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Abstract

In quantum mechanics, the symmetries of a physical system are closely related to the
conservation laws within that system. As a result, a mathematical understanding of a sys-
tem’s symmetries allows us to accurately model and describe that system, and therefore we
want to find methods of mathematically representing these symmetries. Past works by Eu-
gene Wigner and Daniel Freed have proved methods of representing symmetries as complex
matrices and complex projective spaces, respectively. This project closely follows the work of
Daniel Freed, but with respect to quaternionic projective spaces. It is known that symmetries
in physical systems preserve empirical quantities. In both Freed’s and our project, we are in-
terested in the symmetries that preserve transition probabilities, which are the probabilities
that a state of the system would evolve to other states.

Our work focuses on quaternionic projective spaces, and proving the quaternionic analog
to Freed’s work. We give the quaternionic analog to the Fubini-Study metric on complex
projective space, as well as describe its associated distance function. We prove the relation
between this distance function and transition probability, demonstrating that symmetries in
quantum mechanics can be represented by isometries in quaternionic projective space.

Summary

In quantum mechanics we study physical systems, which are simply a portion of the
physical universe we choose to analyse. In our studies, we frequently find that certain prop-
erties within a system are preserved even under some transformations, which change the
state of a physical system. Naturally, these transformations that act on a physical system,
but preserves certain properties, are closely related to conservation laws, which describe a
measurable property that remains unchanged despite a change in the system’s states. There-
fore, to help us solve problems within, and create models for physical systems, we want to
mathematically describe these property-preserving transformations that act on the system.

This paper presents a method of representing these property-preserving transformations,
known as symmetries, using the concept of quaternionic projective spaces in mathematics.
Roughly speaking, a quaternionic projective space is an object with points on its surface
that represent lines. In this paper, we show that functions between points on a quaternionic
projective space that preserve distance can be used to represent the property-preserving
symmetries in a physical system.



1 Introduction

In quantum mechanics, the study of symmetries is useful to gain a better understandings

of physical systems. Symmetries are transformations that act on a physical system while pre-

serving the time-evolution of the system. The features invariant under these transformations

are closely related to the quantities we observe as being conserved in a physical system. Prob-

lem solving within a physical system frequently relies on conservation laws, and therefore is

dependent on the study of symmetries [1]. To assist us in generating models that accurately

represent a physical system, we look for ways to describe symmetries mathematically.

In 1931, Eugene Wigner [2] published his major contribution: a method to mathemati-

cally represent symmetries. Wigner proved a relation between the symmetries in quantum

mechanics and complex matrices in mathematics, known as Wigner’s theorem. Following

Wigner’s work, in 2012, Daniel Freed published an indirect proof of Wigner’s theorem, in

which he provided a mathematical representation of symmetries through complex projective

spaces [3].

In their proofs, both Wigner and Freed provided a method of describing symmetries of

physical systems using complex numbers. Their work can be generalised to the quaternions,

a number system that extends the complex numbers, and Valentine Bargamnn proved the

quaternionic analog to Wigner’s theorem in 1964 [4]. To our best knowledge, an analog to

Freed’s corollary, Corollary 1, has not been proven for the quaternions. This project aims

to demonstrate that symmetries in a physical system can be represented using quaternionic

projective space. The proof in this paper follows a similar argument in Freed’s paper. The

Fubini-Study metric [5, 6] defines distance on complex projective space, and in this project

we give the quaternionic analog to the Fubini-Study metric, through defining a map from

quaternionic projective space to a sphere, and inducing the Fubini-Study metric from the

sphere metric. Using the definition of distance on quaternionic projective space that follows
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from that metric, we prove a relation between distance and transition probability, a quantity

preserved by symmetries. This relation allows us to show that symmetries preserving tran-

sition probability are equivalent to functions on quaternionic projective space that preserve

distance, or the isometries on quaternionic projective space.

2 Past Works

In this section, we recall the separate contributions of Eugene Wigner and Daniel Freed

in establishing methods of describing quantum symmetries.

Definition 1 (Rays). The rays of a complex Hilbert space H are the equivalence classes of

vectors v ∈ H with v 6= 0 and the relation ∼ given by v ∼ w when v = λw for nonzero

λ ∈ C.

