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Abstract

In this paper, we study the problem of counting 3-rich conics in P2
Fq
. A 3-rich conic is

a conic that passes through exactly three points in a given set of n points. We consider
points in general position, i.e., no three points are collinear and no six points lie on a conic.
We explore the maximum and minimum number of 3-rich conics that can be drawn through
the configuration of n points in P2

Fq
. First, we establish a lower bound for the number of 3-

rich conics, and find an upper bound using combinatorial arguments. We then generalize the
upper bound for 3-rich curves of any degree. The total number of 3-rich conics is obtained by
subtracting the non-smooth conics (formed by the union of two lines) from the total number
of conics. We provide explicit formulas for the number of smooth 3-rich conics generated by
the set of n points in general position.

Summary

The orchard planting problem dates back to the 1820s and aims to find an optimal
arrangement for trees in an orchard. Mathematically, we can translate this problem to
points in a plane, where points and a plane represent trees and an orchard respectively. We
look at a particular structure of this problem, where the orchard is a projective plane over
a finite field. In this structure, we find an optimal arrangement for any set of n points.



1 Introduction

The orchard planting problem aims to find an optimal arrangement of n trees in an
orchard that maximizes the number of 3-point lines that can be formed from the set of n
points. Two papers have made significant contributions to solving this problem [1, 2].

In 2013, Green and Tao [1] laid the foundation for investigating the configurations of
points in the plane and analyzing the number of ordinary lines that can be formed by
connecting these points. They provided valuable insight into the behavior and distribution
of ordinary lines within different arrangements of points. They defined 3-rich lines as lines
that pass through exactly three points from a set of given points and identified an upper
bound for the number of 3-rich lines that can be drawn given n points.

Theorem 1.1 (Green-Tao [1]). Suppose that P is a finite set of n points in the plane.
Suppose that n ≥ n0 for some sufficiently large absolute constant n0. Then there are no
more than ⌊n(n− 3)/6⌋+1 lines that are 3-rich, that is they contain precisely 3 points of P .

Building upon the Green-Tao work, Padmanabhan and Shukla [2], in 2020, delved into
the specific application of sets defining few ordinary lines in the context of elliptic curves
over finite fields and established a bound for the number of 3-rich lines that can be drawn
given n points in a projective plane over a finite field.

Theorem 1.2 (Padmanabhan-Shukla [2]). Let N = q+1+2
√
q with either q odd or q = 2n

with n even. There exist point-line arrangements (N, t) in the projective plane over the finite
field Fq with

Or(N) ≥

{
⌊N(N−3)

6
⌋+ 3, if 3 | N

⌊N(N−3)
6

⌋+ 1, if 3 ∤ N

}
,

where Or(N) denotes the number of 3-rich lines in a projective plane over a finite field.

We define degree d curves as curves whose equations have highest power d. Degree d
curves form a projective plane PN , where N is the dimension of the space of homogeneous
polynomials in variables x, y, and z. We can think of the 3-rich lines discussed before as
degree one curves. In this paper, we focus on degree two curves. We define a 3-rich curve as
a curve that passes through exactly three points. Given points p1, p2, . . . , pn ∈ P2

Fq
, we want

to find the maximum number of 3-rich curves of degree two. Specifically, we investigate the
case where no three of the given points are collinear and no six points lie on a degree two
curve.

The remainder of this paper is divided into seven sections. In Section 2 we present a
series of definitions necessary to understand the problem. In Sections 3 and 4 we determine
a lower and upper bound for the number of 3-rich conics in P2

Fq
and in Section 5, we establish

a generalization of the upper bound to 3-rich curves of any degree d. In Section 6, we count
the exact number of 3-rich conics and in Section 7 we determine the number of smooth
3-rich conics in P2

Fq
. Last, in Section 8, we summarize the conclusions of our main results

and describe possible ways to continue the research by exploring 6-rich conics in P2
Fq
.
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2 Preliminaries

To better understand the problem, we provide a list of definitions. In this paper we work
in a projective plane over a finite field P2

Fq
.

Definition 2.1. A Projective Plane over a Finite Field Pn
Fq

is a parameter space of lines in
a vector space of dimension n+ 1.

