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Abstract

Introduced by Okounkov and Reshetikhin in 2003, the Schur Process has been
shown to be a determinantal point process, so that each of its correlation functions are
determinants of minors of one correlation kernel matrix. In previous papers, this was
derived using determinantal expressions of the skew-Schur functions; in this paper, we
obtain this result in a different way, using the fact that the skew-Schur functions are
eigenfunctions of the Macdonald difference operators.

1 Introduction

1.1 Background and Results

For positive variables x1, x2, · · · , xn and y1, y2, · · · , yn and a partition λ with |λ| ≤ n, let sλ(x)
be the Schur function associated to λ in the variables x1, x2, · · · , xn, let sλ(y) be the Schur
function associated to λ in the variables y1, y2, · · · , yn, and let F (x, y) = 1/

∏
1≤i,j≤n(1−xiyj).

Now, let SM be a function mapping partitions to symmetric functions such that, for any
partition λ,

SM({λ}) =
sλ(x)sλ(y)

F (x, y)
.

The sum of the values of this function over all partitions may be shown to be equal to 1
(Proposition 2.1.1 below), so we may extend SM to be a probability measure on the set of
partitions. This measure, introduced by Okounkov in 2000, is the Schur measure.

Okounkov and Reshetikhin later generalized the Schur measure and defined the Schur
process. Suppose that λ = {λ(1), λ(2), · · · , λ(n)} and µ = {µ(1), µ(2), · · · , µ(n−1)} are sets of
partitions such that λ(1) ⊃ µ(1) ⊂ λ(2) ⊃ µ(2) ⊂ · · · ⊂ λ(n) and such that the maximum
weight of any of the partitions in λ and µ is less than some integer m. Then, let xij and yij
be positive variables for 1 ≤ i ≤ n and 1 ≤ j ≤ m and let

W(λ, µ) = sλ(1)(x1)sλ(n)(yn)
n−1∏
i=1

(sλ(i+1)/µ(i)(xi+1)sλ(i)/µ(i)(yi)),
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where sλ(i+1)/µ(i)(xi+1) is the skew-Schur function associated to the partitions λ(i+1) and µ(i)

in the variables x(i+1)j and sλ(i)/µ(i)(yi) is the skew-Schur function associated to the λ(i) and

µ(i) in the variables yij. Let S be a function mapping pairs (λ, µ) to symmetric functions
such that, for any pair (λ, µ),

S({(λ, µ)}) =
W(λ, µ)∏

1≤i≤j≤n

F (xi, yj)
.

It may be shown that the sum of the values of S over all pairs of partitions is 1 (Proposition
2.1.3 below), so S may be extended to form a probability measure, which is the Schur process.
Observe that the Schur measure is a special case of the Schur process when n = 1.

We now discuss the correlation functions of the Schur measure and Schur process. Let
S be a function mapping partitions to sets of integers such that, for any partition λ =
{λ1, λ2, · · · , λl(λ)}, S(λ) = {λ1 − 1, λ2 − 2, λ3 − 3, · · · , λl(λ) − l(λ)}. Now, use the Schur
measure SM to randomly find a partition, selecting any partition λ with probability SM(λ).
For any subset S of integers, we define the correlation function ρSM(S) to be the probability
that S ⊂ S(λ).

Now suppose that λ is a set of partitions {λ(1), λ(2), · · · , λ(n)}. Then, let S be a func-
tion that maps a set of partitions to a subset of {1, 2, · · · , n} × Z, mapping λ to the

set of pairs (i, λ
(i)
j ), where i ranges from 1 to n, j ranges from 1 to l(λ(i)), and λ(i) =

{λ(i)1 , λ
(i)
2 , · · · , λ

(i)

l(λ(i))
}. Using the Schur process, randomly select a pair (λ, µ) with probabil-

ity S({λ, µ}) and randomly select a set of partitions λ with probability S(
⋃
µ{(λ, µ)}), where

µ ranges over all sets {µ(1), µ(2), · · · , µ(n−1)}. Then, if S is a subset of {1, 2, · · · , n} × Z, let
the correlation function ρS(S) be the probability that S ⊂ S(λ).

In [6], Okounkov and Reshetikhin discussed the applications of the correlation functions
of the Schur process to probability theory; in particular, they showed how determining the
correlation functions of the Schur process may allow one to evaluate aspects of a random
three dimensional Young diagram. In order to explicitly determine the correlation functions
of the Schur process and measure, they showed that the Schur process is a determinantal
point process, so that there exists an infinite dimensional kernel correlation matrix K such
that for any set S, the correlation function ρ(S) is the determinant of the |S| × |S| minor
matrix of K that takes each row and column whose index is an element of S. The same result
was shown by Borodin and Rains in [3]; both of these proofs used ways of expressing the
skew-Schur functions as ratios of determinants. In [1], Borodin and Corwin wrote a paper
on the more general Macdonald process and discussed its relationship with the difference
operators introduced by Macdonald in [5].

