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Abstract

This paper presents an investigation into the diameter of flip graphs associated with split
chessboards, which are grid-like structures where unit squares can be separated by a diagonal
and adjacent sections are of opposite colors. We conduct an exploration of the properties of
flip graphs concerning the standard chessboard and identify distinct connected components
within. We further establish a compelling link between split chessboards and plabic graphs,
shedding light on essential aspects such as the arrangement of colors on the grid, as well as
trip permutations within the disk.

Summary

This paper investigates the structure of split chessboards, which are chessboard-like grids
where unit squares can be divided into two triangles by a diagonal. We explore the prop-
erties of a graph of split chessboards, such as the distance between the farthest two split
chessboards, and how specific mutations may affect it. Additionally, we establish a connec-
tion between split chessboards and other graphs, providing valuable insights into the grid’s
color arrangement. Our findings contribute to a better understanding of the complexity of
mutations in split chessboards.



1 Introduction

A split chessboard is a chessboard-like grid such that each unit square can be split into
two triangles by the diagonal. Sections within the chessboard sharing an edge must be
different colors with the grid being colored in two colors in total.

Figure 1: Example split chessboard

Let us define a mutation around a lattice point as follows. Connect the four adjacent
lattice points to form four isosceles triangles and swap the colors of each of these triangles
from black to white and vice versa. Two possible examples are shown in Figure 2. Applying
this mutation on any lattice point in the interior of a split chessboard gives another valid
split chessboard without changing the boundary shape.

Figure 2: Valid mutations on a 2× 2 grid

A flip graph is a graph with vertices being states and edges being transformations. Two
vertices are connected by an edge if there is a transformation that changes one to the other.
In this case, the vertices are different split chessboards for a specified boundary and the flips
correspond to the mutation described above. In Figure 3, we have a connected component of
the 2× 4 grid. This project aims to study the structure of these flip graphs, specifically the
diameter, which is the longest possible distance between any two connected split chessboards
in the graph.

In this paper, we determine the diameter of the connected component of a flip graph of
a split chessboard containing the standard chessboard and examine the properties of other
connected components. We first examine the behavior of these mutations in a standard
chessboard, then show that a given algorithm of mutations is the farthest number of muta-
tions from the standard chessboard. We then find that two such chessboards are maximally
far apart, giving us the diameter of that connected component. As we are interested in the
diameter of the entire flip graph, we examine the properties of other connected components
as well.
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Figure 3: Flip grid for 2× 4 grid

Furthermore, we can also form a bijection between split chessboards and planar bicolored
graph, also known as plabic graphs. Plabic graphs were first introduced in 2006 by Postnikov
[1] in his paper about networks. However, no research has been done on split chessboards.

2 Preliminaries

We first define relevant terms that will be used throughout this paper.

Definition 2.1. The diameter of a graph is the largest possible value of the minimum
distance between any two vertices in the graph.

Definition 2.2. A standard chessboard is a split chessboard with no unit squares split into
two separate colors.

Definition 2.3. A diagonal edge is the diagonal of a unit square splitting it into two different
colors within a split chessboard.

2.1 Plabic graphs

A planar bicolored graph, or a plabic graph is a planar undirected graph G drawn within
a disk with boundary points lying on the circle incident to exactly one edge, such that each
internal vertex is one of two colors as shown in Figure 4a.

We can correspond every chessboard to a plabic graph by placing a colored vertex in
every separate section of the chessboard and connecting two vertices if their corresponding
sections are adjacent. This graph is clearly on a plane, and edges are non intersecting, so it
is planar.

There are also transformations shown in Figure 5 that can be applied to plabic graphs

• (M1) Square move: If the graph contains a square formed by four vertices whose colors
alternate as we go around the square, then we can switch colors of these four vertices.
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(a) Example plabic
graph

(b) Plabic graph of a
possible 2× 2 grid

Figure 4: Plabic graphs

(a) Square
move

(b) Unicolored edge
contraction

(c) Middle
vertex removal

Figure 5: Plabic transformations

• (M2) Unicolored edge contraction/uncontraction: If a graph contains an edge with two
vertices of the same color, then we can contract this edge into a single vertex with the
same color.

• (M3) Middle vertex insertion/removal: If a graph contains a vertex of degree 2, then
we can remove this vertex.

