
Geography, Kotzig’s Nim, and Variants

Srinivas Arun

Under the direction of

Joshua Messing
MIT Department of Mathematics

Research Science Institute
August 1st, 2023



Abstract

Geography is a combinatorial game in which two players take turns moving a token along
edges of a directed graph and deleting the vertex they came from. We study Kotzig’s Nim, a
special case of Geography where the vertices are labeled and moves correspond to additions
by fixed amounts. We prove a conjecture by Fraenkel that Kotzig’s Nim is eventually periodic
in the size of the graph. We also expand upon work by Fox and Geissler, who classified the
computational complexity of determining the winner of various Geography variants given
a graph. In particular, we show NP-hardness for undirected partizan Geography with free
deletion on bipartite graphs and directed partizan Geography with free deletion on acyclic
graphs.

Summary

Geography is a two-player game played on a set of vertices with some directed edges
connecting pairs of them. There is a token on one vertex, and players take turns moving
the token along an edge. No vertex may be visited twice, and the player who first runs
out of moves loses. We start by investigating Kotzig’s Nim, which is Geography on a graph
of a certain form. We prove a conjectue by Fraenkel that the outcomes of Kotzig’s Nim
for different sizes of the graph eventually repeat in a predictable way. Next, we investigate
algorithms which can be used to calculate the winner in variants of Geography. We show
that several variants of Geography are computationally difficult, i.e. probably impossible to
solve quickly relative to the input size.



1 Introduction

The game of Geography is played as follows. A directed graph on n vertices is given, and
the game starts with a token on some vertex. Two players take turns moving the token along
edges such that the token never visits the same vertex twice. The first player who cannot
move loses.

One special case of Geography is Kotzig’s Nim. In Kotzig’s Nim, the graph consists of n
vertices in a circle labeled in clockwise order. Edges are defined by

{u → u+m|m ∈ M},

where M is a fixed set of positive integers less than n and labels are taken modulo n. The
game is denoted (M ;n).

Fraenkel, Jaffray, Kotzig, and Sabidussi [1] analyzed Kotzig’s Nim for games with M =
{a, a + 1}. They rely heavily on the “diamond strategy,” in which when one player moves
by a, the other player moves by a + 1 and vice-versa. They almost completely classified
who wins the game with move set {3, 4} in terms of the remainder when n is divided by 7.
Similarly, Tan and Ward [2] completely analyzed the game with move set {1, 4} based on
the remainder when n is divided by 5.

Fraenkel et al.[1] proposed that the outcomes of all Kotzig Nim games are based on
congruences. Using a theorem by Bodlaender [3], we prove Theorem 1 in Section 3.

Theorem 1. For a fixed move set M, there exist constants n0, p such that for all n ≥ n0 the
outcome of the game (M ;n) is the same as the outcome of the game (M ;n+ p).

We also study the computational complexities of determining the winning player in vari-
ants of Geography. We build upon work by Fox and Geissler [4]. For instance, some variants
include the following:

• undirected graph.

• partizan play, where each player moves their own token, tokens are not allowed to
simultaneously occupy a vertex, and vertices are deleted once players have moved from
them.

• free deletion, where players can delete any vertex/edge they could have come from, not
necessarily the one they actually came from.

• edge deletion, where players delete edges instead of vertices.

Each of these variants can be represented by a four-letter string, as outlined in Definition
2. A summary of known complexities of variants from various sources, as well as our own
results, is shown in Table 1.

1



Game Complexity Analysis

DIRV PSPACE-complete, even for bipartite with degree ≤ 3 [5]

DIRE PSPACE-complete, even for bipartite with degree ≤ 3 [6]

DIFV PSPACE-complete, even for bipartite [4]

DIFE PSPACE-complete, even for bipartite Section 4

DPRV PSPACE-complete, even for bipartite with degree ≤ 3 [7]

DPFV PSPACE-complete in general and for bipartite, NP-hard for DAGs
[4],

Section 6

DPFE PSPACE-complete in general, NP-hard for DAGs
Section 4,
Section 6

UIRE PSPACE-complete in general, but P for bipartite [6]

UPRV PSPACE-complete, even for bipartite [4]

UPFV PSPACE-complete in general, NP-hard for bipartite
[4],

Section 5

Table 1: Summary of Geography Variants

We expand on this table. In Section 4, we modify constructions by Fox and Geissler [4]
for vertex games with free deletion to edge games with free deletion to show that they are
PSPACE-complete. In Section 5, we show NP-hardness for the previously open problem of
undirected, partizan, free deletion Geography on bipartite graphs. In Section 6, we inves-
tigate directed acyclic graphs (DAGs). We show that directed, partizan games with free
deletion are NP-hard even when restricted to DAGs. However, we completely classify such
games on complete DAGs. Finally, in Section 7, we give a polynomial-time algorithm to
solve undirected impartial Geography with unbounded stack size and no height rule.