Here, we use the results from [1] and [5] to determine the correlation kernel matrices of
the Schur measure and Schur process without using deteriminantal identities. Since deter-
minantal identities are not known to apply for symmetric functions that generalize Schur
functions (for instance, for Macdonald polynomials), the methods used here might be useful
in more general contexts where the relationship with determinants is unknown.

In particular, the results from [5] allow one to express the skew-Schur functions as scalar
products of Schur functions and the results from [1] yield identities that express the action of
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the Macdonald difference operators on multiplicative functions in terms of contour integrals.
Using these facts and the Cauchy Determinant Identity, we prove Theorems 1.1.1 and 1.1.2
in Section 2; the results of Theorems 1.1.1 and 1.1.2 are also shown to hold in [5] and [6],
respectively.

Theorem 1.1.1. Let x1, x2, · · · , xn and y1, y2, · · · , yn be nonnegative numbers less than 1,
and let

K(i, j) =
1

4π2

∮ ∮ (
1

z − w

) n∏
i=1

(
1− yi

z

1− yi
w

) n∏
i=1

(
1− xiw
1− xiz

)
widwdz

zj+1
,

for each 1 ≤ i, j ≤ n, where the contours are positively oriented about circles of different
radii, but both radii being greater than 1 and less than 1/yk for each 1 ≤ k ≤ n. Then, for
any subset S = {s1, s2, · · · , sm} of integers, ρSM(S) is detKS, where KS is the m×m matrix
obtained by placing K(si, sj) in the ith row and jth column.

Theorem 1.1.2. Let x1, x2, · · · , xn and y1, y2, · · · , yn be sets of v nonnegative numbers less
than 1, and let

K(i, g; j, h) =
1

4π2

∮ ∮ (
1

z − w

)(∏i
k=1 F (yk,

1
w

)
∏n

k=j+1 F (xk, z)∏j
k=1 F (yk,

1
z
)
∏n

k=i+1 F (xk, w)

)
zgdwdz

wh+1
,

where the contour integrals above are taken about positively oriented circles of different radii,
but both radii being greater than 1 and less than each 1/yij (where yij are the elements of
yi), such that z < w if i < j (so that 1/(z −w) is expanded as −1/w− z/w2 − z2/w3 − · · · )
and z > w otherwise (so that 1/(z − w) is expanded as 1/z + w/z2 + w2/z3 + · · · ). Then,
if {(a1, b1), (a2, b2), · · · , (am, bm)} = S ⊂ {1, 2, · · · , n} × Z, we have that ρS(S) is detKS,
where KS is the m×m matrix whose entry in the ith row and jth column is K(ai, bi; aj, bj).

The results of Theorems 1.1.1 and 1.1.2 may be generalized to obtain a similar correlation
kernel matrix if arbitrary nonnegative specializations of the Schur functions and skew-Schur
functions are taken instead of evaluations at a finite set of analytic variables. We do not
pursue this here, but this result is shown to hold in [3] and [6].

1.2 Acknowledgements

The author heartily thanks his mentor Guozhen Wang for advising him throughout this
project, the Summer Program for Undergraduate Research (SPUR) at MIT for funding the
project, Pavel Etingof for his advice, Alexei Borodin for suggesting this project, and Ivan
Corwin for his valuable aid in revising this paper.

2 Proofs of Theorems 1.1.1 and 1.1.2

2.1 Schur Functions and Scalar Products

Let x1, x2, · · · , xn be real numbers; for an integer m, let pm(x) =
∑n

i=1 x
m
i and for any

partition ν = (ν1, ν2, · · · ), let pν(x) =
∏∞

i=1 pνi(x). Let y1, y2, · · · , ym be another set of
variables and define the functions
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F (x, y) =
∏

1≤i≤n;1≤j≤m

(
1

1− xiyj

)
, Hq(x, y) =

∏
1≤i≤n;1≤j≤m

(
1− xiyj
1− qxiyj

)
,

Then we have the following facts from [4].

Proposition 2.1.1. We have that

F (x, y) = exp

(
∞∑
j=1

pj(x)pj(y)

j

)
; Hq(x, y) = exp

(
∞∑
j=1

pj(x)pj(y)(qj − 1)

j

)
.

Moreover, letting λ range over all partitions such that |λ| ≤ n, we have that∑
λ

sλ(x)sλ(y) = F (x, y).

Now, letting x1, x2, · · · , xn be variables, consider the bilinear form on the space of sym-
metric functions in the xi such that, for all partitions λ, µ such that |λ|, |µ| ≤ n, we have that
〈pλ, pµ〉x is

∏∞
i=1 i

mi(λ)mi(λ)! if λ = µ (where mi(λ) is the number of times i is in the partition
λ) and is 0 otherwise. Then, we have the following result from [4] regarding applying the
bilinear form to two Schur functions.

