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Abstract

In this paper, we investigate the one-shot capacity C1,1, and the adaptive one-shot capacity
C1,A in transmitting classical information through quantum channels. Capacity C1,A allows
for an adaptive strategy where the receiver can make non-disruptive measurements and
adapt using the results of previous measurements. Shor proves that C1,1 = C1,A for two pure
states, and conjectures that the same is true for mixed states. We show that the accessible
information is concave in the probability of the states, then conclude C1,1 = C1,A for any
two mixed states in arbitrary dimensions, proving the conjecture.

Summary

In quantum computing, parties communicate through a quantum channel by sending par-
ticles exhibiting certain quantum states. The receiver measures these states to distinguish
them and thus uncover information. The task of uncovering the most information possible
is, however, non-trivial because quantum states are formed as a superposition of different
outcomes, but only one outcome can be measured. Thus, clever protocols need to be im-
plemented for the maximal amount of information gain, which also varies under different
constraints. One set of constraints is to measure each state individually, and another is to
have an additional ability to measure in small steps where the later steps are dependent on
the results of previous measurements – essentially adapting along the way. Shor proves that
for two pure states, in which case one knows for sure the state one’s holding, the adapting
option does not improve one’s information gain, and he conjectures that for any two arbitrary
mixed states, the same is true. In this paper, we prove Shor’s conjecture, now a theorem.



1 Introduction

Early in the 20th century, quantum mechanics was introduced as a revolutionary field of

physics describing nature at the atomic and subatomic scale. Although controversial at first,

it has now become a staple of modern physics. Mathematicians, scientists, and engineers

have developed the field of quantum computing using the seemingly absurd properties in

quantum mechanics, such as the uncertainty principle, the phenomenon of entanglement,

and superfluidity, to their advantage.

Classical computers have revolutionized the way we solve problems. Much evidence such

as Simon’s problem and Shor’s algorithm [1] for fast factoring has suggested that quan-

tum computers can solve some problems exponentially or almost exponentially faster than

classical computers. It is also believed that quantum computers can do a far better job

at simulating quantum systems due to their similar nature in design. Drug development,

for instance, can benefit profoundly from the progress in quantum computing, as well as

cybersecurity, financial modeling, batteries, and the list goes on [2].

A qubit, analogous to a classical bit, is the unit of communication in quantum informa-

tion. Instead of 0 and 1 for a classical bit, a qubit can be thought of as a superposition of the

two states. However, one cannot simply acquire the exact number for the mixture of 0 and 1

through measurement. To be specific, if one puts a qubit through a measurement consisting

of basis 0 and 1, one would only get either 0 or 1. Thus, it is apparent that to have efficient

communication, clever protocols and strategies of encodings and measurements are needed

to be implemented for the sender and the receiver.

Two capacities have been studied extensively: the one-shot capacity C1,1 and the joint

measurement capacity C1,∞. For the former, when Alice sends a large number of signals

through a quantum channel to Bob, Bob can only measure each qubit individually. This one-

shot strategy used can be thought of as the most basic one since it does not take into account
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any entanglement or correlation between states. The joint measurement is just the opposite,

where Bob can measure multiple qubits at once, taking into account the entanglement, thus

acquiring more information.

A capacity that lies between the two in terms of information gain is the adaptive one-

shot capacity, C1,A. Using an adaptive one-shot strategy, Bob is still not allowed to measure

multiple qubits at once just like for the non-adaptive one-shot measurement; however, he

can make a measurement on a qubit that doesn’t destroy all the information, then perform

another measurement on a different qubit, and depending on the result, return to the first

qubit to make more measurements.

It is clear that the capacity of the adaptive strategy lies between the two, but whether

the bounds are tight is an interesting question. Answering such a question will give us more

insight into the most efficient quantum communications strategy within the limitations of

the senders and receivers in various situations. It has been proven for two pure states that

the adaptive strategy won’t make a difference compared to the one-shot strategy [3].

In this paper, we prove the same claim is true for two mixed states, which is the conjecture

2 at the end of [3].

Question 1. The capacity C1,1 = C1,A for two mixed states in arbitrary dimensions.