2 Definitions and Methods

When discussing a combinatorial game, we refer to the first player by L and the second
player by R.

In Sections 4 to 6, we need to refer to specific variants of Geography. We use the notation
of Fox and Geissler[4] with a slight modification.

Definition 2. A variant of Geography is denoted by a four letter string. The letters, in
order, are described below.

• Directed (D) or Undirected (U)

• Impartial (I) or Partizan (P)

2



• Restricted Deletion (R) or Free Deletion (F)

• Vertex Deletion (V) or Edge Deletion (E)

In addition, we may include a subscript k > 1 indicating the maximum stack size. In
these games, each vertex is labeled with a positive integer at most k, and after a player
visits a vertex, its label is decreased by 1. A subscript of ∞ indicates unbounded stack size.
Vertices with label 0 are deleted. Games may also have a height rule: if a player is currently
at a vertex labeled i, they may only move to a vertex of label at least i− 1.

We assume readers are familiar with standard computational complexity classes; we refer
to P, NP, and PSPACE throughout this paper.

Note the following.

• A problem’s computational complexity may be known in general, but not in specific
cases (as specific cases may be solvable more quickly). For example, a Geography
variant may be PSPACE-complete over the set of all graphs, but in P for bipartite
graphs: see UIRE in Table 1.

• All Geography variants, except for those with subscript ∞, last for a polynomial num-
ber of moves in terms of the input size. This means that every sequence of moves can
be listed in polynomial space, meaning these variants are in PSPACE. In particular,
to prove that these Geography variants are PSPACE-complete, it suffices to show that
they are PSPACE-hard.

• It is unknown whether P=NP or P=PSPACE, but both are thought to be very unlikely.
Thus, proving NP-hardness or PSPACE-completeness does not refute the existence of
a polynomial-time algorithm, but it does provide evidence against it.

It will be helpful to define the True Quantified Boolean Formula problem (TQBF), which
is known to be PSPACE-Complete.

Definition 3. True Quantified Boolean Formula asks whether the following logical expres-
sion is true:

∃x1∀x2∃x3∀x4 . . . ∃xn−1∀xn(c1 ∧ c2 ∧ · · · ∧ ck),

where the xi are booleans, and each ci is a clause of the form ℓ1 ∨ ℓ2 ∨ ℓ3 where ℓ1, ℓ2, ℓ3 are
literals (expressions of the form xi or xi).

Example 4. For n = k = 2, an example of an instance of TQBF is:

∃x1∀x2∃x3∀x4[(x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4)].

In words, this is “There exists x1 such that for all x2 there exists x3 such that for all x4,
both (x1 or not x3 or not x4 is true) and (not x1 or x2 or not x4 is true).”

Alternatively, TQBF can be interpreted as a game in which the first player selects all
odd-indexed xi while the second selects all even-indexed xi, and the first player wins if the
literal formula is true. Determining the outcome of the game is equivalent to solving TQBF.

Similarly, we also define the following NP-hard problems:

3



Definition 5. The vertex cover problem asks, given an undirected graph and an integer k,
whether it is possible to select k vertices such that every edge contains a selected vertex.

Definition 6. The Hamiltonian path problem asks, given an undirected graph, whether
there exists a path containing all vertices exactly once.

Finally, we discuss the main method we use to prove complexities. Suppose we want
to prove that evaluating a certain game WXY Z on a certain set of graphs S is at least
as computationally difficult as some other problem, say P . Then we consider an arbitrary
instance of P . We construct a graph in S such that determining the outcome of WXY Z on
the graph exactly corresponds to solving P . We call this reducing P to WXY Z on S.

This reduction shows that if a fast algorithm exists forWXY Z on S, then a fast algorithm
exists for P . Taking the contrapositive, since no fast algorithm exists for P , no fast algorithm
exists for WXY Z on S.

When constructing graphs for this method, we often refer to gadgets. A gadget is simply
a piece of our full graph which is designed to perform a certain function. Gadgets will usually
be labeled by gi.

3 Periodicity of Kotzig’s Nim

We first prove a general result about Geography. In fact, Bodlaender [3] proved a stronger
result in a similar way, but we give our own proof as it more readily leads into a proof that
Kotzig’s Nim is periodic.

Theorem 7 (Bodlaender [3], 1993). Let c be a fixed constant. Let G be a graph on n vertices
labeled 0, 1, . . . , n− 1 such that any two adjacent vertices have labels with absolute difference
at most c. Suppose S, the starting vertex, has label less than c. Then the winner and winning
strategy of DIRV on G can be computed in O(n) time.

Proof. In order to force a recursion, we generalize the game.
We add powerups to the game; we define a powerup as a vertex such that the player

who moved to it must make another move in the same turn. There are no powerups in the
original game.

Define a state as follows:

• An integer 0 ≤ a ≤ n; this represents the set of vertices {a, a + 1, . . . , n}. Call the
vertices {a, . . . , a+ c− 1} small.