Proposition 2.1.2. We have that 〈sλ(x), sµ(x)〉x = 0 if λ 6= µ and 〈sλ(x), sµ(x)〉x = 1 if
λ = µ.

Using the above proposition, we may alternatively define the skew-Schur functions as follows.
Let x1, x2, · · · , xn and y1, y2, · · · , yn be variables, let λ and µ be partitions such that |λ|, |µ| ≤
n, and let sλ(x, y) be the Schur function corresponding to λ in the variables xi and yi. Then,
the skew-Schur function sλ/µ(x) is equal to 〈sλ(x, y), sµ(x)〉y.

Now, suppose that λ = {λ(1), λ(2), · · · , λ(n)} and µ = {µ(1), µ(2), · · · , µ(n−1)} are sets of
partitions such that λ(1) ⊃ µ(1) ⊂ λ(2) ⊃ µ(2) ⊂ · · · ⊂ λ(n). Then, we have the following
result on the sum of the W(λ, µ).

Proposition 2.1.3. Summing over all possible λ and µ defined above,∑
λ,µ

W(λ, µ) =
∏

1≤i≤j≤n

F (xi, yj).

We have the following identity involving the scalar product of exponentials of power series.

Proposition 2.1.4. Let x1, x2, · · · and y1, y2, · · · be infinite sets of variables and suppose
that S1, S2, · · · and T1, T2, · · · are power series in the yi. Then,〈

exp

(
∞∑
i=1

pi(x)Si(y)

i

)
, exp

(
∞∑
i=1

pi(x)Ti(y)

i

)〉
x

= exp

(
∞∑
i=1

(
Si(y)Ti(y)

i

))

if the series converge as power series in the yi.
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Proof. Observe that if M1,M2, · · · are power series in the xi and N1, N2, · · · are power series
in the yi, then(

∞∑
i=1

Mi(x)Ni(y)

i

)m

=
∑
|λ|=m

l(λ)∏
i=1

((
Mλi(x)Nλi(y)

imi(λ)

)(
m!∏∞

i=1(mi(λ))!

))
,

where the sum is ranged over the partitions with weight equal to m, and for any partition λ =
(λ1, λ2, · · · ), Mλ =

∏∞
i=1M

λi
i and Nλ =

∏∞
i=1N

λi
i (observe that both expressions converge

as formal power series since there are finitely many terms of fixed degree in the x and y).
Hence, applying this to (Mi, Ni) equal to (pi, Si), (pi, Ti), and (Si, Ti) gives the result of the
proposition since

exp

(
∞∑
i=1

Mi(x)Ni(y)

i

)
= 1 +

∞∑
j=1

1

j!

(
∞∑
i=1

Mi(x)Ni(y)

i

)j

.

2.2 Difference Operators

Let Λn be the space of symmetric functions over the n variables x1, x2, · · · , xn and let q
be a real greater than 0 and less than 1. Let Tq,i be the operator that maps any function
f(x1, x2, · · · , xn) ∈ Λn to f(x1, x2, · · · , xi−1, qxi, xi+1, xi+2, · · · , xn). Now, we define
difference operators Dr

n;q acting on Λn as

Dr
n;q = q

r(r−1)
2

∑
I

( ∏
i∈I,j 6∈I

(
qxi − xj
xi − xj

))((∏
i′∈I

Tq,i′

))
,

where I ranges over all subsets of {1, 2, 3, · · · , n} of size r. In [1], a variant of the Macdonald
difference operator D̃r

n,q = qn(n−1)/2Dn−r
n;q T1/q is defined, where T1/q(F )(x1, x2, · · · , xn) =

F (x1/q, x2/q, · · · , xn/q). The following result from [1] and [4] relates the Schur functions
and Macdonald difference operators.

Proposition 2.2.1. Let er denote the r symmetric sum of a set of variables. Then, sλ(x)
is an eigenfunction of D̃r

n;q with eigenvalue er(q
1−λ1−n, q2−λ2−n, · · · , q−λn) for all 0 < q < 1.

From Remark 2.2.11 of [1], we also have the following way of expressing the action of
D̃1
n;q on particular types of functions F ∈ Λn.

Proposition 2.2.2. Suppose that q, x1, x2, · · · , xn are numbers that are greater than 0 and
less than 1 and that F ∈ Λn such there exists a rational function f such that F (x1, x2, · · · , xn) =∏n

i=1 f(xi) and such that f(xi) 6= 0 for each 1 ≤ i ≤ n. Then,

qnD̃1
n;q(F (x)) =

F (x)

2πi

∮
q

z − zq

(
n∏
k=1

(
1− qzxk
1− zxk

)(
f( 1

qz
)

f(1
z
)

))
dz,
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where the integral is over the union of the circles where |z| = r1 and |z| = r2 such that, for
all 1 ≤ i ≤ n, qr2 < r1 < 1/xi < r2, f(1/qz) contains no poles in the torus between |z| = r1
and |z| = r2, and f(1/z) contains no zeroes in this region.