Definition 2 (Symmetry transformation). A ray transformation T : R→ R′ is a symmetry

transformation if

TΨ · TΦ = Ψ · Φ, ∀Ψ,Φ ∈ H

where Ψ · Φ is the norm of their inner product in H, and preserves transition probabilities.

The following theorem due to Wigner [2], establishes the correspondence between sym-

metries and unitary and antiunitary transformations.

Theorem 1 (E. Wigner, 1931). Let H and K be Hilbert spaces and Ψ denote a ray in Hilbert

space. If T : Ψ ⊂ H 7→ T (Ψ) ⊂ K is a symmetry transformation, there exists a unitary or

antiunitary transformation V : H → K which is compatible with T if dimH ≥ 2.

Definition 3 (Compatible). We say that a transformation V of Hilbert space is compatible

with a transformation T of ray space if ∀Ψ, VΨ ∈ TΨ.
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Definition 4 (PH). A complex projective space of dimension n, denoted by CPn, is the

set of vector lines in the complex vector space Cn+1. PH is defined as a finite or infinite

dimensional complex projective space.

Definition 5 (Fubini-Study metric). Let a point Z on PH be described by homogeneous

coordinates [1 : z1 · ·· : zn] for zi ∈ C and z0 6= 0. The Fubini-Study metric [5, 6], describing

the length of an infinitesimal line segment in some zi and zj direction, is given by

ds2 = gij̄dz
idz̄j

for integers 1 ≤ i, j ≤ n, and gij̄ defined as follows for i = j and i 6= j

gīi =
1 + |Z|2 − |zi|2

(1 + |Z|2)2
, gij̄ =

−z̄izj
(1 + |Z|2)2

.

Definition 6 (Fubini-Study distance function). We define the Fubini-Study distance func-

tion d : PH × PH → R as the distance function associated with the Fubini-Study metric.

The Fubini-Study distance function gives the minimum length of all curves connecting two

points in PH, where curve lengths are determined by the Fubini-Study metric.

We also recall the following corollary due to Freed [3], relating the group of symmetries,

Autqtm(PH), with the group of distance-preserving bijections in finite or infinite dimensional

complex projective space.

Corollary 1 (D. Freed, 2012). Autqtm(PH) is the group of isometries of PH with the Fubini-

Study distance function.

3 Preliminaries

Definition 7 (Quaternions). The set of quaternions is a real division algebra that contains

the complex numbers as a subring. A quaternion q can be expressed in the form a+bi+cj+dk,
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where a, b, c, d ∈ R and i, j, k are quaternion units with multiplication between them defined

in the chart below (Figure 1). The conjugate of q is denoted by q̄ and given by a−bi−cj−dk.

Figure 1: Quaternionic multiplication [7]

We denote the group of quaternions by H, and the quaternionic vector space of dimn

by Hn. The quaternionic projective space of dimn, denoted by HPn, is defined as the set of

vector lines in Hn+1 following the description of CPn in definition 4.

Definition 8 (Homogeneous Coordinates). The homogeneous coordinates are a coordinate

system on HPn, such that [q0 : q1 : ··· : qn] ∈ HPn represents all vectors λ(q0, q1, ···, qn) ∈ Hn+1

for nonzero λ ∈ H.

Definition 9 (Quaternionic Inner Product). The quaternionic inner product 〈·, ·〉 is given

by

〈q1, q2〉 = q1q̄2, q1, q2 ∈ H.

We see that the quaternionic inner product satisfies the relation 〈qi, qi〉 = |qi|2, where |qi|

denotes the Euclidean norm of qi.

Definition 10 (SU(2)). The special unitary group of degree 2, SU(2), is the group of 2× 2

complex unitary matrices with determinant 1.

A well known property of the unit quaternions and SU(2) is given in the following

proposition.
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Proposition 2. The set of unit quaternions λ ∈ H satisfying |λ| = 1 is isomorphic to the

special unitary group SU(2).

4 Fubini-Study Metric for Quaternions

In the case of studying complex projective space CPn, we find that the Fubini-Study

metric is the optimal metric, as the resulting shape of CPn is symmetric. More specifically,

the Fubini-Study metric is, up to proportionality or scaling, the unique Riemannian metric

on CPn that is invariant under an action in the unitary group U(n+ 1).

Definition 11 (U(n)). The group of n× n unitary matrices, denoted by U(n), is the group

of n× n complex matrices satisfying the property

uūT = ūTu = I, ∀u ∈ U(n),

where I is the n× n identity matrix, and ūT is the conjugate transpose of u.

