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Abstract

We study the eigenvalue problem of perturbed Airy operator −4 + (x + V (x)) on positive
real axis, with Dirichlet boundary condition. Given the asymptotic expansion of V (x) at +∞,
we provide asymptotic expansion of the eigenvalues λn to certain order. Then we will provide an
example to show that in general, merely from the asymptotic expansion of V (x), the asymptotic
expansion of λn cannot be completely determined.
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1 INTRODUCTION

In this paper, we study the perturbed Airy operator −4 + (x + V (x)) on positive real axis, such
that V (x) has an asymptotic expansion up to certain order,

V (x) = a1x
α1 + a2x

α2 + · · ·+ akx
αk + o(xαk),

where {ai}k1, {αi}k1 are constants and 1 > α1 > α2 > · · · > αk. From the general theory of
second-order differential operators, it is known that under these assumptions the spectrum of this
purturbed operator consists of discrete eigenvalues of multiplicity one,

λ1 < λ2 < · · · < λn < · · · −→ +∞.

The main result of the present paper is that given the asymptotic expansion above, λn also has a
similar asymptotic expansion,

λn =


(3π2 n)

2
3 + d1n

κ1 + d2n
κ2 + · · ·+ dm−1n

κm−1 + dmn
κm + o(n

2
3
αk), αk > −1

(3π2 n)
2
3 + d1n

κ1 + d2n
κ2 + · · ·+ dm−1n

κm−1 + dmn
− 2

3 lnn+ o(n−
2
3 lnn), αk = −1

(3π2 n)
2
3 + d1n

κ1 + d2n
κ2 + · · ·+ dm−1n

κm−1 + dmn
− 2

3 lnn+O(n−
2
3 ), αk < −1

where {di} and {κi} are constants, depend on the asymptotic expansion of V (x). One may notice

that the asymptotic expansion of λn is determined up to at most O(n−
2
3 ), this is because the

information of V (x) at infinity can only determine λn up to O(n−
2
3 ). At the end of this paper, I

will provide two perturbations V1(x), V2(x) such that they have the same asymptotic expansion,

but the coefficients of n−
2
3 in their eigenvalue expansions are different.

The main method is based on the minimax principle, namely, if two potentials q1(x) ≤ q2(x), then

their corresponding eigenvalues satisfy λ
(1)
n ≤ λ(2)n . Given the asymptotic expansion of V (x), we can

construct two well-behaved (in the aspect of monotonicity,differentiability, etc.) potentials q1(x),

q2(x) such that q1(x) ≤ x+V (x) ≤ q2(x), then the minimax principle implies that λ
(1)
n ≤ λn ≤ λ(2)n .

Thus if the two potentials q1 and q2 are sufficiently close such that the asymptotic expansion of

eigenvalues λ
(1)
n and λ

(2)
n agree with each other up to o(nκ), then we get the asymptotic expansion

of λn up to o(nκ) by comparison.

The computation of eigenvalue asymptotics follows from a detailed investigation of the generalized
Weyl law, which concerns about the asymptotic eigenvalue counting problem for a family of differ-
ential operators. A brief introduction to Weyl law, we refer to [1]. For Schrödinger operator

H = −h24+ q(x),

the distribution of eigenvalues satisfies the following asymptotics

N(λ) = #{λi ≤ λ} ∼
1

2πh

∫
{ξ2+q(x)≤λ}

dxdξ, (1.1)

as λ tends to +∞ and h tends to 0.

In this paper, we obtain a more precise approximation of N(λn)

1

π

∫ Xn

0
(λn − q(x))

1
2dx = n− 1

4
+O(

1

n
), (1.2)
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under the condition that the potential q(x) is monotonically increasing and has an expansion with
the form of

q(x) = x+ a1x
α1 + a2x

α2 + · · ·+ akx
αk , x ≥M

where Xn is the unique solution of q(Xn) = λn. The proof of (1.2) is based on the proof given
by Titchmarsh [6] by Langer’s method, where he proves (1.2) under the condition that q(x) is
increasing and convex downward, and as x→ +∞

q′(x)

q(x)
= O(

1

x
),

q′′(x)

q′(x)
= O(

1

x
),

q′′′(x)

q′′(x)
= O(

1

x
).

We also believe that the approximation (1.2) holds for a much more general class of potentials.

Finally we apply these to the inverse spectral problem, reconstructing the asymptotic expansion of
V (x) from the asymptotic expansions of the eigenvalues. We will show the asymptotic expansion
of V (x) can be recovered but only up to o(x−1). It can be explained by the fact that, terms like
x−1−ε in asymptotics of V (x) have a very small influence on eigenvalues, which can be offset by
the change of V (x) on a finite interval. One way to think about this result is to view the right
hand side of (1.1), which shows that the asymptotics of eigenvalue distribution is determine by
Area(ξ2 + V (x) ≤ λ). For terms like x−1−ε, the area

∫
x−1−ε is finite. Therefore one can not

distinguish between the perturbation on eigenvalue asympototics caused by x−1−ε or merely by the
behavior of V (x) on finite interval.

2 PRELIMINARY

2.1 Airy operator and its spectrum

Airy’s operator with Dirichlet boundary condition

− d2

dx2
+ x

is an unbounded self-adjoint operator with domain

{u ∈ H2([0,∞));xu ∈ L2([0,∞)), u(0) = 0} ⊂ L2([0,∞)).

Since lim
x→∞

x = +∞, Airy operator has discrete spectrum, which consists of distinct eigenvalues.

Say λ is an eigenvalue of Airy operator with eigenfunction u, then we have

−d
2u(x)

dx2
+ (x− λ)u(x) = 0,

After a translation by λ, we get

−d
2u(x+ λ)

dx2
+ xu(x+ λ) = 0.

Therefore y(x) = u(x+ λ) is a solution of equation

−d
2y

dx2
+ xy = 0, (2.1)
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on interval [−λ,∞), which lies in L2([0,+∞)), with initial condition v(−λ) = 0. Hence, such
solution exists if and only if λ is the negative of zeros of Airy function, which is the L2 solution of
the above equation.

In order to know the asymptotic behavior of eigenvalues of Airy operator, we solve the Airy equation.
And we are only interested in the L2 solution of (2.1). Take a Fourier transform, and let Y (t) =
ŷ(x),

−y′′(x) + xy(x) = 0⇐⇒ t2Y (t)− iY (t) = 0.

It is easy to give the solution to this first order differential equation, which is

Y (t) = e−
t3

3
i.

By Fourier inverse formula,

y(x) =

∫ +∞

−∞
e−

t3

3
ie−ixtdt = 2

∫ +∞

0
cos(

t3

3
+ xt)dt

Normalize this solution, we get

Ai(x) =

∫ +∞

0
cos(

t3

3
+ xt)dt

By stationary phase methods, which is available in literatures, for example Chapter 3 of [5], one
can get the asymptotic expansion of Airy function

Ai(x) ∼

{
1
2π

1
2x−

1
4 e−

2
3
x
3
2 (x ≥ 0)

π−
1
2 (−x)−

1
4 sin(23(−x)

3
2 + π

4 ) (x ≤ 0)

As a result of the asymptotic expansion above, the n−th eigenvalue of Airy operator λn is around
the size of the n-th zero of sin(23(−x)

3
2 + π

4 ), which implies λn ∼ {32(n− 1
4)π}

2
3 .

2.2 Singular Sturm-Liouville operators

In general the perturbed Airy operator −4 + x + V (x) on positive real axis is a special case of a
singular Sturm-Liouville operator. In this section, we give some results on singular Sturm-Liouville
operator −4+ q(x), especially for the case lim

x→+∞
q(x) = +∞.

Theorem 2.1. Consider a Sturm-Liouville operator L = −4+ q(x) on positive real axis, with the
potential q(x) satisfying

q(x) ∈ C([0,+∞)), lim
x→+∞

q(x) = +∞.

and with the boundary condition

{u, u′ are absolutely continuous, u(0) = 0, Lu ∈ L2([0,∞))} ∈ L2[0,∞).

The spectrum of L is discrete, and we can write it as

spec(L) = {λj}∞j=1, λ1 < λ2 < λ3 < · · · → ∞
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We denote by z(λ, x) the unique solution of the following differential equation,

Lz(λ, x) = λz(λ, x), z(λ, 0) = 0 and
dz

dx
(λ, 0) = 1. (2.2)

Then for λ ∈ (λk−1, λk], the solution z(λ, ·) has exactly k zeros on [0,+∞). Here we define λ0 =
−∞.

One thing to mention here, for any fixed λ, the zeros of the solution z(λ, x) are discrete. Otherwise,
it has a limit point, denoted as x0, such that lim

n→∞
xn = x0, where {xn}∞1 are zeros of z(λ, ·). Since

z(λ, ·) ∈ C2([0,∞)), we have

z(λ, x0) = 0, ∂xz(λ, x0) = 0.

But by the uniqueness of 2nd-order ODE solution, z(λ, ·) ≡ 0, which contradicts with the initial
condition (2.5)! Again by the same argument, all the zeros of z(λ, x) are simple ones, which means
z(λ, x) will change sign when passing through each zeros.
Lemma 2.1. For any fixed λ, z(λ, x) has finitely many zeros.