In [2], it is shown that for particular functions F , r2 may be increased without changing
the integral and that, if r2 tends to ∞, then the contour integral about the circle |z| = r2 is
a multiple of qn. A similar method yields that the integral about |z| = r2 is a multiple of
qn if f(1/qz) has no poles outside of the region determined by |z| = r1 and f(1/z) has no
zeroes inside this region. This gives the following result.

Proposition 2.2.3. Using the notation above, letting y1, y2, · · · , yn be nonnegative numbers
less than 1, and supposing that no pole of f(1/qz) is outside the region |z| = r1 and that no
zero of f(1/z) is in the region |z| = r1, we have that

qnD̃1
n;q(F (x))− F (x)

2πi

∮
q

z − zq

(
n∏
k=1

(
1− qzxk
1− zxk

)(
f( 1

qz
)

f(1
z
)

))
dz,

where the integral is about the circle |z| = r1, is a multiple of qn.

The above proposition may be generalized as follows.

Proposition 2.2.4. Using the notation as used in the previous proposition, and letting
q1, q2, · · · , qm be positive reals that are less than 1 and sufficiently close to 1, we have that

m∏
i=1

qni

(
m∏
k=1

D̃1
n;qi

)
(F (x))− F (x)

(
1

2πi

)m ∮ ∮
· · ·
∮ m∏

k=1

(
qk

zk − qkzk

)
×

∏
1≤j<k≤m

(
(qkzk − qjzj)(zk − zj)
(zk − qjzj)(qkzk − zj)

) ∏
1≤j≤m
1≤k≤n

((
1− qjzjxk
1− zjxk

)(f( 1
qjzj

)

f( 1
zj

)

))
m∏
k=1

dzk,

is a multiple of
∏m

i=1 q
n
i , where each of the contour integrals is a circle centered at 0, such

that no contour integral contains one of the 1/xi, such that all poles of f(1/qjzj) is contained
in each of the contours, such that no zero of f(1/zj) is contained in any of the contours,
and such that the contour integrals satisfy zi−1 < zi min1≤j≤m qj for all 2 ≤ i ≤ m (we will
assume that the qi are sufficiently close to 1 so that this is possible).

Proof. We proceed by induction on m; if m = 1, then this result is the previous proposition.
Now suppose that the statement holds for r = r′ − 1 and we shall show it holds for r = r′.
Due to the previous proposition, we have that

qnr′

(
r′∏
k=1

D̃1
n;qi

)
(F (y)) = qnr′

(
r′−1∏
k=1

D̃1
n;qi

)(
D̃1
n;qr′

(F (y))
)

=
1

2πi

∮ (
1

zr − zrqr

)(r′−1∏
k=1

D̃1
n;qi

)(
F (y)

n∏
k=1

(
1− qrzrxk
1− zrxk

)(
f( 1

qrzr
)

f( 1
zr

)

))
dzr
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added to a multiple of qnr′ , so using the inductive hypothesis on f1(x) = f(x)(1− qrzry)/(1−
zry) gives the result of the proposition.

In order to find the correlation functions for the Schur process, we use ideas from [1]
and [2]. In [1], it was suggested to apply the difference operators to the weights of the
Schur measure SM in order to obtain a formal power series with coefficients equal to the
correlation functions of the Schur measure. In [2], Proposition 2.1.2 is used in order to put
the skew-Schur functions in terms of a scalar product of Schur functions, which allows one
to determine averages of expressions under the Schur process.

We first consider the case when the Schur process is the Schur measure.

2.3 Correlation Functions of the Schur Measure

We now prove Theorem 1.1.1.

Proof. Let 1X for a statement X be 1 if X holds and 0 otherwise, and for any set S ′ ⊂ Z
and a ∈ Z, let S ′ + a be the set formed by adding each element of S ′ to a and let −S ′ be
the set containing all elements −x for x ∈ S Moreover, let q1, q2, · · · , qm be formal variables
and for any ordered set T = {t1, t2, · · · , tm} let qT =

∏m
i=1 q

ti
i . Then,∑

T∈Zm

ρSM(T )q−T =
∑
λ

(
SM(λ)

∑
T∈Zm

1T⊂S(λ)q
−T

)

=
∑
λ

(
SM(λ)

m∏
i=1

(
∞∑
j=1

q
j−λj
i

))
=
∑
λ

((
sλ(x)sλ(y)

F (x, y)

) m∏
i=1

(
∞∑
j=1

q
j−λj
i

))
,

where λ is summed over partitions of length at most m. Hence, ρSM(T ) is equal to the
coefficient of q−T in ∑

λ

((
sλ(x)sλ(y)

F (x, y)

) m∏
i=1

(
n∑
j=1

q
j−λj
i

))
if v ≥ max{m,m−minti∈T ti} (if this does not hold, then we may add variables equal to 0
to x and y). Now, by Proposition 2.2.1, the above expression is equal to∑