• An integer a ≤ s ≤ a+ c; this represents the starting vertex.

• An ordered sequence e1, . . . , ek of distinct ordered pairs of vertices with labeles at
most c apart, each of which contains at least one small vertex; this represents all moves
going to or from small vertices. Note that these pairs do not have to be valid edges in
the graph. This is because later in the proof, we will contract paths into edges which
may not be present in the graph.

4



• A subset P of the directed edges above; this represents which edges are powerups and
which are not.

• A boolean; this represents the game mode. In normal play, the player who first runs
out of moves loses, while in misere play, the player who first runs out of moves wins.

Since c is fixed, the number of states is linear in n. It now suffices to show that we can
recurse on these states to determine all of their outcomes.

If a ≥ n − 2c + 1, simply check all possible sequences of moves in the game, of which
there are at most (2c)!. This does not affect the time complexity.

Otherwise, call the vertices {a+ c, . . . , a+ 2c− 1} medium. In our game, we must have
the following chains of moves in order, where the mi are medium vertices, the vi are small
vertices, l is a positive integer, and 1 ≤ i0 < i2 < · · · < il ≤ m:

start
e1−→ v1

e2−→ v2 . . .
ei1−→ m1

m2

ei1+1−−−→ vi1+1

ei1+2−−−→ vi1+2 . . .
ei2−→ m3

m4

ei2+1−−−→ vi1+1

ei2+2−−−→ vi2+2 . . .
ei3−→ m5

...

m2l

eil−1+1

−−−−→ vil−1+1

eil−1+1

−−−−→ vil−1+1 . . .
eil−→ m2l+1.

If the game ends on a small vertex, there will also be another path:

m2l+2

eil+1−−−→ vil+1

eil+2−−−→ vil+2 . . .
el−→ vl.

Now consider any valid game in the current state. We claim that we can simplify it to a
smaller game of some computed state.

• Set m1 to be the starting vertex in a game with vertices {a+ c, . . . , n− 1}.

• Collapse each path from m2i to m2i+1 into a directed edge from m2i to m2i+1. To decide
whether or not this edge will be a powerup, consider the number of non-powerup edges
along the original path. If it is even, make the edge a powerup, and otherwise, make
the edge normal.

• Also add the sequence of edges from {mi} to or from the set {a+ 2c, . . . , n− 1} (each
edge will not be a powerup). These edges must be actual edges on our graph, and they
must be consistent with the original game: m1 must be precede edge m2m3, which
must precede edge m4m5, and so on until m2l+2 (if it exists).

• To decide the game mode,

– If the original game does not end on a small vertex, set the new game mode to
be the same as the original game mode.

5



– If the original game ends on a small vertex and there are an even number of edges
on the path from m2l+2 to vl, set the new game mode to be the same as the
original game mode.

– If the original game ends on a small vertex and there are an odd number of edges
on the path from m2l+2 to vl, set the new game mode to be different from the
original game mode.

All of these steps take a constant number of operations in terms of c. Moreover, it is easy to
check that the smaller game will be equivalent to the original game.

In this way, we can iterate through all possible games in constant time. Thus we can
determine the winner and winning position in constant time. Recursing now gives an O(n)
algorithm.

For any graph G, define f(G) to be the set of pairs (state, outcome of state) over all pos-
sible states on the graph G. Notice that in our proof of Theorem 7, the recursive calculation
of f(G) only depends on the edges among the first 2c vertices of G. This gives the following
corollary.

Corollary 8. Let G1 and G2 be arbitrary directed graphs whose vertices are labeled in such
a way that any two adjacent vertices have labels with absolute difference at most c. Suppose
the first 2c vertices of G1 have the same edges among them as the first 2c vertices of G2. Let
G′

1 be G1 with its first c vertices removed, and let G′
2 be G2 with its first c vertices removed.

If f(G′
1) = f(G′

2), then f(G1) = f(G2).
The same is true by symmetry if we define G′

1 to be G1 with its last c vertices removed
and G′

2 to be G2 with its last c vertices.

Now we are ready to prove the main result.

Proof of Theorem 1. Let K denote the largest absolute value of a move in M. Consider the
Kotzig Nim game for some n ≫ K. Relabel the vertices clockwise by

0, 2, 4, . . . , n− 1, n− 2, n− 4, . . . , 3, 1 if n is odd,

0, 2, 4, . . . , n− 2, n− 1, n− 3, . . . , 3, 1 if n is even.

Draw directed edges based on which moves are allowed, and call the resulting graph Gn.
Note that any two adjacent vertices in Gn have labels with absolute difference at most 2K;
thus, 2K functions as c did before.

Also define a graph Hn which is Gn but with the vertices 0, . . . , 2K − 1 and the vertices
n− 2K, . . . , n− 1 removed. Note that there is an edge u → v in Hn if and only if v−u

2
∈ M.

