 0 1 7 18 139 |66 |80 |8 |98 |95 | 100 | 100

Table 3: The table showing how many out of 100 measurement matrices X satisfty the
inequality n(Xr1) > £(XF)x, for different values of n (X is of dimension n x 1024, k = 10).
Here we present the results when X is a standard normal matrix and a Bernoulli matrix.

values of n, ranging from 10 to p. In Figures 4, 5 and 6 the mean values of the same
quantities are shown for a standard Gaussian data matrix. From the figures, we can see
how likely the sufficient condition we get is to be satisfied. For a fixed dimension p, as the
number of observations n increases, n(Xr) increases faster than {(Xr)x,. Therefore, for
Bernoulli and Gaussian design matrices, the sufficient condition we get is satisfied with high
probability.

6 Comparing two algorithms.

This section compares the two algorithms based on the simulation results. We considered
both the noiseless case and the case when the noise is present. The important conclusion is
that the algorithm that uses LAD works better than OMP algorithm when the heavy-tailed
noise is present in the model. In other cases, both methods behave similarly, although OMP
recovers the signal with higher probability.

Let us describe the experimental setup. The same setup is used in [6] for the simulation
results of OMP in the noiseless case. In each trial we use the k-sparse signal g with first &k
components (out of p) to be equal to one. Also, we generate an n X p measurement matrix X
as a standard Gaussian random matrix. Then, we execute both OMP and LAD algorithms
with Y = X in the noiseless case. Finally, we check whether the set of selected columns is
equal to the set of correct columns (variables). If they are identical then the algorithm has
succeeded with probability one. For each triple (k,n,p) we perform 100 independent trials.

The first plot, Figure 7, describes the results of the simulations for p = 256. It shows
what fraction (of 100 trials) was recovered correctly as a function of n for both methods
and using different sparsity levels k = 4,12,20,28,36. As expected, when the number of
non-zero components increases, more measurements are necessary for signal recovery. From
this graph we see that OMP recovers a higher fraction of signals than LAD for all five
sparsity levels we tried. Also, we see that they ”"behave” similarly in the sense that both of
the methods recover the signals completely if the sparsity level is small enough (k = 4,12)
and n large enough. Figure 8 shows the simulation results of both methods also in the



Mean of two "norms" on the matrix X: infimum-norm and restricted matrix norm,
defined for n times p Bernoulli matrix X (p=256, k=4)
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Figure 1: The average values of the quantities n(X7) (infimum-norm) and &(Xr)x, (re-
stricted matrix norm), computed for 100 Bernoulli n x p matrices X, as a function of n. In
this case p = 256 and k = 4.

Mean of two "norms" on the matrix X: infimum-norm and restricted matrix norm,
defined for n times p bernoulli matrix X (p=1024, k=5)
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Figure 2: The average values of the quantities n(Xr) and {(XF)x,, computed for 100
Bernoulli n x p matrices X, as a function of n. In this case p = 1024 and k = 5.
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Mean of two "norms” on the matrix X: infimum-norm and restricted matrix norm,
defined for n times p Bernoulli matrix X (p=1024, k=10)
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Figure 3: The average values of the quantities n(Xr) and {(XF)x,, computed for 100
Bernoulli n x p matrices X, as a function of n. In this case p = 1024 and k& = 10.

Mean of two "norms" on the matrix X: infimum-norm and restricted matrix norm,
defined for n times p standard normal matrix X (p=256, k=4)
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Figure 4: The average values of the quantities n(X7) and {(XF)x,, computed for 100
standard Gaussian n X p matrices X, as a function of n. In this case p = 256 and k = 4.
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Mean of two "norms" on the matrix X: infimum-norm and restricted matrix norm,
defined for n times p standard normal matrix X (p=1024, k=5)
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Figure 5: The average values of the quantities n(Xr) and {(XF)x,, computed for 100
standard Gaussian n X p matrices X, as a function of n. In this case p = 1024 and k = 5.

Mean of two "norms" on the matrix X: infimum-norm and restricted matrix norm,
defined for n times p standard normal matrix X (p=1024, k=10)
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Figure 6: The average values of the quantities n(X7) and {(XF)x,, computed for 100
standard Gaussian n x p matrices X, as a function of n. In this case p = 1024 and k = 10.
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noiseless case but with p = 1024. Here we used three different sparsity levels k& = 5,10, 15.
This graph shows the results are similar to the case p = 256. In the case p = 1024, a signal
B has only k£ non-zero components, thus it is more sparse realtive to its length than the
signal in the case where p = 256.

We can compare the results for LAD algorithm obtained here with the numerical results
from Section 5. For (p = 256,k = 4) we see from Figure 7 that for n > 60 the signal is
recovered in over 90 out of 100 cases. For the same value of p and k we see from Table 1 that
LAD Recovery Condition for a standard Gaussian matrix X holds in 90 out of 100 cases for
n > 150. From Figure 7 we see that for n > 150 we have the exact recovery in all trials, so
the theoretical bound is correct although does not match the bounds from the experimental
results completely. The other results we get by comparing results from this section with the
results from Section 5 are presented in Table 4. In this table we compare the lower bounds
on n so that for all n greater then those bounds we have the exact recovery in all 100 trails
(using LAD algorithm in the noiseless case) and we have LAD Recovery Condition holding
in all 100 standard Gaussian matrices X respectively.