λ

(
m∏
i=1

qni

(
m∏
i=1

D̃1
n;qi

)
(sλ(x))

)
sλ(y)

∏
1≤i,j≤n

(1− xiyj)

=
∏

1≤i,j≤n

(1− xiyj)
m∏
i=1

qni

(
m∏
i=1

D̃1
n;qi

)
x

(∑
λ

sλ(x)sλ(y)

)

=

( ∏
1≤i,j≤n

(1− xiyj)

)(
m∏
i=1

qni

)(
m∏
i=1

D̃1
n;qi

)
x

( ∏
1≤i,j≤n

(
1

1− xiyj

))
,

where, for any operator D on the space of symmetric functions in the xi and yi, Dx denotes
the action of D on the xi (note that we may let the qi be vary since the Schur measure is
independent of the qi). Now, we may suppose that v > maxt∈T t, so Proposition 2.2.4 gives
that the expression above is
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(
1

2πi

)m ∮ ∮
· · ·
∮ ∏

1≤j≤m
1≤k≤n

((
1− yk

zj

1− yk
qjzj

)(
1− qjzjxk
1− zjxk

))
×

m∏
k=1

(
qk

zk − qkzk

) ∏
1≤j<k≤m

(
(qkzk − qjzj)(zk − zj)
(zk − qjzj)(qkzk − zj)

) m∏
k=1

dzk,

where z1, z2, · · · , zm are formal variables and the contours represent the sum of residues in
a region that contains that contains the xi and the yi, but not the 1/qjxi and 1/qjyi (such a
region exists since xi, yi < 1), and where the rational functions have power series functions
expansions as if 0 < qi < 1 for all i and as if zk > qjzi > 0 for all i < k and all j. Substituting
wi = qizi for each i, letting M be the matrix that has the entry 1/(zi − wj) in its ith row
and jth column, using the Residue Theorem, and applying the Cauchy Determinant Identity
gives that ρSM(S) is(

1

4π2

)m ∮ ∮
· · ·
∮ ∏

1≤j≤m
1≤k≤n

((
1− xk

zj

1− xk
wj

)(
1− ykwj
1− ykzj

))
det M

m∏
k=1

(
wskk dzkdwk

zsk+1
k

)
,

where the contours represent the sum of the residues of the integrand in a region in a region
containing the xi and yi but not containing the 1/xi and 1/yi, and where the power series
expansions of the rational functions in the integrand are such that wi < zi and zi < wj for
i < j. Let Sn be the symmetric group on n elements; expanding the above expression as a
sum yields(

1

4π2

)m ∑
h∈Sn

∮ ∮
· · ·
∮

sgn(h)
∏

1≤j≤m
1≤k≤n

((
1− yk

zj

1− yk
wj

)(
1− xkwj
1− xkzj

)) m∏
j=1

(
w
sj
j dzjdwh(j)

(zj − wh(j))z
sj+1
j

)
.

Using the change of variables by letting h(j) become j gives that the above expression is
equal to(

1

4π2

)m ∑
h∈Sn

∮ ∮
· · ·
∮

sgn(h)
∏

1≤j≤m
1≤k≤n

((
1− yk

zj

1− yk
wj

)(
1− xkwj
1− xkzj

)) m∏
j=1

(
w
sj
j dzjdwj

(zj − wj)z
sj+1

h(j)

)

=

(
1

4π2

)m ∑
h∈Sn

sgn(h)
m∏
j=1

(∮ ∮ (
1

z − w

)( n∏
k=1

(
1− yk

z

1− yk
w

)(
1− xkw
1− xkz

))(
wsjdzdw

zsh(j)+1

))
,

which is detKS, so ρSM(S) = detKS.

2.4 The Schur Process

We generalize Theorem 1.1.1 and prove Theorem 1.1.2 below.
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Proof. Let the integer i ∈ {1, 2, · · · , n} appear as the left coordinate of r(i) distinct elements
of s, say (i, si1), (i, si2), · · · , (i, sir(i)). Then, let qij for 1 ≤ i ≤ n, 1 ≤ j ≤ r(i) (if r(i) = 0,
then there will be no qij), be formal variables. Let

∑n
i=1 r(i) = m. For any set {tij} = T ∈

Zm, where 1 ≤ i ≤ n and 1 ≤ j ≤ r(i), let qT =
∏n

i=1

∏r(i)
j=1 q

tij
ij . As previously, we have that

ρS(T ) is the coefficient of q−T in

∑
λ,µ

S({(λ, µ)})
n∏
i=1

r(i)∏
j=1

(
v+u∑
k=1

q
k−λ(i)k
ij

),

where the sum is over all pairs of sets of partitions (λ, µ) such that λ and µ each has n
elements, and n ≥ max{m,m−mint∈T t,maxt∈T t} (if this is not true, we may add variables
equal to 0 to x and y). Now, let A1, A2, · · · , An−1 be infinite sets of formal variables. Now,
we have that