Proof. Say y satisfies

d2y

dx2
+ {λ− q(x)}y = 0,

y(0) and y′(0) are not both equal to 0. Since lim
x→+∞

q(x) = +∞, there exists an x1 such that for

x ≥ x1, q(x) > λ. Without loss of generality, we can assume y(x1) > 0, next we show there is at
most one zero on interval [x1,∞) by listing all the possible cases.

1) y′(x1) ≥ 0, then for x ≥ x1, y′′(x) = {q(x)−λ}y(x) ≥ 0. So y(x) will keep going upward to +∞
on interval [x1,+∞).

2) y′(x1) < 0,

i) y(x) remains positive on (x1,∞), then y′′(x) > 0. If at some point y′(x) changes sign, this turns
to 1). Otherwise y′(x) remains negative on interval (x1,∞), the only possibility is lim

x→+∞
y′(x) = 0,

lim
x→+∞

y(x) = 0, and lim
x→+∞

y′′(x) = 0.

ii) y(x) equals zero at some point x = x2, then it must be y′(x2) < 0. y(x) changes sign at x = x2,
so for any x > x2, y(x) < 0, y′′(x) < 0, and y′(x) < 0. This leads to lim

x→+∞
y(x) = −∞.

Hence, there is at most one zero on the interval [x1,∞), since the zeros of y(x) are discrete, the
total number of zeros is finite.

Remark 2.1. The only interesting case above is where lim
x→+∞

y′(x) = 0, lim
x→+∞

y(x) = 0, and

lim
x→+∞

y′′(x) = 0, in such circumstances∫ τ

x1

y′′(x)dx = y′(τ)− y′(x1) =

∫ τ

x1

(q(x)− λ)y(x)dx ≤ −y′(x1),

Hence, y ∈ L1([0,+∞)). Combined with lim
x→+∞

y(x) = 0, then y ∈ L2([0,+∞)). Moreover, from

the discussion above there are only two cases, either y ∈ L2([0,+∞)) and lim
x→+∞

y(x) = 0, or

lim
x→+∞

y(x) =∞. Thus u is an eigenfunction of L, if and only if u(+∞) = 0.
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The whole theory of Sturm-Liouville operator depends on the following fundamental theorem due
to Sturm.
Theorem 2.2. Let u be a solution of

d2u

dx2
+ g(x)u = 0

and v a solution of
d2v

dx2
+ h(x)v = 0

where g(x), h(x) are continuous function and g(x) ≤ h(x). Then between any two consecutive zeros
of u there is at least one zero of v.

Proof. Say x1 and x2 are two consecutive zeros of u, and there are no zero of v between them. With-
out lose of generality, we can assume that u and v are positive on the interval (x1, x2). Multiplying
by v, u respectively, and subtracting,

u′′v − v′′u = [h(x)− g(x)]uv. (2.3)

Integrating (2.3) from x1 to x2,∫ x2

x1

(u′′v − v′′u)dx = [u′v − v′u]|x2x1 = u′(x2)v(x2)− u′(x1)v(x1) =

∫ x2

x1

[h(x)− g(x)]uv (2.4)

Figure 1: Comparison Theorem

From the right-hand of (2.4), we know that u′(x2)v(x2) − u′(x1)v(x1) ≥ 0. However, as shown in
Figure 1

u′(x2) < 0, v(x2) ≥ 0, u′(x1) > 0, v(x1) ≥ 0,

sum them up, we get that

u′(x2)v(x2)− u′(x1)v(x1) ≤ 0 ≤
∫ x2

x1

[h(x)− g(x)]uv,

equality holds if and only if h(x) = g(x).

Corollary 2.1. If we have lim
x→+∞

u(x) = 0, then +∞ can be regarded as a zero of u and the above

theorem also holds. Say x1 is the maximum zero of u(x), then there is at least one zero of v on
interval [x0,+∞).
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Corollary 2.2. For λ1 ≥ λ2, #{zeros of z(λ1, x) on [0, η)} ≥ #{zeros of z(λ2, x) on [0, η)}.

Equipped with what has been discussed, we can come back to Theorem 2.1 now. The following
proof is based on Titchmarsh[7].

Proof. Define
n(λ) = #{zeros of z(λ, x)}.

From Theorem 2.2, for any λ1 > λ2, consider the differential equations,

∂xxz(λ1, x) + (λ1 − q(x))z(λ1, x) = 0,

∂xxz(λ2, x) + (λ2 − q(x))z(λ2, x) = 0.

Then between any two consecutive zeros of z(λ2, x), there is at least one zero of z(λ1, x). Moreover,
since 0 is a zero point for both of them. The total number of zeros of z(λ1, x) is more than that of
z(λ2, x). And n(λ) is a non-decreasing function of λ. Next we show that n(λ) is right continuous,
and at each jump point n(λ+) = n(λ) + 1.

For any fixed λ0, denote n(λ0−) = lim
λ↗λ0

n(λ) = k. So there exists some λ1, such that n(λ) = k on

the interval [λ1, λ0). Say the k zeros of z(λ, x) are

0 = a1(λ) < a2(λ) < a3(λ) < · · · < ak(λ).

By Theorem 2.2, ai(λ) are all decreasing functions. Given λ2 ∈ [λ1, λ0), denote ai(λ2−) =
lim
λ↗λ2

ai(λ). By continuity of z(λ, x), ai(λ2−) are all zeros of z(λ2, ·). Since the zeros of z(λ2, ·)

are simple, ai(λ2−) i = 1, 2, · · · , k are different zeros of z(λ2, ·). Hence, ai(λ2−) = ai(λ2), and
ai(λ) are all continuous function on [λ1, λ0).

Similarly, ai(λ0−) are zeros of z(λ0, ·). In order to show n(λ0−) = n(λ0), we have to prove ai(λ0−)
are all the zeros of z(λ0, ·). For any i, without loss of generality, assume that ∂xz(λ1, ai(λ1)) > 0,
then by continuity of ∂xz(λ, x), ∂xz(λ, ai(λ)) > 0 for all λ ∈ [λ1, λ0) (notice here we use that
∂xz(λ, ai(λ)) 6= 0). Thus z(λ, x) ≥ 0 for any λ ∈ [λ1, λ0) and x ∈ [ai(λ), ai+1(λ)]. Moreover, by
continuity of z(λ, x), z(λ0, x) = lim

λ↗λ0
z(λ, x) ≥ 0 for x ∈ [ai(λ0−), ai+1(λ0−)], which means there is

no zero on interval (ai(λ0−), ai+1(λ0−)) (here we use the fact that z(λ, ·) will change sign on each
zero). Therefore ai(λ0,−) are all the zeros of z(λ0, ·), and n(λ0−) = n(λ0) = k.

Next, we show that either n(λ+) = n(λ) or n(λ+) = n(λ) + 1, and λ is an eigenvalue of L iff
n(λ+) = n(λ)+ 1. For any fixed λ0, denote n(λ0+) = lim

λ↘λ0
n(λ) = k. So there exists some λ1, such

that n(λ) = k on the interval (λ0, λ1]. Use the same notation, the k zeros of z(λ, x) are

0 = a1(λ) < a2(λ) < a3(λ) < · · · < ak(λ).

Similarly we have that ai(λ) are continuous decreasing functions on (λ0, λ1].

Since lim
x→+∞

q(x) = +∞, there exists some C > 0, such that q(x) > λ1 for any x ≥ C. From Lemma

2.1, z(λ, ·) has at most one zeros on the interval [C,∞) for any λ ≤ λ1. Thus, ai(λ) ≤ C on interval
(λ0, λ1] for i = 1, 2, · · · k − 1. ai(λ0+) = lim

λ↘λ0
ai(λ) exists for i = 1, 2, · · · , k − 1, and are all zeros

of z(λ0, x). For i = k there are two possibilities,

1) lim
λ↘λ0

ak(λ) = ak(λ0+), then z(λ0, x) has k zeros.
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2) lim
λ↘λ0

ak(λ) = +∞, then z(λ0, x) has at most k − 1 zeros on [0, ak(λ)) for any λ ∈ (λ0, λ1]. But

ak(λ)→∞ as λ↘ λ0, z(λ0, x) has k − 1 zeros in all.

If 2) is the case, assume that ∂xz(λ, ak(λ)) > 0 for λ ∈ (λ0, λ1]. Then for λ2 ∈ [C, ak(λ)),

z(λ2, x) < 0, ∂xxz(λ2, x) < 0, ∂xz(λ2, x) > ∂xz(λ2, ak(λ2)) > 0.

As a result of continuity

z(λ,x) ≤ 0, ∂xxz(λ0, x) ≤ 0, ∂xz(λ0, x) ≥ 0.

for x ∈ [C,+∞). From the remark of Lemma 2.1, z(λ0, x) ∈ L2([0,+∞)), which means λ0 is an
eigenvalue of L.