(p, k) LAD algorithm LAD Recovery Condition
(p =256,k =4) n > 120 (from Figure 7) | n > 210 (from Table 1)
(p=1024,k =5) | n> 140 (from Figure 8) | n > 280 (from Table 2)
(p=1024,k = 10) | n > 280 (from Figure 8) | n > 520 (from Table 3)

Table 4: Comparing experimental results for LAD algorithm in the noiseless case (presented
in this section) with the numerical results for LAD Recovery Condition for a standard
Gaussian data matrix (from the Section 5). For example, for (p = 256,k = 4) we get
that for n > 120, LAD algorithm would exactly recover the signal in all 100 trials (from
Figure 7). Also for (p = 256,k = 4) we get that for n > 210 LAD Recovery Condition
holds in all 100 standard Gaussian matrices X (from Table 1). In the same way we read
the results for (p = 1024,k = 5) and (p = 1024, k = 10).

In the next plot, Figure 9, we have the noise introduced into the model i.e., Y = X5 +¢.
We will use X and / generated as above (in the noiseless case) with the noise from the
standard Gaussian distribution. In the simulations with noise we will use the algorithm as
in [6] which supposes that the sparsity number k is given as input (elaborated in Section 4).
Thus, we perform exactly k steps in both algorithms and then compare whether the selected
columns are all correct ones. Here we see that in this case OMP also works better than
LAD i.e., recovers the higher percentage of input signals. Also, we have the simulations
results for p = 1024 presented in Figure 10 which are similar to the results for p = 256.

Next, in Figure 11, we change noise to have t-distribution of 2 degrees of freedom. t(2)
distribution resembles the bell shape of a normally distributed variable with mean 0 and
variance 1, except that it has a heavier tail. As the number of degrees of freedom increases,
the t-distribution approaches the standard normal distribution. In this case we see from
the simulation results that LAD recovers a higher fraction of signals than OMP when the
sparsity is small enough (k = 4 and k = 12). For k = 20 the methods recover approximately
the same fraction of signals and for even greater k& we get that OMP is better. We see that
for larger values of k the data matrix X is less likely to satisfy the conditions for LAD
than the conditon for OMP. In Figure 12 we take p = 1024 and from these results we see
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that LAD reaches the fraction recovery equal to 1.00, while OMP never reaches 1.00 even
for small sparsity levels. In the Figure 13 for p = 256 again, we use t(2) distributed noise
multiplied by 2, so that the noise is even larger. We see that in this case LAD recovers
higer fraction of signals compared to OMP in all cases we tried.

Least absolute deviations regression is more robust than the least squares regression.
That was the main intuitian for expecting LAD to work better than OMP in the cases
where larger errors are more likely to occur. From the simulation results we see that is
exactly what happens: for ¢(2) noise we see that the algorithm that uses LAD regression
works better than the one that uses least squares regression.

7 Conclusion.

The theoretical and numerical work in this project demonstrates that LAD is an effective
way for signal recovery, especially in the presence of heavy-tailed noise. Our result offers
an alternative to the standard OMP algorithm in the case of large noise. We proposed a
sufficient condition on design matrix X under which the LAD-based algorithm is guaranteed
to select the correct variable in noiseless setting. This condition is verified in simulation
with Bernoulli and Gaussian design matrices. Possiblly the following statement could be
proved rigorously: For a Bernoulli and a Gaussian measurement matrix X LAD Recovery
Condition holds with high probability.

Higher recovery of signals can be achieved using backward steps in the greedy algorithm.
In [8] the Adaptive Forward-Backward Algorithm is used by minimizing Ly norm of the
errors. One of the suggestions for future work would be to use this greedy algorithm with
L1 norm with the kinds of noises used in this paper.
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Fraction of input signals recovered correctly (noiseless, p=256)
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Figure 7: The fraction of 100 input signals recovered as a function of a number of mea-
surements n for different sparsity levels £ in dimension p = 256 in the noiseless case. Here
we take five different sparsity levels k = 4, 12, 20, 28, 36 for both algorithms OMP and LAD.
n is increased by 10.
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Fraction of input signals recovered correctly (noiseless, p=1024)
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Figure 8: The fraction of 100 input signals recovered as a function of a number of mea-
surements n for three different sparsity levels k& (5, 10, 15) in dimension p = 1024 in the
noiseless case. For n > 600 both methods for all three sparsity levels recovered all of 100
input signal, i.e., the fraction recovered in these cases is 1.00. n is increaed by 20.
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Fraction of input signals recovered correctly (standard normal noise, p=256)
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Figure 9: The fraction of 100 input signals recovered as a function of a number of mea-
surements n for different sparsity levels k£ in dimension p = 256 in the presence of standard
Gaussian noise.
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Fraction of input signals recovered correctly (standard normal noise, p=1024)
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Figure 10: The fraction of 100 input signals recovered as a function of a number of
measurements n for different sparsity levels k in dimension p = 256 in the presence of a
standard Gaussian noise. For n > 600 both methods for all three sparsity levels recovered
all of 100 input signal, i.e., the fraction recovered in these cases is 1.00.
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Fraction of input signals recovered correctly (1(2) noise, p=256)
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Figure 11: The fraction of 100 input signals recovered as a function of a number of
measurements n for different sparsity levels k in dimension p = 256 in the presence of ¢(2)
distributed noise.
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Fraction of input signals recovered correctly (1(2) noise, p=1024)
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Figure 12: The fraction of 100 input signals recovered as a function of a number of
measurements n for different sparsity levels k in dimension p = 1024 in the presence of ¢(2)
distributed noise.
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Fraction of input signals recovered correctly (1(2) noise times 2, p=256)
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Figure 13: The fraction of 100 input signals recovered as a function of a number of
measurements n for different sparsity levels k in dimension p = 256 where the noise is #(2)
distributed noise multiplied by 2. Here k = 4,12, 20. For greater values of k both algorithms
have the fraction recovered equal to 0.00.
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