We introduce the basics of quantum computing including quantum states, measurements,

accessible information, and capacities of different strategies in Section 2. Then in Section 3,

we prove a lemma regarding the concavity of the accessible information, which is essential to

the generalization. In Section 4, we briefly summarize the argument in [3] to use the lemma

in Section 3 to finish the proof of the conjecture, now a theorem.
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2 Preliminaries

2.1 Quantum States

We describe a qubit mathematically using a quantum state. There are two types of

quantum states: pure states and mixed states. A pure state is defined as

|ψ〉 = α |0〉+ β |1〉 , (1)

where α and β are two complex numbers. This linear combination tells us that if we were to

measure such |ψ〉 in the basis of |0〉 and |1〉, we would have |α|2 probability of getting 0 and

|β|2 probability of getting 1. It is easy to see that

|α|2 + |β|2 = 1

However, a state is only pure iff the state can be written in the form in Equation 1.

Luckily, we can describe a mixed state using a mixture of pure states. The density matrix

for the mixed state ρ is defined as

ρ ≡
∑
i

pi |ψi〉 〈ψi| ,

where
∑

i pi = 1, meaning ρ has pi probability of behaving as |ψi〉.

2.2 Measurement

We observe and distinguish quantum states by making measurements. We call a gen-

eralized measurement POVM, positive operator valued measure. A POVM measurement is

described by a set of measurement operators Mi, where i indicates the outcomes of the mea-

surement. In our context, measurement operators such as M can be treated as matrices,

while quantum states can be treated as row (〈ψ|) and column (|ψ〉) vectors. An outcome i

occurs for state |ψ〉 with probability

p(i) = 〈ψ|M †
iMi |ψ〉 .

It is clear that the probability for all measurement outcomes must add up to 1 for all
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state |ψ〉. Thus, we have

1 =
∑
i

p(i) = 〈ψ|M †
iMi |ψ〉 ,

which gives us the completeness relation∑
i

M †
iMi = I.

After coming out of measurement i, a state |ψ〉 becomes

Mi |ψ〉√
〈ψ|M †

iMi |ψ〉
.

A special and important class of measurement is the von Neumann measurement, also

called projective measurement. Such measurements satisfy the property that Mi are orthog-

onal projector: MiMj = δi,jMi, where delta is the indicator function.

2.3 Accessible Information

The accessible information is the amount of classical information we can get from one

use of a quantum channel using a given ensemble of quantum states with optimal mea-

surement. It is the expected difference between the Shannon entropy before and after such

measurement. Shannon entropy measures the amount of uncertainty in a given probability

distribution. For example, a probability distribution of {1
3
, 2
3
} is less uncertain than a prob-

ability distribution {1
2
, 1
2
}. The Shannon entropy is defined as

H(X) ≡ H(p1, ..., pn) ≡ −
∑
i

pi log pi.

where X is a random variable with a discrete probability distribution over n events with

probabilities p1, p2, ..., pn. Let Yi be a random variable with probability distribution con-

ditioned on the outcome i. If we get measurement outcome i, we have information gain

H(X)−H(X|Yi), and thus our accessible information is
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Iacc =
∑
i

p(i)(H(X)−H(X|Yi)) = H(X)−
∑
i

p(i)H(X|Yi),

where
∑

i p(i)H(X|Yi) is the expected value of the Shannon entropy after the measurement.

2.4 Capacities

Capacity is the maximum accessible information over all possible protocols given some

restrictions. Here we discuss three types of capacities:

1. The C1,1 capacity for a quantum channel is the one-shot quantum capacity, where only

tensor product inputs and tensor product measurements are allowed.

2. The C1,A capacity is a classical capacity where each state is measured in stages that

only partially reduce the quantum state, and the measurement stages followed adapt

to the results of previous ones.

3. The C1,∞ capacity allows both tensor product inputs and joint measurements are al-

lowed, resulting in the most information gain.

It is not difficult to see that C1,1 ≤ C1,A ≤ C1,∞. We seek to investigate the tightness of the

lower bound later in the paper.

2.5 Notations

We use the following notations.

Definition 2.1. For a random variable X, E[X] is the expected value of X.

Definition 2.2. For the entropy of a probability distribution among 2 items, we define

H2(p) ≡ H(p, 1− p) = −p log p− (1− p) log(1− p).
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Definition 2.3. Let P (A) be the probability that event A occurs, and P (A|B) be the

probability of event A occurs given that event B has occurred.