If λ is an eigenvalue of L and z(λ, x) is the corresponding eigenfunction, then lim
x→∞

z(λ, x) = 0. Say

the zeros of z(λ, x) are 0 = a1 < a2 < a3 < · · · < ak. Then for any λ1 > λ, there exists at least one
zero on interval (ai, ai+1) for i = 1, 2, 3, · · · , k (here ak+1 = +∞). Also a1 = 0 is a zero of z(λ1, x),
the total number of zero is at least k + 1, thus n(λ+) = k + 1.

Finally we show that

n(−∞) = lim
λ→−∞

n(λ) = 1, n(+∞) = lim
λ→+∞

n(λ) = +∞,

For λ small enough, such that λ− q(x) ≤ −M , consider the differential equation

u′′ −Mu = 0, u =
e
√
Mx − e−

√
Mx

2
√
M

by Theorem 2.2, 1 ≤ n(λ) ≤ #{zeros of u} = 1. Therefore n(−∞) = lim
λ→−∞

n(λ) = 1.

For λ big enough, such that λ− q(x) ≥M on interval [0, 1], consider the differential equation

u′′ +Mu = 0, u =
sin(
√
Mx)√
M

by Theorem 2.2, n(λ) ≥ #{zeros of u on [0, 1)} = d
√
M
π e. Therefore n(+∞) = lim

λ→+∞
n(λ) = +∞.

To sum up, n(λ) is a non-decreasing right continuous function and n(λ+) − n(λ) ∈ {0, 1}, with
range {1, 2, 3, · · · , }. Those discontinuity points of n(λ) are exactly the eigenvalues of L. Moreover,
since n(λ) is non-decreasing, L has discrete spectrum,

λ1 < λ2 < λ3, · · · → +∞.

And n(λ) = k on interval (λk−1, λk].

To conclude this section, we prove the Minimax Principle which will be the main argument we use
to derive the eigenvalue asymptotics later.
Theorem 2.3. (Minimax Principle) Given two Sturm-Liouville operators Li = −4 + qi(x),
such that lim

x→+∞
qi(x) = +∞(i = 1, 2). If q1(x) ≤ q2(x), then their corresponding eigenvalues satisfy

λ
(1)
n ≤ λ(2)n n = 1, 2, 3, · · · .
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Proof. Assume q1(x) 6= q2(x). Say un(x) is the eigenfunction of L2 with eigenvalue λ
(2)
n . Then

u′′n + (λ(2)n − q2(x))un = 0.

Consider the differential equation

v′′ + (λ(2)n − q1(x))v = 0,

Since λ
(2)
n − q1(x) ≥ λ(2)n − q2(x), and un ∈ L2([0,+∞)), by Theorem 2.2, we have

#{zeros of v(x) on [0,+∞)} ≥ #{zeros of un(x) on [0,+∞)}+ 1.

This implies λ
(1)
n ≤ λ(2)n .

As an application of Minimax principle we prove the following theorem,
Theorem 2.4. Let λn(q(x)) is the n−th eigenvalue of Sturm-Liouville operator −4 + q(x) on

positive real axis with Dirichlet boundary condition. Suppose lim
x→+∞

V (x)
x = 0, then λn(x+ V (x)) =

λn(x) + o(λn(x)) as n→ +∞.

Proof. For simplicity we denote λn = λn(x). Since V (x) = o(x), for any ε > 0, there exists constant
C such that

(1− ε)x− C < x+ V (x) < (1 + ε)x+ C.

By Minimax principle,

λn((1− ε)x− C) ≤ λn(x+ V (x)) ≤ λn((1 + ε)x+ C). (2.5)

In order to obtain an approximation of λn(x+ V (x)), consider the perturbed Airy operator −4+
(x± (εx+ C)). For the equation,

−u′′ + [(1− ε)x− C)]u = λu, u(0) = 0 and u ∈ L2([0,+∞)),

which is only a translation of Airy equation, so u(x) = Ai((1 − ε)
1
3 (x − λ+C

(1−ε)
2
3

)) and u(0) =

Ai(− λ+C

(1−ε)
1
3

) = 0. This implies − λ+C

(1−ε)
1
3

= −λn for some n ∈ N+, thus λn((1 − ε)x − C) =

(1− ε)
1
3λn − C. Similarly λn((1 + ε)x + C) = (1 + ε)

1
3λn + C. Since λn = (32nπ)

2
3 + O(1) → +∞

as n→ +∞,

lim inf
n→+∞

λn(x+ V (x))

λn
≥ lim inf

n→+∞

λn((1− ε)x− C)

λn
= lim inf

n→+∞

(1− ε)
1
3λn − C
λn

= (1− ε)
1
3 ,

lim sup
n→+∞

λn(x+ V (x))

λn
≤ lim sup

n→+∞

λn((1 + ε)x+ C)

λn
= lim sup

n→+∞

(1 + ε)
1
3λn + C

λn
= (1 + ε)

1
3 .

Let ε↘ 0, we get

1 = lim
ε↘0

(1− ε)
1
3 ≤ lim inf

n→+∞

λn(x+ V (x))

λn
≤ lim sup

n→+∞

λn(x+ V (x))

λn
≤ lim

ε↘0
(1 + ε)

1
3 = 1

Therefore,

lim
n→+∞

λn(x+ V (x))

λn
= 1, and λn(x+ V (x)) = λn + o(λn).
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Remark 2.2. The above theorem shows if the perturbation is relatively small compared with x,
V (x) = o(x), the first term in the asymptotic expansion of eigenvalues will remain the same. On
the other hand, if we take V (x) so large, say V (x) = ±x, the distribution of eigenvalues may change
a lot, or even fail to remain discrete.

3 A FORMULA OF EIGENVALUE DISTRIBUTION

In order to obtain more information about the distribution of perturbed eigenvalues, we have
now to consider the relation between the potential and eigenvalue distribution in more detail .
However by Theorem 2.1, the eigenvalue distribution coincides with the distribution of the zeros of
eigenfunctions. Actually what we need to do is to count zeros of eigenfunctions.
Theorem 3.1. Suppose the potential q(x) is monotonically increasing and in the form

q(x) = x+ a1x
α1 + a2x

α2 + · · ·+ akx
αk , x ≥M

where {ai}k1, {αi}k1 and M are constants. Then the n−th eigenvalue λn of operator −4 + q(x)
satisfies

1

π

∫ Xn

0
(λn − q(x))

1
2dx = n− 1

4
+O(

1

n
), (3.1)

where Xn is the unique solution of q(x) = λn.

Proof. The formula (3.1) has been much discussed in books on quantum mechanics, which all
require the potential q(x) to satisfy certain favorable properties. Here the proof is based on the
method given by Langer and developed by Titchmarsh[6], where they prove formula (3.1) under the
assumption that q(x) has derivatives up to the third order, q(x) is increasing and convex downward,
and as x→ +∞

q′(x)

q(x)
= O(

1

x
),

q′′(x)

q′(x)
= O(

1

x
),

q′′′(x)

q′′(x)
= O(

1

x
).

We consider the following Langer transformation. For any real number λ, there is a unique X such
that q(X) = λ, then let

ζ(x) =

∫ x

X
{λ− q(t)}

1
2dt, η(x) = {λ− q(x)}

1
4ψ(x)

where ψ(x) is the solution of the basic equation,

ψ′′(x) + {λ− q(x)}ψ = 0, (3.2)

with boundary condition ψ(0) = 0. The power functions are defined on C − {(−∞, 0]}, such that
0 ≤ arg{{λ − q(x)}p} ≤ pπ (p = 1

2 ,
1
4). Thus the argument for ζ satisfies arg ζ(x) = 1

2π(x > X),

−π(x < X). Then ζ(x) is a C1 function, range from −
∫ X
0 {λ−q(t)}

1
2dt to 0, then along the y−axis

10



to +∞i.

dη

dζ
=
dη

dx

dx

dζ
=

ψ′(x)

{λ− q(x)}
1
4

− q′(x)ψ(x)

4{λ− q(x)}
5
4

d2η

dζ2
=
ddηdζ
dζ

dx

dζ
= −{λ− q(x)}

1
4ψ(x){1 +

q′′(x)

4{λ− q(x)}2
+

5q′2(x)

16{λ− q(x)}3
}

= −{1 +
q′′(x)

4{λ− q(x)}2
+

5q′2(x)

16{λ− q(x)}3
}η.

Plug back into the original equation (3.2),

d2η

dζ2
+ (1 +

5

36ζ2
)η = f(x)η, (3.3)

where

f(x) =
5

36ζ2
− q′′(x)

4{λ− q(x)}2
− 5q′2(x)

16{λ− q(x)}3
.

The main purpose here it to count the zeros of eigenfunctions. Observe that, if ψ(x) is an eigen-
function, from Lemma 2.1, lim

x→+∞
ψ(x) = 0, and in this range ψ(x) is either convex downwards

where it is positive, or concave upwards where it is negative, so it has no zeros for x ≥ X. As a
result we only need to count zeros on the interval [0, X). Since λ− q(x) > 0 on the interval [0, X),
the zeros of ψ(x) and η(x) coincides with each other, which means we just need to investigate the
distribution of the zeros of solution of equation (3.3) on interval [0, X).