S(λ, µ)
∏

1≤i≤j≤n

F (xi, yj) = sλ(1)(x1)sλ(n)(yn)×

n−1∏
i=1

〈sλ(i+1)(xi+1, ai,u), sµ(i)(ai,u)〉ai,u〈sλ(i)(yi, bi), sµ(i)(bi)〉bi ,

where a1,u, a2,u, · · · , an−1,u are the first u elements of A1, A2, · · · , An−1, respectively and
b1, b2, · · · , bn−1 are infinite sets of formal variables. Now, using Proposition 2.2.1, we have
that ∏

1≤i≤j≤n

F (xi, yj)
∑
λ,µ

S(λ, µ)

r(1)∏
j=1

(
v∑
k=1

q
k−λ(1)k
1j

)
n∏
i=1

r(i)∏
j=1

(
v+u∑
k=1

q
k−λ(i)k
ij

)

=
n∏
k=1

r(k)∏
i=1

qvi
∑
λ,µ

sλ(n)(yn)

r(1)∏
j=1

D̃1
v;q1j


x1

(sλ(1)(x1))
n−1∏
i=1

(
〈sλ(i)(yi, bi), sµ(i)(bi)〉bi×〈r(i+1)∏

j=1

D̃1
v+u;qij


xi+1,ai,u

(sλ(i+1)(xi+1, ai,u)), sµ(i)(ai,u)

〉
ai,u

)
.

First, we sum over λ(1), fixing the other partitions of λ and the partitions of µ. Since
the scalar product is bilinear, the difference operators are linear, and the above expression
converges, we have that the above term is equal to

r(1)∏
i=1

qvi

n∏
k=2

r(k)∏
i=1

qv+ui

∑
λ−{λ(1)}

∑
µ

sλ(n)(yn)

〈r(1)∏
j=1

D̃1
v;q1j


x1

(∑
λ(1)

sλ(1)(x1)sλ(1)(y1, b1)

)
, sµ(1)(b1)

〉
b1

×

〈r(2)∏
j=1

D̃1
v+u;q2j


x2,a1,u

(sλ(2)(x2, a1,u)), sµ(1)(a1,u)

〉
a1,u

×
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n−1∏
i=2

〈sλ(i)(yi, bi), sµ(i)(bi)〉bi
〈r(i+1)∏

j=1

D̃1
v+u;qij


xi+1,ai,u

(sλ(i+1)(xi+1, ai,u)), sµ(i)(ai,u)

〉
ai,u

,

Summing over µ(1) and using Proposition 2.1.1 yields that the above term equals

r(1)∏
i=1

qvi

n∏
k=2

r(k)∏
i=1

qv+ui

∑
λ′

∑
µ′

〈〈r(1)∏
j=1

D̃1
v;q1j


x1

(F (x1; y1, b1)), F (b1, a1,u)

〉
b1

,

r(2)∏
j=1

D̃1
v+u;q2j


x2,a1,u

(sλ(2)(x2, a1,u))

〉
a1,u

sλ(n)(yn)
n−1∏
i=2

(
〈sλ(i)(yi, bi), sµ(i)(bi)〉bi×

〈r(i+1)∏
j=1

D̃1
v+u;qij


xi+1,ai,u

(sλ(i+1)(xi+1, ai,u)), sµ(i)(ai,u)

〉
ai,u

)
,

where λ′ = λ − {λ(1)} and µ′ = µ − {µ(1)}. Repeating this process yields that the above is
equal to

r(1)∏
i=1

qvi

n∏
k=2

r(k)∏
i=1

qv+ui

〈
· · ·

〈〈r(1)∏
j=1

D̃1
v;q1j


x1

(F (x1; y1, b1)), F (b1, a1,u)

〉
b1

,

r(2)∏
j=1

D̃1
v+u;q2j


x2,a1,u

(F (x2, a1,u; y2, b2))

〉
a1,u

, · · · ,

 r(n)∏
j=n−1

D̃1
v+u;qnj


xn,an−1,u

(F (xn, an−1,u; yn))

〉
an−1,u

.

Now, due to Proposition 2.2.4, we have that〈
r(1)∏
i=1

qvi

r(1)∏
j=1

D̃1
v;q1j


x1

(F (x1; y1, b1)), F (b1, a1,u)

〉
b1

=

〈(
1

2πi

)r(1) ∮ ∮
· · ·
∮ r(1)∏

j=1

(
q1j

z1j − q1jz1j

) ∏
1≤j<k≤r(1)

(
(q1kz1k − q1jz1j)(z1k − z1j)
(z1k − q1jz1j)(q1kz1k − z1j)

)
×

F (x1; b1, y1)

r(1)∏
j=1

(
Hq1j(x1; z1j)Hq1j

(
b1, y1;

1

q1jz1j

)) r(1)∏
j=1

dz1j, F (b1, a1,u)

〉
b1

added to a multiple of
∏r(1)

i=1 q
v
1i, where the contour represents the sum of the residues of the

integrated function in a region containing the xi and yi and not containing the 1/qixj and
1/qiyj and where the power series are expanded as if q1j > 1 and q1jz1j > z1k for all j > k.
Furthermore, the rational functions H and F are expanded as exponentials as in Proposition
2.1.1 so that
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F (x, y) = exp

(
∞∑
i=1

pi(x)pi(y)

i

)
; Hq(x, y) = exp

(
∞∑
i=1

pi(x)pi(y)(qi − 1)

i

)
.