3 Concavity of Accessible Information for Two Mixed

States

Theorem 3.1. For two mixed states in arbitrary dimensions C1,A = C1,1.

To prove this theorem, we first need to show that the following lemma is true.

Lemma 3.2. For two mixed states, the accessible information is concave in the probability

of the state.

Proof. In an n–dimensional space, define two mixed states ρ1 and ρ2, where

ρ1 =
∑
i

pi |vi〉 〈vi| ,

ρ2 =
∑
i

qi |wi〉 〈wi| ,

where 〈vi|vj〉 = 〈wi|wj〉 = δij,
∑

i pi =
∑

i qi = 1, and all pi, qi ≥ 0.

Note that if we originally have non-orthonormal |v′i〉 or |w′i〉, using the Spectral theorem,

we can break down the original basis to some |vi〉 and |wi〉 of orthonormal basis. We know

that all above conditions are still satisfied, since

1 = tr(ρ) = tr

(∑
i

pi |vi〉 〈vi|

)
= tr

(∑
i

pi 〈vi|vi〉

)
=
∑
i

pi.

Assume Alice sends ρ1 with probability r, and thus ρ2 with probability 1 − r. We want

to prove that the accessible information is convex in r.

Let the optimal POVM measurement have measurement operators

Mi = |ψi〉 〈ψi| ,

where 1 ≤ i ≤ n.
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We can write each Mi as a rank-1 projector, because otherwise, we haven’t reduced the

mixed state to a known pure state, thus leaving extra information undiscovered. Therefore,

to extract all the information possible, we must have Mi in the form of the outer product of

|ψi〉 and 〈ψi|.

We define ai to be the probability of getting result i from ρ1, and similarly we define bi

to be the probability of getting result i from ρ2. Thus, we have

ai ≡ P (i|ρ1) = tr(Miρ1)

= tr

(
|ψi〉 〈ψi|

∑
i

pi |vi〉 〈vi|

)

= tr

(∑
i

pi 〈ψi|vi〉 〈vi|ψi〉

)

=
∑
j

pj| 〈ψi|vj〉 |2.

Analogously, we have

bi ≡ P (i|ρ2) =
∑
j

qj| 〈ψi|wj〉 |2.

We know that ai and bi are real numbers such that
∑

i ai =
∑

i bi = 1 and ai, bi > 0.

Now we look at the accessible information. We know that Iacc = H2(r) − E[H ′], where

H ′ denotes the Shannon entropy after the measurement. The expected value of the Shannon

entropy after the measurement is

E[H ′] =
∑
i

P (i)H2(P (ρ1|i)). (2)

We first try to compute the value of P (i). We have two cases, when Alice sends ρ1 and

when Alice sends ρ2. We can simply add the probability of each getting a measurement

outcome i together. Then we have

P (i) = P (i|ρ1)P (ρ1) + P (i|ρ2)P (ρ2)

= air + bi(1− r).

We shift our attention to the Shannon entropy of a given measurement outcome. To get

P (ρ1|i), because we know the value of P (i|ρ1), P (ρ1), and P (i), we can make use of Bayes’
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Rule, which relates the probability of an event to the condition related to the event.

By plugging into Bayes’ Rule with A as Alice sending ρ1 and B as getting measurement

result i, we get that

P (ρ1|i) =
P (i|ρ1)P (ρ1)

P (i)

=
air

air + bi(1− r)
.

Thus, we now have

H2(P (ρ1|i)) = H2

(
air

air + bi(1− r)

)
.

Plugging into Equation 2, our expected value of entropy after the measurement becomes

E[H ′] =
n−1∑
i=1

((ai · r + bi (1− r))H2

(
air

air + bi (1− r)

)
.

Our accessible information is Iacc = H(r)− E[H]. To prove that this quantity is concave

in the probability in the probability of states, we want to show that the second derivative of

Iacc is always negative. Our second derivative is

d2Iacc
dr2

= C ·

(
1

(r − 1)r
+
∑
i

aibi
(r − 1)r(bi(r − 1)− air)

)
,

where C is some positive constant. Because we only care about the sign of the derivative,

we can drop C. Now we want to show that

1

(r − 1)r
+
∑
i

aibi
(r − 1)r(bi(1− r)− air)

< 0.