We can correspond each move on the split chessboard with a combination of M1, M2,
M3 in plabic graphs as shown in Figure 6.

2.2 Trips in plabic graphs

A trip in a plabic graph G is a path which starts at a boundary vertex and proceeds
along the edges of G until it reaches another boundary vertex according to the following
rules: when a red vertex is reached, the path takes a sharp left turn, and when a blue vertex
is reached, the path takes a sharp right turn. An example of this can be seen in Figure 7. A
trip permutation is the mapping of each boundary vertex to another in a plabic graph.

Theorem 2.1 ([1]). Let G and G′ be two reduced plabic graphs with the same number of
boundary vertices. Then the following claims are equivalent
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Figure 6: Split chessboard move in plabic transformations

• G can be obtained from G′ by moves M1, M2, M3.

• These two graphs have the same trip permutation.

Figure 7: Highlighted trip on a plabic graph

3 Diameter of standard chessboard component

In order to provide intuition on the behavior of these mutations, we start from the
smallest case of a 2× n grid.

Example 3.1. The diameter of the connected component containing the standard chess-
board in the flip graph of a 2× n split chessboard is n− 1.

Proof. If a lattice point is mutated, none of the adjacent lattice points can be mutated
because this would lead to two intersecting diagonals. Thus, to find the grid farthest from
a standard chessboard, we choose to mutate every other lattice point. Because the width
of the grid is 2, there is only one column of lattice points within the grid, hence we have
two boards that are farthest from the standard chessboard (see Figure 3). Each mutation
creates diagonals that can only be removed by reapplying the mutation. Thus, because no
lattice point is mutated in both of the farthest boards, one must mutate every lattice point
in the interior to transform one to the other. This is n − 1 mutations, which gives us the
diameter.

This gives us insight on how these mutations may behave with regards to parity.
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Definition 3.1. Let us place the split chessboard on a coordinate plane such that the
vertices lie on lattice points. We define parity of a vertex to be the parity of the sum of its
coordinates. The parity of a diagonal edge will be the opposite of the parity of the sum of
the coordinates of one of its endpoints. This is so that we produce and destroy even diagonal
edges by mutating an even vertex, and vice versa.

Remark. In diagrams, even loops will be denoted with purple, and odd loops will be denoted
with blue.

Definition 3.2. Let us denote by loop a collection of diagonal edges that form a simple
closed curve. Note that every loop is necessarily of the same parity.

We can then define the possible states of a split chessboard.

Definition 3.3. Let R be a region bounded by the border of a split chessboard. A closed
diagonal pattern D in R is a union of diagonal edges in R, such that it can be decomposed
as a union of loops intersecting only at lattice points. A weakly closed diagonal pattern is a
union of diagonal edges in R, such that its union with the boundary of R can be decomposed
as a union of simple closed curves intersecting only at lattice points.

Figure 8: Closed diagonal pattern (left) and weakly closed diagonal pattern (right)

Lemma 3.1. Let C be a split chessboard obtained through mutations from the standard
chessboard C0. Then the diagonal edges in C form a closed diagonal pattern.

Proof. Let us prove this by induction. Applying one mutation on a standard grid results in
a closed diagonal pattern. Now assuming that we have a closed diagonal pattern, we want to
show that applying one more mutation will always create another closed diagonal pattern. If
the new mutation creates or destroys a loop sharing no edges with a previously made loop,
it clearly remains a closed diagonal pattern. If a mutated edge is shared with a preexisting
loop, this edge disappears, and the remaining edges of the new mutation continue the closed
curve in possible configurations as shown in Figure 9.

Lemma 3.2. Let C be a split chessboard corresponding to a closed diagonal pattern D con-
sisting of loops of the same parity. Then C can be obtained through mutations from the
standard chessboard C0.
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Figure 9: Mutating an adjacent cell to a loop

Figure 10: Shaded interior subregions in a closed diagonal pattern

Proof. The closed diagonal pattern partitions the chessboard region into nonintersecting
subregions; i.e. connected components of R2 \D. Consider any path from the boundary of
the chessboard to a particular subregion that avoids lattice points; such a path must cross
the edges of D either an even or odd number of times. Moreover, note that this parity does
not depend on the chosen path. Therefore, we may correspondingly label a subregion as
exterior or interior, respectively, as shown in Figure 10. Let us denote the union of interior
subregions by int(D) By applying the mutation on the vertices in the int(D) with the same
parity, we obtain the chessboard C.