In particular, every set of 2K consecutive vertices in Hn has the same edges among it.
Since f takes only finitely many values, by Pigeonhole there must exist large i ̸= j such

that f(Hi) = f(Hj). Thus, by Corollary 8, for all sufficiently large n, we have f(Hn) =
f(Hn+j−i).

But notice that the vertices 0, . . . , 2K − 1 have the same edges among them for all large
enough n, and similarly for the vertices n− 2K, . . . , n− 1. So by Corollary 8 again, we have
that f(Gn) = f(Gn+j−i).

6



4 Free Edge Deletion Variants

We begin by investigating variants with edge deletion, which were not studied by Fox
and Geissler.

Theorem 9. The Geography variant DIFE is PSPACE-Complete, even for bipartite graphs.

Proof. Let Q be an instance of TQBF, as in Definition 3; we reduce Q to DIFE. We use a
similar construction as that of Theorem 1 in [4], as shown in Figure 1.

• The token starts at T and moves through a series of gadgets g1, . . . , gn corresponding
to the variables x1, . . . , xn respectively. For all i ≤ n− 1, the bottom vertex of gi has
an outgoing edge (called a joining edge) to the top vertex of gi+1

• The bottom vertex of gn has an outgoing edge to a vertex B. This vertex has an outgo-
ing edge to vertices c1, . . . , cm, each corresponding to a clause in the TQBF expression.

• Each clause vertex ci has an outgoing edge directly to vertices representing all odd-
indexed variable literals in the clause, and an outgoing path of length 2 to vertices
representing all even-indexed variable literals in the clause.

• A vertex representing xi points to

– The bottom left vertex of gi, if i is odd.

– The right vertex of gi, if i is even.

A vertex representing xi points to

– The bottom right vertex of gi, if i is odd.

– The left vertex of gi, if i is even.

Note that all joining edges must be deleted. Also note that L will always be the one moving
to the bottom of an odd-indexed variable gadget, while R will always be the one moving to
the bottom of an even-indexed variable gadget.

Suppose L ever deletes an edge from a literal vertex to an even-indexed variable gadget.
Then there are an even number of vertices on the path to the literal vertex, so R is guaranteed
to win if the game moves to the literal vertex (whereas before he wasn’t guaranteed to win
this branch). Therefore, it is never optimal for L to do this. Similarly, it is never optimal
for R to delete an edge from a literal vertex to an odd-indexed variable gadget.

Now assume the expression Q is true. Then, a strategy for L is the following.

• After moving to the bottom of an odd-indexed variable gadget, delete the left edge if
the variable should be set to false, and delete the right edge if the variable should be
set to true.

7



T

g1

g2

g3

B

g4

c1

x1

x2

x3

c2

x1

x3

x4

Figure 1: Reduction of ∃x1∀x2∃x3∀x4(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) to DIFE; modified from
Figure 4 of [4]

8



• Once all variable gadgets have been traversed, no matter which clause vertex R moves
to, there will exist some branch corresponding to a true literal u. Let v be the successor
of u.

• If u contains an odd-indexed variable, then L can move to u. After this, R is forced to
move to v. Next, since the literal is true, there is still an edge from v to the bottom
vertex of the variable gadget, so L can take this. Finally, the joining edge must have
been deleted, so R has no moves.

• If u contains an even-indexed variable, then L can force R to move to u. After this, L
can move to v. Next, since the literal is true, the edge from v to the joining vertex of
the variable gadget has been deleted. Thus, R has no moves.

On the other hand, assume Q is false. Then, a strategy for R is the following:

• After moving to the bottom of an even-indexed variable gadget, delete the left edge if
the variable should be set to false, and delete the right edge if the variable should be
set to true.

• Once all variable gadgets have been traversed, choose to move to a clause vertex leading
to no true literals. Suppose L chooses to go on the path to a literal u. Let v be the
successor of u.

• If u contains an odd-indexed variable, then R can move to v. Since the literal is false,
there is no edge from v to the bottom vertex of the variable gadget, so L has no moves.

• If u contains an even-indexed variable, then R can move to u, from which L will move
to v. Since the literal is false, there is an edge from v to the bottom vertex of the
variable gadget, so R can take this edge. Finally, the joining edge must have been
deleted, so L has no moves.

We have shown that L wins if and only if Q is true. Moreover, our graph is a subgraph
of Figure 4 of [4], which was shown to be bipartite; thus, ours is bipartite as well. Hence
TQBF can be reduced to an instance of DIFE on a bipartite graph in polynomial time, as
desired.

For the partizan version of this game, we can prove PSPACE-completeness in a very
similar way.

Theorem 10. The Geography variant DPFE is PSPACE-Complete.

Proof. Let Q be an instance of TQBF, as in Definition 3; we reduce Q to DPFE. We use a
similar construction as that of Theorem 2 in [4], as shown in Figure 2.