If r = 0 or 1, Alice sends one state to Bob with certainty, in which case there is no informa-

tion to be gained. Because r is a probability, then we have that 0 < r < 1, and 1
(r−1)r < 0.

Factoring out 1
(r−1)r , we want to show
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1 +
∑
i

aibi
(bi(r − 1)− air)

> 0,

which is equivalent to

1−
∑
i

aibi
(bi(1− r) + air)

> 0.

Notice that the denominator is a weighted arithmetic average of ai and bi, and the

numerator is the product of ai and bi. Since r, 1 − r, ai, and bi are real and positive, and

(1− r) + r = 1, we use the weighted form of AM-GM to get that

bi(1− r) + air ≥ b1−ri ari ,

where the equality holds only when ai = bi for all i. Thus, we know that

1−
∑
i

aibi
(bi(1− r) + air)

≥ 1−
∑
i

aibi

b1−ri ari

= 1−
∑
i

a1−ri bri .

Now we can use AM-GM again, giving us

a1−ri bri ≤ (1− r)ai + rbi,

where the equality holds only when ai = bi for all i. This means

1−
∑
i

a1−ri bri ≥ 1−
∑
i

((1− r)ai + rbi)

= 1−

(
(1− r)

∑
i

ai + r
∑
i

bi

)

= 1− (1− r + r)

= 0.

Thus, we’ve proven that d2Iacc
dr2
≤ 0, where the equality only holds when for all i, ai = bi,

in which case the two mixed states are identical or completely indistinguishable in our poorly

chosen measurement. In either case, no information can be communicated between Alice and

Bob.
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4 Completing the Proof with Shor’s Argument

Now we provide a qualitative and brief summary of Shor’s proof in Section 6 of [3]

completing the step from the concavity of accessible information for two mixed states to the

statement that C1,1 = C1,A.

For a signal S sent to Bob, there are two cases where Bob’s understanding of the prob-

ability distribution of S in ρ1 and ρ2 change: a measurement on S, which we call a direct

measurement step or a measurement on some other signal S ′ that correlates to the state S,

which we call a refinement step. It is important to notice that additional information for S is

gained in the direct measurement, but not for the refinement. This is because the change in

probability distribution in S is solely caused by the correlation between the two signals, and

such correlation exists independent of our measurement strategy, so the information gain is

already accounted for in S ′. Now consider the last time where we perform a refinement step,

meaning we only perform direct measurements after this, which is always possible since our

strategy is finite.

After the last refinement step, the weighted average of the new probability distributions

is the probability before the refinement step. Because of our Lemma 3.2 on the concavity of

the Iacc, the weighted average of the accessible information gain of the measurement steps

after the refinement would be thus no greater than the accessible information gain if the

refinement step is replaced by a direct measurement step. Then, we can induct this process

by replacing the last refinement step with a measurement step until no refinement step is ever

used. This would give us a strategy with no less than the capacity of our original C1,A, and

because we know all the steps are measurement steps, the strategy collapses to our desired

C1,1.

From here we finish our proof and conclude that C1,1 = C1,A for two mixed states in

arbitrary dimensions.

10



5 Conclusion

In this paper, we first proved that for any two mixed states, the accessible information is

concave. Then by using this lemma, we conclude that the one-shot capacity C1,1 is equal to

the adaptive one-shot capacity C1,A for any mixed states in arbitrary dimensions, extending

Shor’s initial result for pure states. It tells us that when distinguishing any two states,

the adaptive strategy in measuring each state individually doesn’t help us in getting more

information.

For future exploration, we can try to prove other conjectures in [3], where Shor proposed

another probable sufficient condition for C1,1 = C1,A, which states the following

Conjecture 2 (Shor). For an arbitrary set of pure states in two dimensions, C1,1 = C1,A,

and in fact, this capacity is achievable by using as signal states in the ensemble with inner

product closest to 0.

It might also be true that

Conjecture 3. For an arbitrary set of mixed states in two dimensions, C1,1 = C1,A.

Another more general and probably more difficult task would be to find all the necessary

conditions for C1,1 = C1,A. Additionally, we can also investigate the tightness of the bound

between C1,A and C1,∞.
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