Let us call the algorithm described in Lemma 3.2 the loop filling algorithm. To calculate
diameter, we need to calculate the shortest distance between any two split chessboards.
Thus, we would like to show that the algorithm in the proof of Lemma 3.2 is the shortest
possible path.

Lemma 3.3. Let C and C0 be as above. Then the shortest distance between C and C0 is
achieved using the loop filling algorithm.

Proof. From above, we have a sequence of nested loops of alternating exterior and interior
subregions associated to D. By Lemma 3.1, any set of mutations produces a closed diagonal
pattern which has an outer boundary. Therefore, no mutations can be made in the outermost
exterior ring without later being undone, because the outer boundary of the resulting closed
diagonal pattern would then exceed the outer boundary of D. To obtain the boundary of
the outermost interior region, each interior vertex in the region must be mutated at least
once. Recursively applying this argument subsequent nested region proves the result.

Though we have found an algorithm to create loops of the same parity, we must translate
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this to closed diagonal patterns containing loops of both parities. We divide a closed diagonal
pattern into layers as follows:

1. The 0th layer is empty

2. The nth layer consists of the union of all loops that are each not contained within any
loop of opposite parity after disregarding layers < n.

Lemma 3.4. Let C be a split chessboard corresponding to a closed diagonal pattern. Then
C can be obtained through mutations from the standard chessboard C0.

Proof. We can split C into layers as seen in Figure 11. Loops in separate layers have no
intersections because one must be contained within the other. Then applying Lemma 3.2,
we can mutate each of layers in order because they contain loops of the same parity.

Proposition 3.5. Given any split chessboard C in the connected component of C0, the above
algorithm achieves the shortest distance between C and C0.

Proof. From Lemma 3.2, we must mutate the interior subregions to create loops of the same
parity. However, there can be closed diagonal patterns of the opposite parity within the
subregions. Hence, layer n must be mutated before layer n + 1 and the result then follows
from applying Lemma 3.3.

Definition 3.4. The maximally split chessboards are the chessboards created from maxi-
mizing the size of each nested layer.

We can see the two maximally split chessboards for a 6× 6 split chessboard in Figure 11.

Figure 11: Maximally split chessboards

Lemma 3.6. The maximally split chessboards M are the split chessboards farthest from the
standard chessboard.
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Proof. The outer loop of each of the chessboards is the maximal even or odd interior region
that can be created in the first layer. But this also maximizes the potential size of the next
innermost layer. By iterating this argument we see that both maximally split chessboards
maximize the number of layers and the size of each layer given the outermost loop.

Theorem 3.7. The diameter of the component containing the chessboard is the distance
between the two maximally split chessboards.

Proof. As shown in Proposition 3.5, layer nmust be mutated before n+1. Hence, because the
parities of the two maximally split chessboards are different, the path between the two must
be mutating layer by layer. For the sake of contradiction, let there be two split chessboards
that are farther apart. If d1 and d2 are their distances from the standard chessboard, the
distance between each other is at most d1 + d2. However, this is less than the distance
between maximally split chessboards, which then must be the diameter.

4 Other connected components

To find the diameter of the entire flip graph, we need to examine connected components
not containing the standard chessboard as well.

Definition 4.1. An anchor is a boundary point where exactly one diagonal edge of the
diagonal pattern meets the boundary of the split chessboard.

Theorem 4.1. Suppose C1 and C2 are split chessboards with the same anchor points. Then
there is a sequence of mutations connecting C1 and C2.