• Players L and R start by simultaneously going through odd-indexed and even-indexed
gadgets gi respectively. For all i ≤ n− 2, the bottom vertex of gi has an outgoing edge
to gi+2.

9



• After her variable gadgets, L has a path of 3m delay vertices DLY1 → · · · → DLY3m.

• After his variable gadgets, R has set of “delete” vertices DLT1, . . . , DLT2m−2. Note
that these do not form a full path; instead, DLT2i has an outgoing edge to DLT2i+1

for all i.

• There are also vertices c1, . . . , cm representing clauses. Each clause vertex has incoming
edges from DLY3m as well as all odd-indexed delete vertices, and outgoing edges to all
even-indexed delete vertices.

• Each clause vertex has additional outgoing edges to three linking vertices (labeled
LNK).

• Each linking vertex has outgoing edges to two intermediate vertices representing the
corresponding literal.

• A vertex representing xi has an outgoing edge to the right vertex of gi, and a vertex
representing xi has an outgoing edge to the left vertex of gi.

• Finally, DLT2m−2 connects to a path of escape vertices ESC1 → · · · → ESC7.

Clearly, the players will start the game by taking turns choosing whether their variables are
true or false. Call this the “selection phase.” After this, notice the following:

• Suppose R moves to DLT2m−2 before moving through all of DLT1, . . . , DLT2m−3. Then
L has strictly more options than if R had not done this, and R has strictly fewer moves
remaining than if he had not done this. Thus, it is never optimal for R to do this.

• If R moves to a linking vertex at any point, then he must have moved from some ci.
However, R can make at most 3(m− 2) + 1 moves to and from c1, . . . , cm before being
forced to escape. Therefore, it is at most 3m− 5 turns after the selection phase. This
means L has at least 5 more delay vertices left to traverse, whereas R has at most 4
moves left from the linking vertex. Again, this is losing for R.

Thus, R should take the following path after the selection phase:

DLT1 → ci1 → DLT2 → DLT3 → ci2 → · · · → DLT2m−4 → DLT2m−3 → cim−1 → DLT2m−2.

During these moves, he has the opportunity to delete the edges from DLY2m−3 to all but
one of c1, . . . , cm. Call this the “deletion phase”.

Exactly 3 moves after the deletion phase, L must be at the only remaining ci while R is
at ESC3.

• If L moves to DLTi for even i, then she immediately loses because the edge from DLTi

to DLTi+1 has already been deleted by R.

• If L moves to ESC1, then she also immediately loses because the edge from ESC1 to
ESC2 has already been deleted by R.

10



L

g1

R

g2

g3 g4

...
...

gn−1 gn

dly1 dlt1

dly2 dlt2

...

dly3m

...

dlt2m−3

dlt2m−2

c1

c2

c3

...

cm

esc1

esc2

...

esc7

lnk lnk lnk

Figure 2: Reduction of ∃x1∀x2 . . . ∃xn−1∀xn(x1 ∨ x2 ∨ x4) ∧ c2 ∧ · · · ∧ cm to DPFE; modified
from Figure 6 of [4]

11



So L is forced to move into a linking vertex.
Now suppose Q is true. Then, L should be able to choose a linking vertex so that she

has 3 moves left, thus outlasting R.
On the other hand, suppose Q is false. Then, R can force all of the linking vertices to

represent false literals, meaning L has at most 2 moves left. In this case, R will win.
Thus, L wins if and only if Q is true, so we have reduced TQBF to DPFE.

5 UPFV On Bipartite Graphs

The game UPFV was proven to be PSPACE-complete for general graphs by Fox and
Geissler [4], but the time complexity is unknown for any smaller class of graphs. We show
that the problem is NP-hard for bipartite graphs and planar graphs of maximum degree 3,
which suggests that a polynomial-time algorithm probably does not exist for these cases.

Theorem 11. UPFV is NP-Hard for bipartite graphs as well as planar graphs of maximum
degree 3.

Proof. Consider the Hamiltonian Path problem (which is known to be NP-hard) on an
arbitrary undirected graph G with n vertices, m edges, a given starting vertex s, and a given
ending vertex e. Assume WLOG that s and e have degree 1, and that all other vertices have
degree greater than 1.

We claim that this problem reduces to the following game of UPFV.

• Draw G, and along each edge segment of G, add five “intermediate” vertices.

• Add a separate path s− p1 − p2 − · · · − p2n+4m−1.

• Let L start at p1 and R start at s.

Player L is forced to start by moving to p2 and deleting p1. After this, she is forced to
keep moving along the path pi, so she has exactly 2n+ 4m− 3 more moves.

Meanwhile, R must play in the following way:

• If he is currently at a vertex v of G, he must move to an intermediate vertex along
some edge of G. If he chooses to delete v, then he is forced to keep going along the
edge. If he chooses instead to delete the next intermediate vertex, then he is forced to
go back to v (call these back-and-forth moves a “stall”).