It will be shown that the right-hand side of (3.3) is relatively small when λ tends to +∞, and what
determines the behavior of solution η(x) is actually the following equation,

d2η

dζ2
+ (1 +

5

36ζ2
)η = 0. (3.4)

Note that (12πζ)
1
2J 1

3
(ζ) and (12πζ)

1
2H

(1)
1
3

(ζ) are basic solutions of (3.4), where J 1
3

is the first-type

Bessel function and H
(1)
1
3

is the first Hankel H-function. By variation of constants, η(x) satisfies

the following formal integral equation

η(x, λ) = (
1

2
πζ)

1
2H

(1)
1
3

(ζ) +
1

2
πi

∫ +∞

x
[H

(1)
1
3

(ζ)J 1
3
(θ)− J 1

3
(ζ)H

(1)
1
3

(θ)]ζ
1
2 θ

1
2 f(t)η(t, λ){λ− q(t)}

1
2dt,

(3.5)

where θ = ζ(t). Next we will show that the above integral equation can be solved by iteration
methods and that part of integral is relatively small as λ→ +∞.

Lemma 3.1. Consider the integral equation,

φ(x) = f(x) +

∫ +∞

x
K(x, t)φ(t)dt, (3.6)

where f(x) is bounded and |k(x, t)| ≤ U(t) ∈ L1([0,+∞)). Then there is a unique solution of phi(x)
given by iteration method, and the solution is uniformly bounded on [0,+∞).

11



Proof. Denote φ0(x) = f(x),

φn+1 = f(x) +

∫ +∞

x
K(x, t)φn(t)dt.

By subtraction,

φn+1(x)− φn(x) =

∫ +∞

x
K(x, t)(φn(t)− φn−1(t))dt.

Then

|φ1(x)− φ0(x)| ≤ ‖f‖
∫ +∞

x
U(t)dt = ‖f‖j(x),

where j(x) =
∫ +∞
x U(t)dt. Next we prove by induction that |φn+1(x)− φn(x)| = ‖f‖ j

n+1(x)
(n+1)! .

|φn+1(x)− φn(x)| ≤
∫ ∞
x
|K(x, t)||(φn(t)− φn−1(t))|dt

≤
∫ ∞
x
‖f‖U(t)

jn(t)

n!
dt

= ‖f‖
∫ ∞
x

d
jn+1(t)

(n+ 1)!

= ‖f‖ j
n+1(x)

(n+ 1)!
.

Therefore

∞∑
n=0

|φn+1(x)− φn(x)| ≤ ‖f‖
∞∑
n=0

jn(t)

n!
≤ ‖f‖ej(0).

Since φ0(x) +
∑
φn(x) converge uniformly, we can define

φ(x) = φ0(x) +
∞∑
n=0

φn(x),

it is easy to verify that φ(x) is the unique solution of (3.6), which coincides with f(x) at +∞.

Come back to (3.5), in order to solve it by iteration, we need to show,

Lemma 3.2. As λ tends to +∞,∫ ∞
0
|f(t)||λ− q(t)|

1
2dt = O(λ−

3
2 ) (3.7)

Proof. For any fixed λ, denote X the unique solution of q(x) = λ. Since q(x) = x + o(x) as
x→ +∞, we have that X ∼ λ. Also for sufficiently large x,

q′(x) = 1 + a1α1x
α1−1 + · · · , q′(x) ∼ 1

q′′(x) = a1α1(α1 − 1)xα1−2 + · · · , q′(x) = O(xα1−2)

q′′′(x) = a1α1(α1 − 1)(α1 − 2)xα1−3 + · · · , q′(x) = O(xα1−3).

12



Thus there exists some constant M , such that q′(x) ∈ [1− ε, 1 + ε] and (1− ε)x ≤ q(x) ≤ (1 + ε)x
for x ≥ M . Notice here X is a singular point of f(t), in order to approximate (3.7), we split the
integral into four parts,∫ ∞

0
|f(t)||λ− q(t)|

1
2dt =

∫ 1
2
X

0
+

∫ X

1
2
X

+

∫ 2X

X
+

∫ +∞

2X

= I1 + I2 + I3 + I4.

Now we compute Ii one by one. On the interval [0, 12X),

ζ(x) = −
∫ X

x
{λ− q(t)}

1
2dt

For λ sufficiently large, (1− ε)X ≤ q(X) = λ ≤ (1 + ε)X

|ζ(x)| ≥
∫ X

1
2
X
{λ− q(t)}

1
2dt

≥
∫ λ

1+ε

λ
2(1−ε)

(λ− (1 + ε)t))
1
2dt

= Aλ
3
2 ,

therefore 1
ζ(x) = O(λ−

3
2 ) on [0, 12X), so

I1 ≤
5

36

∫ 1
2
X

0

{λ− q(t)}
1
2

ζ2(t)
dt+

1

4

∫ 1
2
X

0

q′2(t)dt

{λ− q(t)}
5
2

dt+
5

16

∫ M

0

q′′(t)dt

{λ− q(t)}
3
2

dt

And we estimate the three terms on the right hand side one by one∫ 1
2
X

0

{λ− q(t)}
1
2

ζ2(t)
=

∫ 1
2
X

0

ζ ′(t)

ζ2(t)
dt =

1

ζ(0)
− 1

ζ(12X)
= O(λ−

3
2 )∫ 1

2
X

0

q′2(t)dt

{λ− q(t)}
5
2

dt ≤
∫ M

0

q′2(t)dt

{λ− q(t)}
5
2

dt+ (1 + ε)

∫ 1
2
X

M

q′(t)

{λ− q(t)}
5
2

dt

= O(λ−
5
2 ) + (1 + ε)[−2

3
{λ− q(t)}−

3
2 ]|

1
2
X

M = O(λ−
3
2 )∫ 1

2
X

0

q′′(t)dt

{λ− q(t)}
3
2

dt =
q′(t)

{λ− q(t)}
3
2

∣∣ 12X
0
− 3

2

∫ 1
2
X

0

q′2(t)dt

{λ− q(t)}
5
2

dt = O(λ−
3
2 )

Sum them up we get that I1 = O(λ−
3
2 ), similarly, one can show that I4 = O(λ−

3
2 ). Now consider
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I3, on the interval (X, 2X]

−iζ(x) =

∫ x

X
{q(t)− λ}

1
2dt

=

∫ x

X

2{q(t)− λ}
1
2

q′(t)
dt

=
2

3

{q(x)− λ}
3
2

q′(x)
+

2

3

∫ x

X

{q(t)− λ}
3
2 q′′(t)

q′2(t)
dt

=
2

3

{q(x)− λ}
3
2

q′(x)
+

4

15

q′′(x){q(x)− λ}
5
2

q′3(x)
− 4

15

∫ x

X
{q(t)− λ}

5
2d(

q′′(t)

q′3(t)
)

=
2

3

{q(x)− λ}
3
2

q′(x)

{
1 +

2

5

q′′(x){q(x)− λ}
q′2(x)

+ S
}
,

where,

S =
2

5

q′(x)

{q(x)− λ}
3
2

∫ x

X
{q(t)− λ}

5
2
q′′′(t)q′(t)− 3q′′2(t)

q′4(t)
dt.

Since for X ≤ x ≤ 2X, q′′(x) = O(Xα1−2) and q′′′(x) = O(Xα1−3)

2

5

q′′(x){q(x)− λ}
q′2(x)

= O(Xα1−2λ) = O(
1

X1−α1
) −→ 0

q′′′(x)q′(x)− 3q′′2(x)

q′4(x)
= O(

1

X3−α1
) +O(

1

X4−α2
) = O(

1

X3−α1
)

S = O
{ q′(x)

X3−α1{q(x)− λ}
3
2

∫ x

X
{q(t)− λ}

5
2 q′(t)dt

}
= O

{q′(x){q(x)− λ}2

X3−α1

}
= O(

1

X1−α1
) −→ 0.

For λ sufficiently large,

− 1

ζ2(x)
=

9q′2(x)

4{q(x)− λ}3
{

1− 4

5

{q(x)− λ}q′′(x)

q′2(x)
+O(

{q(x)− λ}2q′′2(x)

q′4(x)
) +O(|S|)

}
.

Plug back into f(x),

f(x) =
5

36ζ2
− q′′(x)

4{λ− q(x)}2
− 5q′2(x)

16{λ− q(x)}3

= O(
q′′2(x)

q′2(x){q(x)− λ}
) +

9q′2(x)

4{q(x)− λ}3
O(|S|)

= O(
1

X4−2α1{q(x)− λ})
+O(

1

X3−α1{q(x)− λ}
)

= O(
1

X3−α1{q(x)− λ}
),
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thus,

I3 = O(

∫ 2X

X

1

X3−α1{q(t)− λ}
1
2

dt)

= O(

∫ 2X

X

q′(t)

X3−α1{q(t)− λ}
1
2

dt)

= O(
1

X3−α1
(q(2X)− λ))

= O(λ−
3
2 ).

Similarly it can be proved that I2 = O(λ−
3
2 ), sum them up we get (3.7).