We explore finding the number of 3-rich conics in a configuration of n points.

Definition 2.2. Conics are degree two curves in the projective plane P2
Fq
.

Conics can be written in the general form

ax2 + by2 + cz2 + dxy + exz + fyz = 0,

where a, b, c, d, e, f are constants. Conics in P2
Fq

can be formed by a double line, a union of
two distinct lines, or a smooth (irreducible) curve.

We also include a definition of points in general position.

Definition 2.3. The set of n points in P2
Fq

is in general position if no three points are
collinear and no six points lie on a conic.

Using this definition, we avoid counting conics in the form of a double line and restrict
the number of correction terms that exist when finding the total number of 3-rich conics in
the set of n points in P2

Fq
.

Finally, we introduce fd(n) as the exact number of 3-rich curves of degree d that can be
drawn given a configuration of n points in general position in P2

Fq
. In this paper we mostly

discuss f2(n), the number of conics that can be drawn given a configuration of n points in
general position in P2

Fq
.

3 Establishing a Lower Bound

We begin by establishing a lower bound for the number of 3-rich conics in P2
Fq
.

Theorem 3.1. Given a set of n points in a projective plane over a finite field P2
Fq
, the

minimum number of 3-rich conics is given by

f2(n) ≥

⌊(
n
3

)(
q−2
2

)
−
(
n
4

)(
q−3
1

)
q − 1

⌋
.

Proof. A conic is determined by 5 points. There are
(
n
3

)
ways to select three points out of

n points. We need two more points to determine the conic. A conic can be a double line, a

union of two distinct lines, or a smooth curve. A double line has q+1 points, a union of two
distinct lines has 2q + 1 points, and the number of points on a smooth curve in P2

Fq
varies,
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but is always greater than q+1. The double line has the least number of points. Therefore,
there are (

q + 1− 3

2

)
=

(
q − 2

2

)
ways to choose two choose the two remaining points to determine the conic. Consequently,
there are (

n

3

)(
q − 2

2

)
(1)

conics that pass through at least three points.
However, this number includes the conics that pass through at least four of the n points.

There are
(
n
4

)
ways to select four points and(

q + 1− 4

1

)
=

(
q − 3

1

)
ways to select one point from the remaining q + 1 points on the curve.

The number of conics that pass through at least four points is given by(
n

4

)(
q − 3

1

)
. (2)

By subtracting term 2 from term 1, we find(
n

3

)(
q − 2

2

)
−
(
n

4

)(
q − 3

1

)
(3)

conics that pass through three points.
Since a conic can be written in the form ax2+by2+cz2+dxy+exz+fyz = 0, multiplying

this conic by a scalar k yields the same conic. There are q− 1 non-zero scalars k in P2
Fq
. By

dividing term 3 by q − 1, we determine the minimum number of 3-rich conics generated by
n points in P2

Fq
as

f2(n) ≥

⌊(
n
3

)(
q−2
2

)
−
(
n
4

)(
q−3
1

)
q − 1

⌋
.

4 Establishing an Upper Bound

We continue with establishing an upper bound for the number of 3-rich conics in P2
Fq
.

Theorem 4.1. Given a set of n points in a general position in P2
Fq
, the maximum number

of 3-rich conics is given by

f2(n) ≤
(
n

3

)
(q2 + q + 1).
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Proof. Given n points in the set P = {p1, p2, . . . , pn}, we select three points. There are
(
n
3

)
ways to arbitrarily select pi, pj, pk ∈ P . Let Hpi , Hpj , and Hpk be the set of curves C passing
through pi, pj, and pk respectively. Finding the number of conics that pass through pi, pj,
and pk is equivalent to determining the intersection of Hpi , Hpj , and Hpk .

The intersection of these hyperplanes are the homogeneous points in P2
Fq
. Determining the

number of such points in the projective plane P2
Fq

gives us Hpi ∩Hpj ∩Hpk and consequently,
the number of conics that pass through three points. The number of homogeneous points in
P2
Fq

is q2 + q + 1 [3]. Thus,

f2(n) ≤
(
n

3

)
(q2 + q + 1)

yields the maximum number of 3-rich conics in the set of n points in P2
Fq
.