• If he ever chooses to go on an edge to a vertex that has already been deleted, then he
has at most 5 more moves before he is stuck. Therefore, he will always choose to go
on an edge to a non-deleted vertex, which gives him at least 6 more moves.

• If he is entering a vertex v of G, then it is always optimal for him to delete the
intermediate vertex he came from (it is a dead end, so he has no reason to ever go back
to it).

12



Thus, if there is a Hamiltonian path, R can make at most the following moves.

• 6(n− 1) moves, for the actual edges on the path

• 2(deg v − 2) stalls at each vertex v ̸= s, e

This gives a total of

6(n− 1) +

(∑
v ̸=s,e

2(deg v − 2)

)
= 6n− 6 + 2(2m− 2)− 4(n− 2) = 2n+ 4m− 2.

Therefore, R will have more moves than L if and only if a Hamiltonian path exists, so we
have shown that the Hamiltonian path problem reduces to UPFV.

It is easy to see that the UPFV graph we constructed has no odd cycles, so it is bipartite.
This shows that UPFV is NP-hard on bipartite graphs.

Moreover, if G is planar with maximum degree 3, then so is the graph we constructed.
Since it is known that the Hamiltonian path problem is NP-hard even with this restriction,
UPFV is as well.

6 Directed Acyclic Graphs

We next consider partizan games on directed acyclic graphs (DAGs). Fraenkel and Si-
monson [7] showed that DPRV and DPRE are NP-hard on DAGs by reducing from the
vertex cover problem. We prove the same for the case of free deletion.

Theorem 12. DPFV is NP-Hard for DAGs.

Proof. Consider the problem of determining whether a vertex cover of size k exists in a given
undirected graph G on vertices v1, . . . , vn and m edges. We claim that it reduces to DPFV
on the following DAG. An example of a reduction from the vertex cover problem in Figure 3
to DPFV on a DAG is shown in Figure 4.

• A grid of vertices {ui,j}1≤i,j≤n such that there is a directed edge from uij to ui,j+1 for
all j < n, and there is a directed edge from ua,n to ub,1 for all a < b. Each row of this
grid represents a vertex of G.

• A set of m vertices e1, . . . , em, each representing an edge of G, where the vertex repre-
senting an edge vivj has an outgoing edge to both ui,j and uj,i.

• A path of delay vertices DLY1 → DLY2 → · · · → DLYnk, where DLYnk has an
outgoing edge to each of e1, . . . , em.

• A path of escape vertices ESC1 → ESC2 → · · · → ESCn2 , where there are outgoing
edges from each of e1, . . . , em to ESC1.

• A vertex x, which is L’s starting point, whose only edge is an outgoing edge to DLY1.

13



v1

v2

v3

Figure 3: Example of vertex cover problem with n = 3, m = 2, k = 1

• A vertex y, which is R’s starting point, whose only edges are outgoing edges to each
of u1,1, u2,1, . . . , un,1.

u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

e1

e2

DLY3

DLY2

DLY1

L

ESC1

ESC2

. . .

ESC9

R

Figure 4: Reduction of vertex cover problem in Figure 3 to DPFV on a DAG

After nk turns, player L will be at DLYnk, while player R will have fully traversed some k
rows of the grid.

• If a vertex cover of size k exists, then R could have deleted e1, . . . , em by this time,
thus trapping player L.

• Otherwise, at least one of e1, . . . , em remains, so L can go to it and reach the escape
path. This gives her at least n2 moves, which is more than R has.

Thus, determining the winner of this game is equivalent to finding a vertex cover, so DPFV
is NP-Hard for DAGs.

The game DPFE seems easier to analyze, because each deletion does not change the
structure of the graph as much. However, a similar construction shows that it, too, is
NP-hard for DAGs.

14



Theorem 13. DPFE is NP-Hard for DAGs.

Proof. Again, consider the problem of determining whether a vertex cover of size k exists in
a given undirected graph G on vertices v1, . . . , vn and m edges. We construct a DPFE game
on a DAG which is equivalent to this problem. An example of reducing the vertex cover
problem in Figure 3 to DPFE on a DAG is shown in Figure 5.

• A grid of vertices {ui,j}1≤i≤n,1≤j≤n2 such that there is a directed edge from uij to ui,j+1

for all j < n, and there is a directed edge from ua,n2 to ub,1 for all a < b. Again, each
row of this grid represents a vertex of G.

• A set of m vertices e1, . . . , em, each representing an edge of G, where the vertex repre-
senting an edge vivj has an outgoing edge to both ui,n2−j and uj,n2−i.

• A path of delay vertices DLY1 → DLY2 → · · · → DLYn2k+m, where DLYn2k+m has an
outgoing edge to each of e1, . . . , em.