Denote

χ(x) = e−iζη(x), α(x) = e−iζ(
1

2
πζ)

1
2H

(1)
1
3

(ζ), β(x) = eiζ(
1

2
πζ)

1
2J 1

3
(ζ),

Integral Equation (3.5) can be written as,

χ(x) = α(x) + i

∫ +∞

x
[α(x)β(t)− e2i(θ−ζ)β(x)α(t)]f(t){λ− q(t)}

1
2χ(t)dt (3.8)

If x ≥ X, then arg ζ = 1
2π, say ζ = iω where ω is real and positive,

J 1
3
(iω) = e

1
6
πiI 1

3
(ω), I 1

3
(ω) ∼ eω

(2πω)
1
2

H 1
3
(iω) =

K 1
3
(ω)

1
2πie

1
6
πi
, K 1

3
(ω) ∼ (

π

2ω
)
1
2 e−ω.

If x < X, then arg ζ = −π, say ζ = −ζ ′, where ζ ′ is real and positive,

H
(1)
1
3

(ζ) =
2e

1
3
iπ

i
√

3
(J 1

3
(ζ ′) + J− 1

3
(ζ ′))

J 1
3
(ζ) = e−

1
3
iπJ 1

3
(ζ ′).

Moreover,

im(θ − ζ) = im{
∫ t

x
(λ− q(u))

1
2du} ≥ 0.

Therefore α(x)β(t)− e2i(θ−ζ)β(x)α(t) is bounded. By Lemma 3.1, (3.8) can be solved by iteration
methods and the solution χ(x) is uniformly bounded. Thus

|
∫ +∞

x
[α(x)β(t)− e2i(θ−ζ)β(x)α(t)]f(t){λ− q(t)}

1
2χ(t)dt| ≤ A

∫ ∞
0
|f(t)||λ− q(t)|

1
2dt = O(λ−

3
2 ),

and

χ(x) = α(x) +O(λ−
3
2 ).
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Come back to integral equation (3.5), if η(x, λ) is the solution, then φ(x, λ) = {λ− q(x)}−
1
4 η(x, λ)

is a solution for the basic differential equation (3.2),

φ(x, λ) = {λ− q(x)}−
1
4 {(1

2
πζ)

1
2H

(1)
1
3

(ζ) +O(eiζλ−
3
2 )} (3.9)

As x → +∞, eiζ = e−ω, so φ(x, λ) is exponentially decaying. If we take λ = λn as an eigenvalue,
and φn the corresponding eigenfunction, then the Wronskian of φ(x, λn) and φn(x) tends to zero
at infinity, so there exists a constant Cn

Cnφ(x, λn) = φn(x).

As x → +∞, arg φ(x, λ) → (−1
4π −

1
4π −

1
6π) = −2

3π, we can take Cn = e−
2
3
πi, then e

2
3
πiφ(x, λn)

is a real-valued function. Thus

φn(x) = e
2
3
πiφ(x, λn) = e

2
3
πi{λ− q(x)}−

1
4 {(1

2
πζ)

1
2H

(1)
1
3

(ζ) +O(eiζλ−
3
2 )}

Combined with the asymptotic expansion of Bessel function,

J 1
3
(z) = (

2

πz
)
1
2 {cos(z − 5

12
) +O(

1

z
)} (3.10)

J− 1
3
(z) = (

2

πz
)
1
2 {cos(z − 1

12
) +O(

1

z
)} (3.11)

Take x = 0 in the formula (3.9), we get

φ(0, λ) = 2e−
2
3
πi{λ− q(0)}−

1
4 {cos(Z − 1

4
π) +O(

1

Z
)},

where

Z =

∫ X

0
{λ− q(u)}

1
2du, Z ∼ λ

3
2 .

Then the boundary condition φ(0) = 0 gives that

Zn −
3

4
π = mπ + ρn,

here Zn =
∫ Xn
0 {λn − q(t)}

1
2dt, ρn satisfies sin(ρn) = O( 1

Zn
), so ρn = O( 1

Zn
). Define z(x) =∫ X

x (λ− q(t)
1
2dt, then on the interval [0, X)

η(x, λ) = (
1

2
πζ)

1
2H

(1)
1
3

(ζ) +O(λ−
3
2 )

= (
1

2
π(−z))

1
2

2e
1
3
πi

√
3i

(J 1
3
(z) + J− 1

3
(z)) +O(λ−

3
2 )

= e−
2
3
πi(

2π

3
)
1
2 v(z) +O(λ−

3
2 )

Write ϕ(x) = ( 3
2π )

1
2 e

2
3
πiη(x, λ), then

ϕ(x) = v(z) + w(x), w(x) = O(λ−
3
2 ).
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There exists some constant A such that |w(x)| ≤ Aλ−
3
2 . Also if we differentiate (3.5) on both sides

with respect to x, the integral in the formula for dη
dx remains the same except that the differentiation

produces an extra factor {λ− q(x)}
1
2 . Hence, by the same method one can show that there exists

a constant A such that

|w′(x)| ≤ Aλ−
3
2 {λ− q(x)}

1
2 .

Sum up formula (3.10) and (3.11), we get the asymptotic expansion for v(z),

v(z) ∼ (
6

π
)
1
2 cos(z − 1

4
π)

Similarly, v′(z) has the following asymptotics

v′(z) ∼ −(
6

π
)
1
2 sin(z − 1

4
π)

Since we need to count the zeros of φ(x) on the interval [0, X), here φ(x) is the sum of v(z) and
w(x). Compared with v(z), w(x) is relatively small, it is taken granted that the behavior of φ(x)
is mainly determined by v(z). So in order to understand the distribution of zeros of φ(x), we onl
need to get a more detailed zero distribution of v(z).

Lemma 3.3. If n is a sufficiently large large integer, the function

v(x) = x
1
2 {J 1

3
(x) + J− 1

3
(x)}

has exactly n zeros in the interval 0 < x < (n+ 1
4)π.

Proof. There has been an extensive dicussion about Bessel function and its zeros. For the proof of
this lemma, we refer to [8].

Since Zn = (m + 3
4)π + ρn, by the above lemma there are exactly m zeros of v(z) on the interval

(0, (m+ 1
4)π) and there is a zero around Zn. Take δ > 0, such that δ is smaller than any maximum

of v(z) and −δ is bigger than any minimum of v(z). The line y = δ intersects the graph of v(z) at
z′0 < z′1 < z′2 < · · · , the corresponding value of x are x′0 > x′1 > x′2 > · · · . Similarly line y = −δ
intersects v(z) at z′′1 < z′′2 < z′′3 < · · · , and corresponding value of x are x′′1 > x′′2 > x′′3 > · · · . As
depicted in Figure 2. Then there is exactly one zero of v(z) in each interval [z′i, z

′′
i ] (i = 1, 2, · · · ,m).

Since v′(z) 6= 0 on each interval [z′i, z
′′
i ] (i = 1, 2, · · · ,m), there exists a constant B ≥ 0 such that

|v′(z)| ≥ B on those intervals, thus

|dv(z)

dx
| = |dv(z)

dz

dz

dx
| ≥ B{λ− q(x)}

1
2 .

If we take λ large enough, such that |w(x)| < δ then ϕ(x) has no zeros on interval [x′2i+1, x
′
2i] and

[x′′2i, x
′′
2i−1]. Further, if λ is chosen so large that |w′(x)| < B{λ − q(x)}

1
2 , then ϕ(x) is monotonic

on each interval [x′i, x
′′
i ]. Since ϕ(x′i) > 0 and ϕ(x′′i ) < 0, there is unique zero of φ(x) on interval

[x′i, x
′′
i ]. By the above lemma, there are m such zeros in all.

Now consider the ends of interval [0, Xn). On the interval [x′0, Xn), ϕ(x) is monotonic, so there is

at most one zero on the interval [x′0, Xn]. Since φ(x) = C{λ − q(x)}
1
4φn(x), it must be the end

point Xn, but this is not a zero of ψn(x). On the lower end of [0, Xn), suppose the greatest of z′i,
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Figure 2: v(z)

z′′i is z′N , and the corresponding value of x is x′N . On the interval [0, x′N ], ϕ(x) is monotonic. So
ψ(x) and ψn(x) has at most one zero on this interval, actually it is the zero of ψn(x) at x = 0.

In all, there are m + 1 zeros on the interval [0, Xn], thus from Theorem 2.1, λn is the m + 1-th
eigenvalue and φ(x, λn) is its eigenfunction. So we have m+ 1 = n, and

Zn =

∫ X

0
{λ− q(x)}

1
2 = (n− 1)π +

3

4
π +O(

1

Zn
) = (n− 1

4
)π +O(

1

n
)

which completes the proof og Theorem 3.1.

4 ASYMPTOTIC EXPANSION OF PERTURBED EIGENVALUES

4.1 Asymptotic behavior of eigenvalues w.r.t. potential perturbation

Suppose the perturbation V (x) can be described in terms of its asymptotic expansion (complete
expansion or to certain order) at +∞

V (x) ∼ a1xα1 + a2x
α2 + a3x

α3 + · · ·+ akx
αk + · · · ,

where {ak}∞1 , {αk}∞1 are constants, and 1 > α1 > α2 > α3 > · · · . And for ∀k ≥ 1,

V (x) = a1x
α1 + a2x

α2 + a3x
α3 + · · ·+ akx

αk + o(xαk).