Since each of the power sums converges as an meromorphic function in the aij, xij, and yij,
we have that 〈

r(1)∏
i=1

qvi

r(1)∏
j=1

D̃1
v;q1j


x1

(F (x1; y1, b1)), F (b1, a1,u)

〉
b1

=

(
1

2πi

)r(1) ∮ ∮
· · ·
∮ r(1)∏

j=1

(
q1j

z1j − q1jz1j

) ∏
1≤j<k≤r(1)

(
(q1kz1k − q1jz1j)(z1k − z1j)
(z1k − q1jz1j)(q1kz1k − z1j)

)
×〈

F (x1; b1, y1)

r(1)∏
j=1

Hq1j

(
b1;

1

q1jz1j

)
, F (b1, a1,u)

〉
b1

r(1)∏
j=1

(
Hq1j(x1; z1j)Hq1j

(
y1;

1

z1j

)
dz1j

)
added to a multiple of

∏r(1)
i=1 q

v
i . Applying the same reasoning, we obtain that

〈〈
r(1)∏
i=1

qvi

r(1)∏
j=1

D̃1
v;q1j


x1

(F (x1; y1, b1)), F (b1, a1,u)

〉
b1

,

r(2)∏
i=1

qv+ui

r(2)∏
j=1

D̃1
v;q2j


x2,a1,u

F (x2, a1,u; y2, b2)

〉
a1,u

=

(
1

2πi

)r(1)+r(2) ∮ ∮
· · ·
∮ 2∏

l=1

(∏
1≤k<j≤r(l)(qlkzlk − qljzlj)(zlj − zlk)∏

1≤k,j≤r(l)(qlkzlk − zlj)

)〈〈
F (x1; b1, y1)×

r(1)∏
j=1

Hq1j

(
b1;

1

q1jz1j

)
, F (b1, a1,u)

〉
b1

, F (x2, a1,u; b2, y2)

r(2)∏
j=1

(
Hq2j(a1,u; z2j)Hq2j

(
b2,

1

q2jz2j

))〉
a1,u

×

r(1)∏
j=1

(
Hq1j(x1; z1j)Hq1j

(
y1;

1

q1jz1j

)
q1jdz1j

) r(2)∏
j=1

(
Hq2j(x2; z2j)Hq2j

(
b2, y2;

1

q2jz2j

)
q2jdz2j

)
added to a multiple of

∏r(1)
i=1 q

v
i

∏r(2)
i=1 q

v+u
i , where the contour passes through each of the

x1j, x2j, y1j, y2j and does not pass through the 1/qijxlk or 1/qijylk. Furthermore, the 1/(qlkzlk−
zlj) terms are expanded as if each qlk < 1 and qlkzlk > zlj for k > j and l ∈ {1, 2}. The terms
in the integral dependent on u are now the sets of formal variables ai,u and the correlation
functions are not dependent on the ai,u, so we may let u tend to ∞.

We now determine the values of the scalar products. Using the exponential form of F and
H above and Proposition 2.1.4, we obtain that 〈Hq1j(b1; 1/q1jz1j)F (x1; b1, y1), F (b1, a1,u)〉b1
is equal to

F (x1; y1)

〈
exp

(
∞∑
i=1

pi(b1)((q
i
1j − 1)/qi1jz

i
1j + pi(x1))

i

)
, exp

(
∞∑
i=1

pi(a1,u)pi(b1)

i

)〉
b1

= F (x1; y1) exp

(
∞∑
i=1

pi(a1,u)(q
i
1j − 1)/qi1jz

i
1j + pi(a1,u)(pi(x1))

i

)
,
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which is Hq1j(a1,u; 1/q1jz1j)F (x1; a1,u, y1). We may then use similar reasoning as in the proof
of Proposition 2.1.4 to obtain that, for any 1 ≤ j ≤ r(1) and 1 ≤ k ≤ r(2), as u tends to ∞,〈

Hq1j(a1,u; z1j), Hq2k

(
a1,u;

1
q2kz2k

)〉
a1,u

tends to as a formal power series in q and z (so that the coefficient of any term of fixed
degree in q and z in the difference of the two expressions is 0 for sufficiently large u)〈

exp

(
∞∑
i=1

(
pi(a1,u)z

i
1j(q

i
1j − 1)

i

))
, exp

(
∞∑
i=1

(
pi(a1,u)(q

i
2k − 1)

izi2kq
i
2k

))〉
limu→∞ a1,u

= exp

(
∞∑
i=1

(
zi1jq

i
1j

izi2k
−

zi1j
izi2k
−

zi1jq
i
1j

izi2kq
i
2k

+
zi1j

iqi2kz
i
2k

))