In particular, this invariance of the Fubini-Study metric under U(n+1) allows the preser-

vation of the scalar product, which results in the symmetric shape of CPn. In this section,

we define and give the analog to the Fubini-Study metric for HPn.

Definition 12 (Riemannian manifold). A Riemannian manifold is a real, smooth mani-

fold equipped with a metric g, and is denoted by (M, g). The Riemannian manifold is also

equipped with an inner product, and a tangent space at each point p ∈ (M, g).

For some Riemannian manifold (M1, g1) with an isometric group action G, we let π :

(M1, g1) → (M2, g2) be the projection map, where (M2, g2) is the quotient space M/G

equipped with the g2. The metric g2 is the naturally induced metric via the mapping of

tangent vectors from M1 to M2. We require this mapping to be orthogonal to the fiber.

Definition 13 (Fiber). From the definition of π : (M1, g1) → (M2, g2), the fiber of a point
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u ∈ M2 is defined to be it’s preimage in M1, namely the set of points in M1 described by

π−1(u) in M1.

We formally give the definition of g2, the induced metric, as follows.

Definition 14 (Induced Metric). The induced metric g2 is given by

g2(x, y) = g1(x̃, ỹ),

where x, y are tangent vectors in in TYM1, the tangent space at point Y ∈ M1, and

x̃, ỹ ∈ TXM2, the tangent space at point X ∈ M2. We say π(Y ) = X, and we require

x̃ ⊥ TYM1(π−1(x)), ỹ ⊥ TYM1(π−1(x)).

Definition 15 (Riemannian Submersion). Given a group G that acts on isometrically on a

Riemannian manifold (M, g) the projection pi : M → N to the quotient space N = M/G

equipped with the quotient metric is a Riemannian submersion.

The following lemma relating the metrics on Riemannian manifolds is taken from a

statement in the notes of Fabrice Baudoin [8].

Lemma 3 (F.Baudoin, 2014). Recall the map π : (M1, g1) → (M2, g2) under an isometry

group G. For a point Y ∈ M1, if TYM1(π−1(x)) is the vertical space at X, denoted VX ,

and HX is the horizontal space at X, the orthogonal complement to VX , then we have the

orthogonal decomposition, TYM1 = HX ⊕ VX , and the corresponding splitting of the metric

g1 = gH + gV .

The result from lemma 3 shows that our definition of the induced metric in definition 14,

under the orthogonal mapping is well-defined. Therefore, we get the following proposition

due to lemma 3.

Proposition 4. The value of g2(x, y) for tangent vectors x, y ∈ TX , is invariant under

different choices for Y satisfying π(Y ) = X.
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Definition 16 (Base Point). For a choice of Y satisfying π(Y ) = X, where π sends tangent

vectors in TX to tangent vectors in TY , we say Y is the base point of X.

We see that when we set (M1, g1) to be (S4n+3, gS), where gS denotes the standard metric

on the sphere S4n+3, (M2, g2) to be (HPn, gfs), where gfs denotes the Fubini-Study metric

on HPn, and the isometric group G on (M1, g1) to be SU(2), gfs is the induced metric from

the metric on S4n+3.

Here, we give the Fubini-Study metric for HPn induced from pulling back the metric gS

on the sphere S4n+3.

Definition 17 (Pull-Back Metric). If we have a map ρ : Hn → S4n+3, and a metric gs on

S4n+3, the pull-back metric is the metric on Hn satisfying (f ?gs)(u, v) = gs(f(u), f(v)), for

u, v ∈ HPn.

The map ρ : Hn → S4n+3 sends a point [z1, · · ·, zn] on Hn to a corresponding point

(1, w1, · · ·, wn) on the sphere. Each coordinate zi is sent to the coordinate w1 of the form

wi =
zi√

1 + |Z|2
,

where |Z| = z1z̄1 + z2z̄2 + · · · + znz̄n. The pull-back metric from this map ρ gives the

Fubini-Study metric on HPn written in terms of homogeneous coordinates.

Due to the non-commutative nature of quaternionic multiplication, we compute the

Fubini-Study metric for quaternions with respect to the real numbers to obtain a more

precise definition of the metric.