Given any ε > 0, denote

q̃1(x) = x+ a1x
α1 + a2x

α2 + a3x
α3 + · · ·+ (ak − ε)xαk

q̃2(x) = x+ a1x
α1 + a2x

α2 + a3x
α3 + · · ·+ (ak + ε)xαk

Then there exists some constant M , such that for x ≥M , both q̃1(x) and q̃2(x) are monotonically
increasing, and

q̃1(x) ≤ x+ V (x) ≤ q̃2(x), x ≥M
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Take M sufficiently large, such that

q̃2(M) > sup
0≤x≤M

{x+ V (x)}.

Then we can replace q̃i(x) by strictly increasing smooth functions qi(x), such that qi(x) = q̃i(x) for
x ≥M (i = 1, 2) and

q1(x) ≤ x+ V (x) ≤ q2(x), x ≥ 0.

The monotonicity of qi(x) implies the existence of inverse function Qi(s) on [qi(0),+∞). With the

Figure 3: q1(x) ≤ x+ V (x) ≤ q2(x)

change of variable x = Qi(s),

1

π

∫ q−1
i (λ)

0
(λ− qi(x))

1
2dx =

1

π

∫ λ

qi(0)
(λ− s)

1
2dQi(s)

=
1

π
(λ− s)

1
2Qi(s)

∣∣λ
qi(0)

+
1

2π

∫ λ

qi(0)
(λ− s)−

1
2Q(s)ds

=
1

2π

∫ λ

qi(0)

Qi(s)

(λ− s)
1
2

ds, i = 1, 2. (4.1)

The following lemma enables us to determine the behavior of Qi(s) at infinity from the asymptotic
expansion of qi(x).
Lemma 4.1. Suppose y(x) has an asymptotic expansion

y(x) = x+ a1x
α1 + a2x

α2 + a3x
α3 + · · ·+ akx

αk + o(xαk) (4.2)

where {ai}k1 and {αi}k1 are constants, and 1 > α1 > α2 > α3 > · · · > αk. Then its inverse function
x(y) (not necessarily continuous) also has asymptotic expansion at +∞ up to o(yαk)

x(y) = y + c1y
γ1 + c2y

γ2 + c3y
γ3 + · · ·+ cly

γl + o(yαk), (4.3)

where {ci}l1 and {γi}l1 are constants, 1 > γ1 > γ2 > γ3 > · · · > γl−1 > γl = αk, and are uniquely
determined by {ai}k1 and {αi}k1. Actually {ci}l1 and {γi}l1 are all polynomials of {ai}k1 and {αi}k1.

19



Proof. From expression (4.2), y(x) = x + o(x), so x(y) = y + o(y). Assume we already have the
asymptotic expansion of x(y)

x(y) = y + c1y
γ1 + c2y

γ2 + c3y
γ3 + · · ·+ cjy

γj + o(yγj ).

If γj > αk, we show x(y) has higher order asymptotic expansion up to o(ymax{γj+α1−1,αk})

x(y) = y + c1y
γ1 + c2y

γ2 + c3y
γ3 + · · ·+ o(ymax{γj+α1−1,αk}). (4.4)

Denote

∆ = x(y)− (y + c1y
γ1 + c2y

γ2 + c3y
γ3 + · · ·+ cjy

γj ), ∆ = o(yγj ). (4.5)

Notice that

aix
αi = ai(y + c1y

γ1 + c2y
γ2 + c3y

γ3 + · · ·+ cjy
γj + o(yγj ))αi

= aiy
αi(1 + c1y

γ1−1 + c2y
γ2−1 + c3y

γ3−1 + · · ·+ cjy
γj−1 + o(yγj−1))αi

= aiy
αi + c1aiy

αi+γ1−1 + · · ·+ o(yαi+γj−1).

Plug (4.5) into (4.2), we get

y =(y + c1y
γ1 + c2y

γ2 + c3y
γ3 + · · ·+ cjy

γj + ∆)

+ (a1y
α1 + · · ·+ o(yα1+γj−1)) + · · ·+ (aky

αk + · · ·+ o(yαk+γj−1)) + o(yαk)

Compare the coefficients on both sides, we can get an asymptotic expansion of ∆ up to

o(ymax{γj+α1−1,αk}).

Substitute the expression of ∆ into (4.5), we get formula (4.4). Since α1 − 1 < 0, repeat the above
process, we can get the asymptotic expansion (4.3).

Suppose q(x) is in the form

q(x) = x+ a1x
α1 + a2x

α2 + a3x
α3 + · · ·+ akx

αk + εxαk (4.6)

where {ai}k1 and {αi}k1 are constants, and 1 > α1 > α2 > α3 > · · · > αk. Since q(x) is monotonically
increasing for large x, there exists Q(s), such that Q(q(x)) = x for large x.
Lemma 4.2. Under the assumption above Q(s) has an asymptotic expansion at +∞ up to o(sαk)

Q(s) = s+ c1s
γ1 + c2s

γ2 + · · · clsγl − εsαk + o(sαk), (4.7)

where {ci}l1 and {γi}l1 are constants (independent of ε), 1 > γ1 > γ2 > γ3 > · · · > γl−1 > γl = αk.

Proof. From Lemma 4.1, Q(s) has the form (4.7), and {ci}l−11 are uniquely determined by {a1}k−10

and {αi}k−10 . Plug the asymptotic expansion of Q(s) into (4.6), the coefficient of sαk can be obtained
by comparing the coefficients of sαk on both sides.

With the two lemmas above, we can prove the asympototic expansion of eigenvalues, which is the
main results of this paper.
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Theorem 4.1. Suppose V (x) (not necessarily increasing or smooth) has asymptotic expansion up
to o(xαk),

V (x) = a1x
α1 + a2x

α2 + a3x
α3 + · · ·+ akx

αk + o(xαk).

Then λn(x+ V (x)) has asymptotic expansion

λn(x+ V (x)) =


(3π2 n)

2
3 + d1n

κ1 + d2n
κ2 + · · ·+ dm−1n

κm−1 + dmn
κm + o(n

2
3
αk), αk > −1

(3π2 n)
2
3 + d1n

κ1 + d2n
κ2 + · · ·+ dm−1n

κm−1 + dmn
− 2

3 lnn+ o(n−
2
3 lnn), αk = −1

(3π2 n)
2
3 + d1n

κ1 + d2n
κ2 + · · ·+ dm−1n

κm−1 + dmn
− 2

3 lnn+O(n−
2
3 ), αk < −1

where {di} and {κi} are constants, depend on the asymptotic expansion of V (x).

Proof. Construct q1(x) and q2(x) as above, such that q1 ≤ x + V (x) ≤ q2. By Lemma 4.2 their
inverse functions have the form

Q1(x) = s+ c1s
γ1 + c2s

γ2 + · · · clsγl + εsαk + θ1(s), θ1(s) = o(sαk)

Q2(x) = s+ c1s
γ1 + c2s

γ2 + · · · clsγl − εsαk + θ2(s), θ2(s) = o(sαk),

on the interval [T,∞) (T ≥ max{1, q1(0), q2(0)}), where γ1 > γ2 > · · · > γl = αk. Plug them into
formula (4.1),

1

2π

∫ λ

qi(0)

Qi(s)

(λ− s)
1
2

ds =
1

2π

∫ λ

T

Qi(s)

(λ− s)
1
2

ds+
1

π

∫ T

qi(0)

Qi(s)

(λ− s)
1
2

ds

=
1

2π

∫ λ

T

s+ c1s
γ1 + c2s

γ2 + · · · clsγl + (±εsαk) + θi(s)

(λ− s)
1
2

ds+O(λ−
1
2 )

=
1

2π

∫ λ

T

s

(λ− s)
1
2

ds+

l∑
i=1

1

2π

∫ λ

T

cis
γi

(λ− s)
1
2

ds+
1

2π

∫ λ

T

±εsαk

(λ− s)
1
2

ds+ (4.8)

+
1

2π

∫ λ

T

θi(s)

(λ− s)
1
2

ds+O(λ−
1
2 ) (4.9)

where i = 1, 2. In the above formula there are three types of integrals,∫ λ

T

sα

(λ− s)
1
2

=

∫ λ

0

sα

(λ− s)
1
2

−
∫ T

0

sα

(λ− s)
1
2

=

√
πΓ(1 + α)

Γ(32 + α)
λ

1
2
+α +O(λ−

1
2 ), α > −1∫ λ

T

sα

(λ− s)
1
2

=

∫ λ

T

1

sλ
1
2

ds+

∫ λ

T
(

1

s(λ− s)
1
2

− 1

sλ
1
2

)ds

=(lnλ− lnT )λ−
1
2 +

∫ λ

T

1

λ
1
2 (λ− s)

1
2 [λ

1
2 + (λ− s)

1
2 ]

= λ−
1
2 lnλ+O(λ−

1
2 ), α = −1∫ λ

T

θi(s)

(λ− s)
1
2

=

∫ λ

T

o(sαk)

(λ− s)
1
2

= o(λ
1
2
+αk), θi(s) = o(sαk).