• A set of m mirror vertices e′1, . . . , e
′
m, each representing an edge, where the vertex

representing an edge vivj has an incoming edge from both ui,n2−j and uj,n2−i. Also,
e′1 has an incoming edge from each of u1,n2 , . . . , un,n2 , and there is a path e′1 → e′2 →
· · · → e′m.

• For each e′i, two disjoint escape paths of 2n3 vertices starting at e′i.

• A vertex x, which is L’s starting point, whose only edge is an outgoing edge to DLY1.

• A vertex y, which is R’s starting point, whose only edges are outgoing edges to each
of u1,1, . . . , un,1.

Suppose a vertex cover of size k exists. Let S be the set of ui,j such that vi is in the vertex
cover, and let S ′ be the set of ui,j such that vi is not in the vertex cover. Then, R should do
the following:

• Traverse S, and delete the respective edges from ei.

• Traverse the path e′1 → e′2 → · · · → e′m, and at each step, delete the edge (if any) from
S ′ to e′i.

This takes n2k +m turns, at which point L will be at DLYn2k+m. Now L will move to some
ei, from which she may be able to move to a vertex in S ′. When she is in S ′, she cannot move
to any e′i, and if she ever moves to the first vertex of a row in S, she will be immediately
stuck. In particular, L has at most n3 more moves, which is less than R has from his escape
path.

On the other hand, suppose there is no vertex cover of size k. We have two cases.

15



u1,1 u1,6 u1,7 u1,8 u1,9

u2,1 u2,6 u2,7 u2,8 u2,9

u3,1 u3,6 u3,7 u3,8 u3,9

. . .

. . .

. . .

DLY11

...

DLY1

L

R

e1

e2

e′1

e′2

. . .

. . .

. . .

. . .

54 escape vertices

Figure 5: Reduction of vertex cover problem in Figure 3 to DPFE on a DAG

• If R traverses k or fewer rows before moving to e′1, he will reach e′m in at most n2k+m
turns and be forced to take one of the escape paths. Meanwhile, L will reach DLYn2k+m

after n2k +m turns. Since R did not make a vertex cover, L will now have a path to
some e′i, from which she can take an escape path. Since L starts her escape path after
R starts his, she wins.

• If R traverses k rows and then chooses to enter another row, then after n2k+m turns,
he will still be traversing the row (since m < n2). Meanwhile, L can simply go to an
edge that connects to near the end of the row, blocking R’s path. Now R has at most
n2 moves left, while L can eventually reach an escape path, so L wins.

We have shown that R wins if and only if there is a vertex cover of size k in the original
graph, so we are done.

As suggested by Fraenkel and Simonson [7], we fully classify DPFV and DPFE on com-
plete DAGs.

Theorem 14. Suppose L and R are playing DPFV on a complete DAG on n vertices, labeled
1, 2, . . . , n in topological order. If A starts on i and B starts on j, then A wins if and only if
one of the following is true:

• i ≡ n− 1 (mod 3) and j = i− 1

16



• i ≡ n− 1 (mod 3) and j ≥ i+ 2

• i ̸≡ n− 1 (mod 3) and j > i.

Proof. Induct on n; the base cases n = 2, 3, 4 can be checked manually.
We have four cases:

• If both i and j are in {n− 2, n− 1, n}, then the condition can be checked manually.

• If i is in {n− 2, n− 1, n} but j isn’t, then

– If L starts by moving to n− 1, then R moves to n and wins.

– If L starts by moving to n, then R moves to either n− 2 or n− 1 (it is impossible
that both have been deleted) and wins.

• If j is {n− 2, n− 1, n} but i isn’t, then

– If j = n− 2, then L moves to n and deletes n− 1 to win.

– If j = n− 1, then L moves to n and deletes n− 2 to win.

– If j = n, then L moves to n− 1 and wins.

• If neither i nor j is in {n − 2, n − 1, n}, then the player who wins the game on n − 3
vertices should adopt the same strategy as for that game. This will force the other
player to move to {n− 2, n− 1, n}, from which they will lose according to the analysis
in the previous case.

All these cases are consistent with our claimed set of positions, so we are done.

Theorem 15. Suppose L and R are playing DPFE on a complete DAG on n vertices, labeled
1, 2, . . . , n in topological order. If L starts on i and R starts on j, then L wins if and only if
one of the following is true:

• i ≡ n (mod 2) and j = i+ 1

• j ≥ i+ 2

Proof. Induct on n; the base cases n = 2, 3 can be checked manually.
We have four cases:

• If both i and j are in {n− 1, n}, then L doesn’t have any moves, so R wins.

• If i is in {n−1, n} but j isn’t, then L has at most one more move, while R has at least
one more move (to n− 1). So R wins.

• If j is in {n−1, n} but i isn’t, then L moves to whichever of n−1 and n is unoccupied.
Now R has no moves, so L wins.

17



• If neither i nor j is in {n− 1, n}, then the player who wins the game on n− 2 vertices
should adopt the same strategy as for that game. This will force the other player to
move to one of n− 1 and n, from which they will lose according to the analysis in the
previous case.