5 Generalizing the Upper Bound

The bound we found above for 3-rich degree two curves can be generalized to curves of
any degree d.

Theorem 5.1. Given a set of n points in a general position in P2
Fq
, the maximum number

of 3-rich curves of degree d is given by(
n

3

)(
q(

d+1
2 )−4 + q(

d+1
2 )−5 + q(

d+1
2 )−6 + · · ·+ q2 + q + 1

)
.

Proof. A curve of degree d is determined by(
d+ 1

2

)
− 1

points. Curves of degree d form a projective plane P(
d+1
2 )−1. Given n points in a projective

plane over a finite field, we select (
d+ 1

2

)
− 1

points to determine the curve. We need three of these points to be in the set of n points.
There are

(
n
3

)
ways to choose the points pi, pj, pk. An additional(

d+ 1

2

)
− 1− 3 =

(
d+ 1

2

)
− 4

points are needed to determine the curve. Similarly to Theorem 5.1, we find the number
of curves that pass through the three selected points by determining the intersection of

Hpi , Hpj , and Hpk . This is equivalent to finding the number of points in P(
d+1
2 )−1−3. There

are q(
d+1
2 )−4 + q(

d+1
2 )−5 + q(

d+1
2 )−6 + · · ·+ q2 + q + 1 points in P(

d+1
2 )−1−3. Thus,

fd(n) ≤
(
n

3

)(
q(

d+1
2 )−4 + q(

d+1
2 )−5 + q(

d+1
2 )−6 + · · ·+ q2 + q + 1

)
gives the maximum number of degree d curves that pass through three points.

4



6 Counting the Number of 3-rich Conics

Theorem 6.1. Given a set of n points in a general position in P2
Fq
, the number of 3-rich

conics generated is given by

f2(n) =

(
n

3

)
(q2 + q + 1)−

(
4

3

)(
n

4

)
(q + 1) +

(
5

3

)(
n

5

)
.

Proof. From Theorem 4.1, we know that(
n

3

)
(q2 + q + 1)

conics that pass through at least three of n points. To find the number of conics that pass
through exactly three of the n points, we need to add correction terms to above term to
account for the curves that pass through four and five of the n points.

We begin with the correction term for the curves that pass through four points. There
are

(
4
3

)
ways to select three out of four points in P = {p1, p2, . . . , pn}, where n is the number

of given points. There are
(
n
4

)
ways to choose four of the n points. Similarly to Theorem 5.1,

this is equivalent to determining Hpi ∩Hpj ∩Hpk ∩Hpl . The intersection of these hyperplanes
is P2

Fq
and the number of points in P2

Fq
is Hpi ∩ Hpj ∩ Hpk ∩ Hpl . Since there are q + 1

homogeneous points in PFq , (
4

3

)(
n

4

)
(q + 1)

is the first correction term.
We continue with the correction term for the curves that pass through five points. There

are
(
5
3

)
ways to select three points in P . There are

(
n
5

)
ways to choose five of the points in

P . Counting the number of curves that pass through five points is equivalent to determining
Hpi ∩Hpj ∩Hpk ∩Hpl ∩Hpm . Since only one curve passes through all points,(

5

3

)(
n

5

)
gives the second correction term. Thus,(

n

3

)(
q2 + q + 1

)
−
(
4

3

)(
n

4

)
(q + 1) +

(
5

3

)(
n

5

)
yields the number of 3-rich conics generated by the set of n points in general position in P2

Fq
.

7 Counting Smooth 3-rich Conics

Before counting the smooth 3-rich conics, we need to introduce three new definitions.
A Type 1 conic is a conic that is composed of two line ϕ1 and ϕ2, where line ϕ1 passes through
two of the n points and line ϕ2 passes through exactly one of the points on ϕ1 and exactly
one other point from the n points.
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A Type 2 conic is a conic composed of two line ϕ1 and ϕ2, where line ϕ1 passes through two
of the n points and line ϕ2 passes through exactly one of n the points not on line ϕ1.

A Type 3 conic is a conic of the form ax2 + by2 + cz2 + dxy+ exz+ fyz = 0 and is a smooth
(irreducible) curve.