Consider the case with αk = −1, as the other two cases can be proved in the same way. Substitute
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the above integration results into (4.8),

1

2π

∫ λ

qi(0)

Qi(s)

(λ− s)
1
2

ds =
1

2π

∫ λ

T

s

(λ− s)
1
2

ds+

l∑
i=1

1

2π

∫ λ

T

cis
γi

(λ− s)
1
2

ds+

+
1

2π

∫ λ

T

±εsαk

(λ− s)
1
2

ds+
1

2π

∫ λ

T

θi(s)

(λ− s)
1
2

ds+O(λ−
1
2 )

=
2

3π
λ

3
2 +

l−1∑
i=1

ciΓ(1 + γi)

2
√
πΓ(32 + γi)

λ
1
2
+γi +

cl ± ε
2π

λ−
1
2 lnλ+O(λ−

1
2 ).

Say λ′n is the n-th eigenvalue of operator −4 + q1(x) and λ′′n is the n-th eigenvalue of operator
−4+ q2(x).

n− 1

4
+O(

1

n
) =

2

3π
λ
′ 3
2
n +

l−1∑
i=1

ciΓ(1 + γi)

2
√
πΓ(32 + γi)

λ
1
2 +

cl
2π
λ
′− 1

2
n lnλ′n +

ε

2π
λ
′− 1

2
n lnλ′n +O(λ

′− 1
2

n )

n− 1

4
+O(

1

n
) =

2

3π
λ
′′ 3
2

n +

l−1∑
i=1

ciΓ(1 + γi)

2
√
πΓ(32 + γi)

λ
1
2 +

cl
2π
λ
′′− 1

2
n lnλ′′n +

−ε
2π
λ
′′− 1

2
n lnλ′′n +O(λ

′′− 1
2

n ).

Since O( 1
n) = O(λ

′− 3
2

n ) = O(λ
′− 1

2
n ), also O( 1

n) = o(λ
′′− 1

2
n ). Rearrange above expressions,

n =
{ 2

3π
λ
′ 3
2
n +

l−1∑
i=1

ciΓ(1 + γi)

2
√
πΓ(32 + γi)

λ
′ 1
2
n +

cl
2π
λ
′− 1

2
n lnλ′n +

1

4

}
+

ε

2π
λ
′− 1

2
n lnλ′n +O(λ

′− 1
2

n )

n =
{ 2

3π
λ
′′ 3
2

n +

l−1∑
i=1

ciΓ(1 + γi)

2
√
πΓ(32 + γi)

λ
′′ 1
2

n +
cl
2π
λ
′′− 1

2
n lnλ′′n +

1

4

}
+
−ε
2π
λ
′′− 1

2
n lnλ′′n +O(λ

′′− 1
2

n ).

Lemma 4.3. Suppose the following equation holds asymptotically for λn

n =
2

3π
λ

3
2
n + c1λ

γ1
n + · · ·+ cl−1λ

γl−1
n + clλ

− 1
2

n lnλn +O(λ
− 1

2
n ), (4.10)

then λn has the following asymptotic expansion,

λn = (
3π

2
n)

2
3 + d1n

κ1 + · · ·+ dm−1n
κm−1 + dmn

− 2
3 lnn+O(n−

2
3 ), (4.11)

where {di}m1 and {κi}m1 are constants, depend only on {ci}l1 and {γi}l−11 .

Proof. With a change of variable µn = 2
3πλ

3
2
n , and substitute into (4.10),

n = µn + c′1µ
2
3
γ1

n + · · ·+ c′l−1µ
2
3
γl−1

n + c′lµ
− 1

3
n lnµn +O(µ

− 1
3

n ).

In the same way as Lemma 4.1, we can get the asymptotic expansion µn in terms of n up to O(n−
1
3 ).

Then put the expansion into λn = (3π2 µn)
2
3 , we get the asymptotic expansion of λn up to O(n−

2
3 ).

Moreover plug (4.11) into (4.10) and compare the coefficients of n−
1
3 lnn on both sides, we get

dm = −(
2

3
)
5
3π−

1
3 cl
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By the above lemma, there exists constants {di}m1 and {κi}m1 , 2
3 > κ1 > κ2 > · · · > κm = −2

3 such
that

λ′n = (
3π

2
n)

2
3 + d1n

κ1 + d2n
κ2 + · · ·+ dm−1n

κm−1 + dmn
− 2

3 lnn− εRn−
2
3 lnn+O(n−

2
3 )

λ′′n = (
3π

2
n)

2
3 + d1n

κ1 + d2n
κ2 + · · ·+ dm−1n

κm−1 + dmn
− 2

3 lnn+ εRn−
2
3 lnn+O(n−

2
3 ),

where R is a constant. Since λ′n ≤ λn ≤ λ′′n, let ε↘ 0, we get

λn = (
3π

2
n)

2
3 + d1n

κ1 + d2n
κ2 + · · ·+ dmn

− 2
3 lnn+ o(n−

2
3 lnn)

Remark 4.1. We are only interested in perturbations V (x) such that V (x) = o(x). Otherwise
the first term of asymptotic expansion of λn(x+ V (x)) may be changed. Such potential has unique
asymptotic expansion to some order o(xαk) or to o(x−∞), corresponds to one of the following forms:

q(x) = x+ a1x
α1 + a2x

α2 + a3x
α3 + · · ·+ akx

αk + o(xαk), can not be expanded further.

q(x) = x+ a1x
α1 + a2x

α2 + a3x
α3 + · · ·+ akx

αk + · · · .

From the existence of asymptotic expansion of x+ V (x), eigenvalues can always be asymptotically
expanded to certain order.

4.2 Example: asymptotic expansion of potential does not completely determine
eigenvalues

On the other hand, even if V (x) is a smooth function with complete asymptotic expansion, this
does not necessarily guarantee the existence of complete asymptotic expansion of λn as n→ +∞.
Moreover only the information of V (x) at infinite cannot completely determine the asymptotic
expansion of λn, which means the behavior of V (x) on finite interval, say [0, 1], can affect the higher
order terms in the asymptotic expansion of λn. The following theorem gives such an example.

Take

V (x) =

{
e−

2
1−x (x ∈ [0, 1))

0 (x ∈ [1,+∞)),

the two smooth functions x and x+ V (x) have the same asymptotic expansion at +∞.
Theorem 4.2. With V(x) defined above, the eigenvalues of −4+x (denoted as λn(x)) and −4+
x+ V (x) (λn(x+ V (x))) satisfy the following relation

λn(x+ V (x)) = λn(x) +
C

2
λn(x)−1 +O(λn(x)−2),

here constants C =
∫ 1
0 V (t)dt.

Proof. It is easy to verify that both x and x + V (x) satisfies the conditions in Theorem 3.1. For
simplicity denote λn = λn(x) and λ′n = λn(x+ V (x)). By theorem 3.4, for n large enough

1

π

∫ λn

0
(λn − x)

1
2dx = n− 1

4
+O(

1

n
) (4.12)

1

π

∫ λ′n

0
(λ′n − x− V (x))

1
2dx = n− 1

4
+O(

1

n
), (4.13)
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since here Xn = λn and X ′n = λ′n. Rearrange expression (4.13)

1

π

∫ λ′n

0
(λ′n − x− V (x))

1
2dx

=
1

π

∫ λ′n

0
(λ′n − x− V (x))

1
2dx− 1

π

∫ 1

0
(λ′n − x)

1
2 − (λ′n − x− V (x))

1
2dx

=
2

3π
λ
′ 3
2
n −

1

π

∫ 1

0

V (x)

(λ′n − x)
1
2 + (λ′n − x− V (x))

1
2

dx

=
2

3π
λ
′ 3
2
n −

1

π

∫ 1

0

V (x)

2λ
′ 1
2
n

dx− 1

π

∫ 1

0

V (x)

(λ′n − x)
1
2 + (λ′n − x− V (x))

1
2

− V (x)

2λ
′ 1
2
n

dx

=
2

3π
λ
′ 3
2
n −

C

2π
λ
′− 1

2
n +O(λ

− 3
2

n ). (4.14)

From expression (4.13), we have λ
3
2
n ∼ 3π

2 n, so O(λ
− 3

2
n ) = O( 1

n). Combine (4.12) (4.13) and (4.14)

2

3π
λ
′ 3
2
n −

2

3π
λ

3
2
n −

C

2π
λ
′− 1

2
n = O(λ

− 3
2

n ) (4.15)

Denote ∆ = λ
′ 1
2
n − λ

1
2
n . From expression (4.15), there exists constant A > 0,

Aλ
− 3

2
n ≥ 2

3π
λ
′ 3
2
n −

2

3π
λ

3
2
n −

C

2π
λ
′− 1

2
n = O(λ

− 3
2

n )

=
2

3π
(λ
′ 1
2
n − λ

1
2
n )(λ′n + λ

′ 1
2
n λ

1
2
n + λn)− C

2π
λ
′− 1

2
n

≥ 2

π
λn∆− C

2π
λ
− 1

2
n .