All these cases are consistent with our claimed set of positions, as desired.

7 Stacks

Finally, we study stacking variants. Without a height rule, when stack size is bounded
by a constant, Fox and Geissler [4] showed that we can simply replace each vertex of height
k with k vertices of height 1, and the game now has no stacks.

When stack size is unbounded, this cannot be done, because it takes exponential time
in the number of bits necessary to represent stack sizes to create the required number of
vertices. However, we show that for UIRV∞ on trees, the decision problem is still solvable
in polynomial time.

We need the following lemma.

Lemma 16. Consider the game UIRV∞ without a height rule. For any given tree, there
exists a positive integer threshold c such that

• If the starting vertex’s height is replaced by any integer at least c, then the game is a
P -position.

• If the starting vertex’s height is replaced by any integer less than c, then the game is
an N-position.

Proof. Root the tree at the starting vertex, and induct from the bottom layer upwards. For
the base cases (leaves), just take c = 0.

Now consider an arbitrary subtree. Let h1, . . . , hd denote the actual heights of the children
of the root, and let c1, . . . , cd be their respective thresholds given by the inductive hypothesis.
We claim that the following threshold works:

c = 1 +
d∑

i=1

max(hi − ci + 1, 0).

Suppose the root’s height is replaced by h ≥ c. Player R should use the following strategy:

• If L moved from the root to a child with hi < ci, player R can play the game as if it
is the subtree of the child to win.

• If L moved from the root to a child with hi ≥ ci, player R can move to the root.

18



Since the second scenario can occur at most c − 1 times, the first scenario must occur
eventually, so R will win.

On the other hand, suppose the root’s height is replaced by h < c. Suppose that whenever
player L is in a subtree of a child of the root, she follows the same strategy as he would
if only that subtree existed. Then, we may assume WLOG that all moves to or from the
root happened at the beginning of the game; all other moves can be viewed as part of games
within subtrees of children of the root. Because of the height condition on the root, L can
ensure that whenever she is on the root, she moves to a child with hi ≥ ci. Thus L will
always end up in a subtree where she wins.

Theorem 17. The Geography variant UIRV∞ without a height rule is in the complexity
class P for trees.

Proof. Find the threshold value of the root by recursing upwards as described in the above
proof. Each subtree calculation takesO(n) time, for a total ofO(n2) time. Once the threshold
is known, just compare it to the actual height of the root to determine the outcome of the
game.

8 Conclusion

We resolved a long-standing open problem by showing that Kotzig’s Nim is eventually
periodic. Moreover, we furthered the analysis of computational complexities of variants of
Geography with free deletion, edge deletion, and stacks. We found that even in graphs with
very restricted structures, like bipartite graphs, planar graphs, and directed acyclic graphs,
determining the winner of some Geography variants is computationally difficult.

Many problems remain open. In particular, the complexities of UIR∞ with a height
rule and UIR3, as posed by Fox and Geissler [4], are still unknown. Furthermore, any of
the variants we studied can be analyzed on even more narrow classes of graphs such as grid
graphs and k-partite graphs for k > 2.

9 Acknowledgements

Thank you to my mentor Joshua Messing for suggesting directions for research, evaluating
my proofs, and providing advice on writing this paper. Thank you to head math coordinator
Tanya Khovanova and my tutor Peter Gaydarov for giving feedback on my work throughout
the research process. Thank you to Professor David Jerison and my TAs Alec DeWulf and
Allen Lin for making suggestions to improve my final paper and presentation. Thanks also
to RSI, CEE, and MIT for organizing and funding this invaluable experience.

19



References

[1] A. S. Fraenkel, A. Jaffray, A. Kotzig, and G. Sabidussi. Modular nim. Theoretical
computer science, 143(2):319–333, 1995.

[2] X. L. Tan and M. D. Ward. On kotzig’s nim. Integers, 14:G6, 2014.

[3] H. L. Bodlaender. Complexity of path-forming games. Theoretical Computer Science,
110(1):215–245, 1993.

[4] N. Fox and C. Geissler. On the computational complexities of various geography variants.
CoRR, abs/2108.09367, 2021.

[5] D. Lichtenstein and M. Sipser. Go is polynomial-space hard. J. ACM, 27(2):393–401,
apr 1980.

[6] A. S. Fraenkel, E. R. Scheinerman, and D. Ullman. Undirected edge geography. Theo-
retical Computer Science, 112(2):371–381, 1993.

[7] A. Fraenkel and S. Simonson. Geography. Theor. Comput. Sci., 110:197–214, 03 1993.

20


	Introduction
	Definitions and Methods
	Periodicity of Kotzig's Nim
	Free Edge Deletion Variants
	UPFV On Bipartite Graphs
	Directed Acyclic Graphs
	Stacks
	Conclusion
	Acknowledgements