A conic can be formed by the union of two lines that intersect at one of the n points
(Type 1 conic), a union of two lines that do not intersect at one of the n points (Type 2
conic), a double line, or a smooth curve (Type 3 conic). A set of n points in general position
does not have three collinear points. The only way for a conic in the form of a double line to
be 3-rich is for three points to be collinear. Thus, the conics of this form are not considered
3-rich conics.

In order to determine the number of Type 3 conics, we subtract the number of Types 1
and 2 conics from the total number of conics.

Theorem 7.1. Given n points in general position in P2
Fq
, the number of smooth 3-rich conics

generated is given by(
n

3

)(
q2 + q + 1

)
−

(
4

3

)(
n

4

)
(q + 1) +

(
5

3

)(
n

5

)
−
(
n

2

)
(n− 2)(q + 4− n).

Proof. We first count the number of Type 1 conics. We choose two points from the set of
n points to determine ϕ1. There are

(
n
2

)
ways to do this. We also choose two points to

determine the second line ϕ2. The first point is one of the two points on ϕ1. The second
point that determines ϕ2 can be any point from the set of n points not on ϕ1. There are
n− 2 such points. Thus, there are (

n

2

)
(2)(n− 2)

Type 1 conics.
Counting the number of Type 2 conics is similar. There are

(
n
2

)
ways to select ϕ1. The

second line, ϕ2, must pass through exactly one of the n points not on ϕ1. There are n−2 ways
to select this point. In P2

Fq
, there are q+1 lines that pass through any given point. However,

line ϕ2 can not pass through any other of the n points. There are n−1 lines that pass through
the selected point and one more of the n points. So, there are q + 1 − (n − 1) = q + 2 − n
lines that pass through the given point and no other of the n points. Thus, there are(

n

2

)
(n− 2)(q + 2− n)

Type 2 conics.
Combining the number of Type 1 and Type 2 conics yields(

n

2

)
(2)(n− 2) +

(
n

2

)
(n− 2)(q + 2− n) =

(
n

2

)
(n− 2)(q + 4− n)

non-smooth curves. Theorem 6.1 gives us the total number of 3-rich conics generated by n
points in P2

Fq
. Subtracting the number of Type 1 and Type 2 conics from the total number

of conics gives
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(
n

3

)(
q2 + q + 1

)
−

(
4

3

)(
n

4

)
(q + 1) +

(
5

3

)(
n

5

)
−
(
n

2

)
(n− 2)(q + 4− n),

which is the number of smooth 3-rich conics.

8 Conclusion and Future Work

In this paper, we explored a variation of the orchard planting problem of finding the
optimal arrangement of n trees in an orchard to maximize the number of 3-rich lines that
can be formed. Our analysis was based on the works of Green-Tao and Padmanabhan-Shukla.

In the paper we established both lower and upper bounds for the number of 3-rich conics
in a projective plane over a finite field. We determined the lower bound to be⌊(

n
3

)(
q−2
2

)
−
(
n
4

)(
q−3
1

)
q − 1

⌋

and the upper bound (
n

3

)(
q2 + q + 1

)
.

We then generalized the upper bound to curves of any degree d by(
n

3

)(
q(

d+1
2 )−4 + q(

d+1
2 )−5 + · · ·+ q2 + q + 1

)
.

In addition, we determined the exact count for the number of 3-rich conics as(
n

3

)(
q2 + q + 1

)
−
(
4

3

)(
n

4

)
(q + 1) +

(
5

3

)(
n

5

)
.

Finally, we concluded that the number of smooth 3-rich conics could be determined as(
n

3

)(
q2 + q + 1

)
−

(
4

3

)(
n

4

)
(q + 1) +

(
5

3

)(
n

5

)
−

(
n

2

)
(n− 2)(q + 4− n).

In geometry, two points determine a line, prompting us to explore 3-rich lines. Similarly,
five points determine a conic. Consequently, we should consider the question of determining
the number of 6-rich conics. This question can be expressed geometrically as the intersection
of a elliptic curve in six points, each with multiplicity one. When this occurs, the set of
closed points forms an abelian group under addition. Solving for the number of solutions to
x1+x2+ · · ·+x6 = 0, where x1, x2, . . . , x6 are the intersection points consequently gives the
number of 6-rich curves for n points in a general position.
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