Therefore ∆ = O(λ
− 3

2
n ). Plug this back into formula (4.15), we get

3λn∆ + 3λ
1
2
n∆2 + ∆3 =

3C

4
λ
− 1

2
n +O(λ

− 3
2

n ).

So ∆ = C
4 λ
− 3

2
n +O(λ

− 5
2

n ) and

λ′n = (λ
1
2
n + ∆)2 = (λ

1
2
n +

C

4
λ
− 3

2
n +O(λ

− 5
2

n ))2 = λn +
C

2
λ−1n +O(λ−2n ). (4.16)

With the above formula, it is easy to write down the asymptotic expansion of λn and λ′n,

λn = (
3π

2
n)

2
3 +

1

6
(
3π

2
)
2
3n−

1
3 +O(n−

4
3 )

λ′n = (
3π

2
n)

2
3 +

1

6
(
3π

2
)
2
3n−

1
3 +

C

2
(
3π

2
)−

2
3n−

2
3 +O(n−

4
3 )

Remark 4.2. From Theorem 4.1, if V (x) has complete asymptotic expansion, from the asymptotics

of V (x), one can determine the asymptotic expansion of λn up to O(n−
2
3 ). However, the example

above shows merely from the asymptotic expansion of V (x), it is impossible to get the complete
asymptotic expansion of λn. More precisely, behavior of V (x) on a finite interval will affect the

asymptotic expansion of λn up to O(n−
2
3 ).
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Since the asymptotic expansion of λn is determined by the asymptotic expansion of V (x) up to

O(n−
2
3 ). It is taken for granted one may believe that the asymptotic expansion of V (x) can be

recovered by the asymptotic expansion of λn. Here we introduce the results on inverse spectral
problems.
Theorem 4.3. If we restrict us into a special class of perturbations, which has complete asymp-
totic expansion at +∞, then those coefficients {ai}k1 and indexes {αi}k1 with αi ≥ −1 are spectral
invariant (uniquely determined by its spectral).

Proof. From Theorem 4.1, if V (x) has complete asymptotic expansion at +∞, then λn has asymp-

totic expansion up to O(n−
2
3 ). From the asymptotic expansion of λn, we can first recover the

asymptotic expansion of n in terms of λn, and then recover the asymptotic expansion of Q(s) up
to o(s−1). Finally get the asymptotic expansion of V (x) at infinity up to o(x−1).

Remark 4.3. The terms like x−1−ε in expansions of V(x) has a very small influence on eigenvalues,
which can be offset by the change of V (x) on finite interval. By Weyl law the asymptotics of
eigenvalue distribution is determine by Area(ξ2 + V (x) ≤ λ). For terms like x−1−ε, the area∫
x−1−ε is finite. Therefore one can not determine from the asymptotic expansion whether its affect

on eigenvalues is caused by x−1−ε or merely by the behavior of V (x) on finite interval. Furthermore
if we do not restrict the asymptotics of V (x) to be sum of power functions, any terms ψ(x) in the
asymptotic expansion, as long as the integral

∫
ψ(x) diverges, can be recovered from the eigenvalues.

A Continuity of the Solution of a System of Ordinary Differential Equations

Here we consider the eigenfunctions of Strum-Liouville operator −y′′ + q(x)y = λy on positive
real axis, with boundary condition y(0) = 0, y′(0) = 1. Let y1(x) = y(x), y2(x) = y′(x) and
z(λ, x) = [y1(x), y2(x)]T , consider the first-order differential system,:

dz(λ, x)

dx
=

[
ẏ1
ẏ2

]
=

[
ẏ2

(q(x)− λ)y1

]
=

[
0 1

q(x)− λ 0

]
z(λ, x) = A(λ, x)z(λ, x), (A.1)

where A(λ, x) =

[
0 1

q(x)− λ 0

]
.

Theorem A.1. z(λ, x), ∂xz(λ, x) are continuous functions, and z(λ, x) is an analytic function of
λ.

Proof. For simplicity here we only consider the case when x ≥ 0. First we change (A.1) into the
Volterra type integral equation,

z(λ, x) = z(λ, 0) +

∫ x

0
A(λ, t)z(λ, t)dt. (A.2)

Solve this by Picard’s process of successive approximation. We start by setting φ0(x) = z(λ, 0) =
[0, 1]T , and the recursive relations,

φn+1(λ, τ) = z(λ, 0) +

∫ τ

0
A(λ, t)φn(t)dt (n = 0, 1, 2 · · · )

Setting ψn(λ, x) = φn(λ, x)− φn−1(λ, x)(n ≥ 1) and ψ0(λ, x) = φ0(λ, x), we observe that

ψn(λ, τ) =

∫ τ

0
A(λ, t)ψn−1(λ, t)dt (n = 1, 2, 3 · · · ), (A.3)
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hence by interchanging the order of integration

ψ1(λ, τ) =

∫ τ

0
A(λ, t)ψ0(λ, t)dt

ψ2(λ, τ) =

∫ τ

0
A(λ, x1)ψ1(λ, x1)dx1

=

∫ τ

0

∫ τ

t
A(λ, x1)dx1A(λ, t)ψ0(λ, t)dt

=

∫ τ

0
A1(λ, τ, t)A(λ, t)ψ0(λ, t)dt

· · · · · ·

ψn(λ, τ) =

∫ τ

0
A(λ, xn−1)ψn−1(λ, xn−1)dxn−1

=

∫ τ

0
A(λ, xn−1)

∫ xn−1

0
An−2(λ, xn−1, t)A(λ, t)ψ0(λ, t)dtdxn−1

=

∫ τ

0

∫ τ

t
A(λ, xn−1)An−2(λ, xn−1, t)dxn−1A(λ, t)ψ0(λ, t)dt

=

∫ τ

0
An−1(λ, τ, t)A(λ, t)ψ0(λ, t)dt, (A.4)

here An(λ, τ, t) is defined recursively as

A0(λ, τ, t) = I2

An(λ, τ, t) =

∫ τ

t
A(λ, xn)An−1(λ, xn, t)dxn (n = 1, 2, 3 · · · )

If we can somehow show that the infinite series
∑∞

n=0 ψn(λ, x) converges uniformly to ψ(λ, x) for
(λ, x) ∈ K, where K is any compact set of C ×R. Then let z(λ, x) =

∑∞
0 ψn(λ, x), we have

ψ0(λ, x) +

∫ x

0
A(λ, t)z(λ, t)dt

=ψ0(λ, x) +

∫ x

0
A(λ, t)

∞∑
0

ψn(λ, t)dt

=ψ0(λ, x) +
∞∑
n=0

∫ x

0
A(λ, t)ψn(λ, t)dt

=ψ0(λ, x) +
∞∑
n=0

ψn+1(λ, x)

=z(λ, x).

Thus solution of (A.2) is given by
∑∞

n=0 ψn(λ, x).

Now we begin to show that the infinite sum
∑∞

n=0 ψn(λ, x) converges absolutely on each compact
set. For any matrix A = [aij ] define the norm to be ‖A‖ = max{|aij |}. Say for fixed x ∈ [0, τ ] and
|λ| ≤ R, we have ‖A(λ, x)‖ ≤M . Now we prove by induction for τ ≥ t ≥ 0, we have

‖An(λ, τ, t)‖ ≤ [2(τ − t)M ]n

n!
. (A.5)
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It is easy to check (A.5) for n = 1. Assume it hold for n− 1,

‖An+1(λ, τ, t)‖ = ‖
∫ τ

t
A(λ, xn)An−1(λ, xn, t)dxn‖

≤
∫ τ

t
2‖A(λ, xn)‖‖An−1(λ, xn, t)‖dxn

≤
∫ τ

t
2M

[2(xn − t)M ]n

n!
dxn

=
[2(τ − t)M ]n+1

(n+ 1)!

Thus (A.5) holds for all integers.

Plug (A.5) back into (A.4), we get

‖ψn(λ, τ)‖ = ‖
∫ τ

0
An−1(λ, τ, t)A(λ, t)ψ0(λ, t)dt‖

≤
∫ τ

0
2‖An−1(λ, τ, t)‖‖A(λ, t)‖dt

≤ − [2(τ − t)M ]n

n!

∣∣τ
0

=
(2τM)n

n!
(A.6)

Therefore

∞∑
n=0

‖ψn(λ, x)‖ ≤
∞∑
0

(2xM)n

n!
= e2xM ≤ e2τM (A.7)

Since for any fixed x, ψn(λ, x) are analytic functions of λ, moreover from (A.7),
∑∞

n=0 ψn(λ, x)
converges uniformly on any compacts. So z(λ, x) is analytic function of λ for each fixed x. Hence,
we have proved that z(λ, x) =

∑∞
n=0 ψn(λ, x) is the only solution of (A.2), which is a continuous

function and for any fixed x, each term of z(·, x) is an analytic function.
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