In order to simplify the computation of the Fubini-Study metric with respect to real

numbers, we condense the computation using matrix and quaternionic shorthand. We have

2 interpretations of a quaternion in the context of real numbers. The first interpretation

is to write a quaternion as a 4 by 1 column vector, with a, b, c, d ∈ R representing the

4 components of the quaternions. Alternatively, we can considers a quaternion as a linear

transformation on a quaternionic vector in Hn+1 via left multiplication. A quaternion of the
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form a+ bi+ cj + dk can be expressed by the following 4× 4 real matrix:



a −b −c −d

b a −d c

c d a −b

d −c b a


.

As follows from this real representation of the quaternion, in the computation of the

Fubini-Study metric, we associate all quaternions terms zi with its corresponding 4×4 matrix.

We also associate all dzi and dz̄j terms as quaternionic vectors, expressed by da, db, dc, dd

for real variables a, b, c, d. The products zidzi and ziz̄j follow the standard rules for matrix

multiplication. The product dzidz̄i is formally defined as their quaternionic inner product,

〈dzi, dz̄i〉.

Recalling our map ρ, the Fubini-Study metric written in homogeneous coordinates is the

pull-back metric of S4n+3. The sphere metric gs is given by

gs =
n∑

i=0

dwidw̄i.

From the relation of wi and zi due to ρ, we see that

dwi =
n∑

j=1

dwi

dzj
dzj, dw̄i =

n∑
j=1

dw̄i

dzj
dzj.

We obtain the pull-back metric for Hn, or the Fubini-Study metric written in homo-

geneous coordinates via a substitution of equations. The Fubini-Study metric for HPn, ex-

panded out, is given as follows

gfs =
n∑

i=1

dzidz̄i
1 + |Z|2

− 1

2

n∑
i=1

zi

(
n∑

j=1

z̄jdzj
(1 + |Z|2)2

)
dz̄i

− 1

2

n∑
i=1

dzi

(
n∑

j=1

dz̄jzj
(1 + |Z|2)2

)
z̄i +

1

4

n∑
i=1

zi

(
n∑

j,k=1

z̄jdz̄jdz̄kzk
(1 + |Z|2)3

)
z̄i.
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Definition 18 (Distance on Riemannian Manifolds). The distance between two points A,B

on a Riemannian manifold (M, g) is given by

dg(A,B) = min

∫ 1

0

√
g(γ′(t), γ′(t))dt,

where γ(t) : [0, 1] → M is a parametrization of a smooth path connecting points A,B such

that γ(0) = A and γ(1) = B.

Following definition 18, the distance function between points u, v on HPn is given from

its the Fubini-Study metric through the following relation

d(u, v) = min

∫ 1

0

√
gfs(γ′(t), γ′(t))dt,

where γ(t) describes a path connecting u, v such that γ(0) = u and γ(1) = v.

5 Distance and Transition Probability

Let d : HPn×HPn → R≥0 be the distance function associated to the Fubini-Study Metric

for quaternions. Since the metric on S4n+3 is a complete metric, the Fubini-Study metric on

HPn is also complete. Therefore, we define d(u, v) to be the minimum length of all smooth

paths connecting points u, v ∈ HPn [9]. We define d̃ : HPn × HPn → R≥0 as the rescaled

distance function for HPn such that the Fubini-Study metric on HP1 is equal to the metric

on S4. We explicitly give d̃ later through Lemma 6.

Definition 19 (Transition Probability). Let p : HPn×HPn → [0, 1] be a function that acts

on states L1,L2 ∈ HPn. The transition probability is given by p(L1,L2): if ψi ∈ Li is a unit

norm vector in Li, then

p(L1,L2) = |〈ψ1, ψ2〉|2.

A result from Freed’s paper [3] states the relation between transition probability and

the Fubini-Study distance function in the case of complex projective space. We state this

relation for the quaternions in the following theorem.
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Theorem 5. The rescaled distance function d̃ and transition probability p are related by

cos2

(
d̃

2

)
= p.

For the proof of this theorem, we first give some definitions and statements related to

the proof of theorem 5. we define a map f : HPn\HPn−1 → S4n+3, such that f sends point

u = [z0 : z1 : · · · : zn] belonging to a subset of HPn to a point on S4n+3 denoted by λu′,

where λ ∈ SU(2) and u′ = (w0, w1, · · ·, wn), and wi = zi
1+|Z|22 .