Figure 12: Two connected split chessboards with the same anchors

Let D1 and D2 be the weakly closed diagonal patterns corresponding to C1 and C2.
Firstly, by applying Lemma 3.4, we may assume without loss of generality that D1 and

D2 contain no closed curves.
Let us use the notation:

D∩ := D1 ∩D2

D∪ := D1 ∪D2

D⊖ := D1 ⊖D2.
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Here we are treating everything as subsets of R2; the overbar refers to topological closure
since we want D⊖ to include the endpoints of its constituent edges. Let us use the notation
(−)ev and (−)od to refer to operations of taking only the even and odd edges, respectively.
Note that Dev

⊖ and Dod
⊖ are closed diagonal patterns of a single parity, so have corresponding

inner regions int(Dev
⊖ ) and int(Dod

⊖ ).
Intuitively, we want to mutate the interiors of the “difference”Dev

⊖ andDod
⊖ to get fromD1

to D2. However, it is possible that the interior regions overlap between Dev
⊖ and Dod

⊖ , which
means we cannot arbitrarily mutate the interiors in any order. To formalize the restrictions
on the mutation order, we construct a colored directed planar graph G as follows:

Construction 4.1.

• For each connected component of int(Dev
⊖ ) \Dev

∩ , a purple vertex of G.

• For each connected component of int(Dod
⊖ ) \Dod

∩ , a blue vertex of G.

• For each intersection between connected components Rev and Rod:

– If an edge e1 of Dev
1 intersects an edge e2 of Dod

2 on the boundaries of Rev and
Rod, respectively, an edge Rev → Rod.

– If an edge e1 of Dod
1 intersects an edge e2 of Dev

2 on the boundaries of Rod and
Rev, respectively, an edge Rod → Rev.

The edges defined above encode the fact that e1 must be unmutated before e2 can be
mutated—see Figure 13.

A priori, G is a multigraph, although we will soon show that this is not possible.
Given anchor points, we can create a graph as shown above for any two diagonal patterns

sharing these anchor points. Proposition 4.2 below implies that we can order mutations to
transform one diagonal pattern to the other, thus showing Theorem 4.1

Proposition 4.2. The vertices of G admit a partial order satisfying R < R′ when there is
a edge R → R′.

Proof. Suppose towards contradiction that there exists a cycle R1 → R2 → · · · → Rn → R1.
This corresponds to an annulus-shaped subregion of int(Dev) ∪ int(Dod). Without loss of
generality, we may assume this is the innermost of possibly nested annuli. Then there are
no cycles in the center of the annulus, so there exists an ordering in which we can mutate
the components of int(Dev

⊖ ) and int(Dod
⊖ ) in the center of the annulus to get from D1 to

D2. Therefore, by performing these mutations first, we can further assume without loss of
generality that there are no regions of int(Dev

⊖ ) or int(Dod
⊖ ) in the center of the annulus.

Now let us consider paths in D∩ where by “path” we mean a connected component of
D∩ \D⊖. By construction, each path ends at either a point of D⊖∩D∩, or at the chessboard
boundary, and paths do not pass through the interior regions int(Dev

⊖ ) ∪ int(Dod
⊖ ). Note

that there must be exactly one such path emanating from each point of D⊖ ∩D∩, because
each lattice point must be connected to either two or four diagonal edges—see Figure 14.
Moreover, there must be an odd number of such points on the boundary of each Ri on the
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Figure 13: Construction of planar graph according to construction 4.1. Each loop represents
a connected component of int(Dev) or int(Dod), the solid sections are D1 and the dashed
sections are D2.

Figure 14: Possible configurations of paths emanating from a point of D⊖ ∩D∩. Solid edges
are in D1, dashed edges are only in D2, and double edges are in D∩. In the right hand case,
we consider the center point to be a length-0 path in D∩.

inner side of the annulus because overlapping regions must have opposite parity as shown in
Figure 15. Then in order for those paths to have endpoints, an odd path must cross an even
path. But since these paths consist of edges in both D1 and D2, this would imply that an
odd diagonal edge overlaps an even diagonal edge a chessboard pattern, which is impossible!
Thus we obtain a contradiction.

Thus, every split chessboard with a set of given anchor points is connected to every other.
Therefore, we can study the diameter of such connected components.

5 Conclusion

We establish an algorithm of mutations to find the diameter of the connected component
of the flip graph containing the standard chessboard for grids with boundaries containing
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Figure 15: Odd number of paths in D∩ emanating from a region on one side of the annulus.

only vertical and horizontal edges. We find that each connected component of the flip graphs
share the same anchor points.

Further work includes examining the behavior of the diameter in connected components
not containing the standard chessboard. Additionally, edge cases should be visited with
regards to non vertical and horizontal boundaries or concavities.
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