=

(
1− z1j

z2k

)(
1− q1jz1j

q2kz2k

)
(

1− q1jz1j
z2k

)(
1− z1j

q2kz2k

) =
(z1j − z2k)(q1jz1j − q2kz2k)
(q1jz1j − z2k)(z1j − q2kz2k)

,

expanded as if q1jz1j < z1j < q2kz2k < z2k for all 1 ≤ j ≤ r(1) and 1 ≤ k ≤ r(2). Applying
similar reasoning to the other terms and using the Cauchy Determinant Identity yields that
the above scalar product with respect to a1,u tends to(

1

2πi

)r(1)+r(2) ∮ ∮
· · ·
∮

det M2F (x1; y1)F (x2, y2)F (x1; y2)F (x1, x2; b2)×

Hq2j

(
b2;

1
q1z1

, 1
q2z2

) 2∏
l=1

l∏
l′=1

(
Hqlj(xl′ ; zl)Hqlj

(
yl;

1

ql′zl′

)) r(1)∏
j=1

q1jdz1j

r(2)∏
j=1

q2jz2j,

where zk denotes the set of variables zk1, zk2, · · · , zkr(k); 1/qkzk denotes the set of variables
1/qk1zk1, 1/qk2zk2, · · · , 1/qkr(k)zkr(k); and M2 denotes the matrix whose rows and columns
are indexed by pairs (j, k) such that j ∈ {1, 2} and 1 ≤ k ≤ r(j) such that the entry in the
(j1, k1) row and (j2, k2) column is 1/(qj1k1zj1k1 − zj2k2).

By induction, if we let Mn be the matrix whose rows and columns are indexed by pairs
of integers (j, k) such that 1 ≤ j ≤ n and 1 ≤ k ≤ r(j) such that the element in the (j1, k1)
row and (j2, k2) column is 1/(qj1k1zj1k1 − zj2k2), then, as u tends to ∞, the term with 2n− 2
nested scalar products divided by qvu tends to

∏
1≤i≤j≤n

F (xi; yj)

(
1

2πi

)m ∮ ∮
· · ·
∮

det Mn

n∏
l=1

l∏
l′=1

(
F (xl, ql′zl′)

F (xl, zl′)

)
×

n∏
l=1

n∏
l′=l

 F
(
yl,

1
zl′

)
F
(
yl,

1
ql′zl′

)
 n∏

k=1

r(k)∏
j=1

dzkj,

where the contour represents the sum of residues in a region containing each of the xij, each
of the yij, not containing any of the 1/qijxlk, and not containing any of the 1/qijylk; where
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det Mn is expanded as if all qij < 1, qijzij > zik for all j < k, and zij > zijqij > zkl > qklzkl
for all k < i; and where F and H are expanded as exponentials.

Now, the above contour integral is equal to
∏

1≤i≤j≤n F (xi, yj)
∑

T∈Zm ρS(T )q−T added

to a multiple of
∏r(1)

i=1 q
v
i

∏n
k=2

∏r(k)
i=1 q

v+u
i as a power series in the qij. Then, ρS(T ) is the

coefficient of q−T in the above contour integral since v > maxt∈T t. Letting wij = qijzij
for each 1 ≤ i ≤ n and 1 ≤ j ≤ r(i), applying the Residue Theorem, and expanding the
determinant as a sum, we obtain that ρS(S) is equal to(

1

4π2

)m ∑
h∈Sm

sgn(h)

∮ ∮
· · ·
∮ n∏

i=1

r(i)∏
j=1

(
1

zij − wh(ij)

)
×

n∏
k=1

r(k)∏
j=1

n∏
i=k

(
F (xi, wkj)

F (xi, zkj)

) n∏
k=1

r(k)∏
j=1

k∏
i=1

F
(
yi,

1
zkj

)
F
(
yi,

1
wkj

)
 n∏

k=1

r(k)∏
j=1

(
w
skj
kj dwkjdzkj

z
skj+1

kj

)

where h acts by permuting the pairs of integers (i, j), for 1 ≤ i ≤ n and 1 ≤ j ≤ r(i), and
the contours are positively oriented circles of different radii such that the contours contain
each of the xij and yij and do not contain the 1/xij and 1/yij. The rational functions are
expanded so that each qij > 1, qijzij > zik for all k < j, and wi1i2 < zi1i2 < wj1j2 < zj1j2 if
i1 < j1 for all i2 and j2. Then, as in the proof of Theorem 1.1.1, letting wh(ij) become wij
yields the determinantal identity for the correlation functions of the Schur process, which
gives the first result claimed by the theorem.
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