The following result, relating the metrics of HPn and S4 is taken from a book [10] by

Francis Burstall, Franz Pedit, Dirk Ferus, Katrin Leschke, and Ulrich Pinkall.

Lemma 6 (F. Burstall et al., 2000). The metric on HP1 is and the metric on S4 are related

by

gHP1 =
1

2
gS4 .

The following proposition is a well-known fact about the relation between the Euclidean

inner product and the quaternionic inner product.

Proposition 7. The Euclidean inner product of two quaternions q1,q2, is equal to the real

components of their quaternionic inner product, denoted by Re〈q1, q2〉.

Proof. Let q1 = a + bi + cj + dk and q2 = a′ + b′i + c′j + d′k, for real values of a, b, c, d

and a′, b′, c′, d′. We have from definition 9, Re〈q1, q2〉 = Re(q1q̄2). Expanding Re(q1q̄2), we

see that the real components are given by aa′ + bb′ + cc′ + dd′, which is precisely equal to

E(q1, q2).

Lemma 8. For optimal choices of λ, µ ∈ SU(2), we can maximise Re〈λu′, µv′〉 such that it

is equal to |〈u′, v′〉|.

Proof. Let µ be the identity in SU(2). Then we choose a λ that maximises Re〈λu′, v′〉. We

have Re〈λu′, v′〉 = Re(λ〈u′, v′〉), and 〈u′, v′〉 can be written in the form of rα for r ∈ R≥0
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and α ∈ SU(2). When we set λ as ᾱ, we eliminate the imaginary components of the inner

product, and Re〈λu′, v′〉 = Re(r). It is simple to verify that r is equal to |〈u′, v′〉|.

Proof of Theorem 5. Let us recall the map f : HPn\HPn−1 → S4n+3, which sends points

u, v ∈ HPn\HPn−1 to λu′, µv′ ∈ S4n+3. Under the map f , λ, µ are unit elements of H that

we identify with elements of SU(2), and from here we use the notation λ, µ ∈ SU(2). We

know S4n+3 induces the Fubini-Study metric on HPn, such that gfs(u, v) = gsλu
′, µv′.

Then we say that the images of points u, v on HPn are the sets of points on S4n+3 of the

form λu′ and µv′ respectively, for λ, µ ∈ SU(2). We see that f sends a point u to a particular

element of its image, determined by a particular choice of λ.

We rescale the Fubini-Study metric with respect to the result of Lemma 6, so that the

Fubini-Study metric on HP1 is identifiable with the standard metric on S4. Under this

rescaling of gfs, we get the distance function on HPn rescaled by a factor of 2, and given by

d̃(u, v) = 2 min dS(λu′, µv′),

where dS denotes the distance function on S4n+3.

It is known that the value of dS(λu′, µv′) is the arc length between points λu′, µv′ on

the sphere, and is given by arccos (E(λu′, µv′)), where E(λu′, µv′) is the Euclidean in-

ner product of quaternionic vectors λu′, µv′. It follows from proposition 7, that d̃(u, v) is

equal to the minimum value of 2 arccos (Re〈λu′, µv′〉) for different choices of λ, µ ∈ SU(2).

Hence, we choose optimal values for λ, µ ∈ SU(2) that maximize Re〈λu′, µv′〉. It is clear

that Re〈λu′, µv′〉 ≤ |〈u′, v′〉|, and due to Lemma 8, we can choose values of λ, µ such that

Re〈λu′, µv′〉 = |〈u′, v′〉|.

Therefore, we get d̃(u, v) = 2 arccos (|〈u′, v′〉|). We see that this relation is equivalent to

the relation in theorem 5.
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6 Conclusion and Future Directions

This work gives the Fubini-Study metric, using matrix and quaternionic shorthand, for

HPn with respect to real numbers. We also show that the distance function on HPn associated

with the Fubini-Study metric is aligned with the notion of distance in Riemannian geometry.

Finally, this work relates the distance function on HPn and transition probability, demon-

strating that functions in HPn that preserve distance also preserve transition probabilities.

Therefore, isometries in HPn can be used to represent symmetries in physical systems. In

the future, one can study the relation between these isometries in HPn and the the compact

symplectic matrix group SP(n), to indirectly prove Bargmann’s work [4] on the quaternionic

analog to Wigner’s Theorem.
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