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Abstract

This paper considers unions of circles over finite fields. We generalize an approach used
by Oberlin, where in place of unions of lines we consider unions of circles. First we prove that
there exists a dimension m, for which a generalized version of the so-called Wolff axiom holds
for m-planes and m-spheres without any structural restrictions on the initial set of circles.
Then we use this fact to make a construction of higher-dimensional spheres and planes in
order to estimate the number of pairs of points on the circles from the initial set. We manage

to obtain the bounds P | & |F | 32d+β
2
+ 1

2 and |P | & |F | 32d+β
2
+ 3

4 when the set of circles satisfies
the d-Wolff axiom. Here |P | is the number of pairs of points on the circles, |F | is the size of
the field and d ∈ Z and −1 < β ≤ 2 are such that the number of circles in the initial set is
|F |3(d−1)+β.

Summary

The goal of this project is to estimate the number of pairs of points in a set of circles over
a finite field. We do that by finding an m-sphere which is intersected by many circles, which
are not contained in it. We then use the fact that each such circle, along with the initial
m-sphere, defines an unique (m + 1)-sphere. After we divide the intersecting circles into
(m+ 1)-spheres we estimate the number of pairs in each one of them in order to generalize
the results. That way we obtain information about the number of pairs of points without
any structural restrictions, using the fact that they appear on their own.



1 Introduction

The original Kakeya problem, proposed in 1917 [1], asks the following:

Kakeya’s Problem. What is the least area required to continuously and fully rotate a needle

of unit length in the plane?

(a) Deltoid
(b) Besicovitch set

Figure 1: Examples of solutions to the Kakeya problem

A circle with unit diameter is one possible solution to the Kakeya Problem, but it is

not the optimal one. The deltoid from Figure 1a for example has half its area and is still a

solution. Besicovitch [1] showed that a solution of arbitrarily small area can be constructed.

Figure 1b depicts one set constructed with his method. In 1999 Wolff [2] proposed a version

of the problem for finite fields. Instead of area, we are trying to find the least number of

points to form a line in every direction in a finite vector space. The problem became known

as the Finite field Kakeya Conjecture. With & we will denote an inequality up to a constant1.

1Throughout the whole paper we can consider q that is substantially bigger than any multiplicative
constants independent of q.
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Conjecture 1.1 (Wolff, 1999). Let Fnq be an n-dimensional finite space over Fq. If L is a

set of lines in Fnq and L contains a line in every direction, then the number of points on the

lines is & qn, the constant depends only on n.

There the author introduces an axiom, which captures some of the fundamental properties

of a Kakeya set:

Axiom (Wolff, 1999). Let Fpr be a finite field with pr elements and let Fnpr be an n-dimensional

vector space over Fpr , where p is a prime and r is a positive integer. A collection L of lines

in Fnpr is said to obey the Wolff axiom if for each 2 ≤ k ≤ n− 1, every (k + 1)-dimensional

affine subspace V ⊂ Fnpr contains at most prk lines in L.

In 2009 Dvir [3] proved Conjecture 1.1 using the polynomial method. His approach is

compared to previous methods and approaches by Larry Guth in Polynomial Methods in

Combinatorics [4]. Previous to the polynomial method approach, Wolff’s axiom [2] played a

major role in acquiring lower bounds for the finite field Kakeya problem (Conjecture 1.1).

In [5] Oberlin considered unions of lines in Fn without any structural hypothesis, as opposed

to the finite field Kakeya problem. He provided a tight bound for the number of points on

the lines. We are interested in a similar approach to bounding the number of points in a set

of circles in Fn.

In Section 2 we provide the definitions and preliminary results needed in the latter parts

of the paper. We define the notion of a k-sphere in Fnq as well as adapt the concepts stem

and hairbrush used by Wolff in [2] in the context of circles instead of lines. We also introduce

the definition of a page, which is closely related to the previous two.

In Section 3 the main approach of the paper is thoroughly explained. First we introduce

variations of the bush and hairbrush methods adapted for circles. Then we prove the existence

of a dimension m, for which the m-dimensional Wolff axiom is not satisfied for a set of m-

spheres and planes, but holds for higher-dimensional objects. It is important to notice that
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that is true even without any structural restrictions on the initial set of circles. Finally we

construct a generalized hairbrush, using an m-sphere or an m-plane for the stem. The pages

of this hairbrush are (m+ 1)-planes and (m+ 1)-spheres. Using the generalized Wolff axiom

we apply induction to the pages in order to obtain a bound for the number of pairs of points

on the circles. We prove the main result of the paper, namely that for a set of circles C with

cardinality |F |3(d−1)+β for some integer d and −1 < β ≤ 2 we have & |F | 32d+β+1
2 pairs of

points. Furthermore if C satisfies the d-Wolff axiom we have & |F | 32d+β
2
+ 3

4 pairs of points.

In Section 4 we summarize the results of the paper, namely Theorem 3.7. Furthermore

we show the achieved improvement over the results obtained from the Bush argument.

In Section 5 we discuss possible directions for future development of the project. We

propose a conjecture providing a tight bound for the number of pairs given the size of the

set of circles.

2 Preliminaries

In this section we introduce definitions, results and ideas integral for the later sections of

the paper. We begin with the definition of an m-sphere inside Fm+1
q .

Definition 2.1. An m-sphere Sr(c) inside the finite field Fm+1
q with center c = (c1, . . . , cm)

and radius r ∈ F is the set of solutions to the equation

(x1 − c1)2 + · · ·+ (xm+1 − cm+1)
2 = r.

A k-sphere for k < m in Fm+1
q can be obtained by intersecting an m-sphere with a

(k + 1)-plane. This is the only (k + 1)-plane containing the k-sphere. We note that we call

an 1-sphere a circle and that a 0-sphere is a pair of points in Fnq , since it is the intersection

of a circle and a line in Fnq .

The following lemma approximates the number of k-planes inside an m-plane, the set of

which is known as a Grassmannian (for proof see Tarizadeh [6] and Oberlin [5]).
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Lemma 2.1. For integers 0 ≤ k ≤ d let the set of k-dimensional subspaces of Fdq be Gr(d, k)

and the set of k-planes in Fdq be Gr′(d, k). Then

|G(d, k)| = (qn − 1)(qn − q) . . . (qn − qd−1)
(qd − 1)(qd − q) . . . (qd − qd−1)

and

|Gr′(d, k)| ≈ q(k+1)(d−k).

We use the fact that in the previous lemma |G(d, k)| ≈ qk(d−k).

In the next lemma we estimate the number of k-spheres inside an m-sphere.

Lemma 2.2. The number of k-spheres inside an m-sphere in Fnq is ≈ q(k+2)(m−k).

Proof. A k-sphere is contained in an unique (k + 1)-plane and an m-sphere in an unique

(m+ 1)-plane respectively. Intersecting a (k + 1)-plane in the (m+ 1)-plane containing the

m-sphere with the said m-sphere, we get an unique k-sphere. Therefore what we want is the

number of (k + 1)-planes inside an (m+ 1)-plane. By Lemma 2.1 it is ≈ q(k+2)(m−k).

The following result is known as the Lang-Weil [7] bound. Let V be a variety over the

finite field Fnq of dimension r and degree d. We will denote this with V = Vn,r,d. We give an

estimate for the number of rational points N = #V (Fq) of V over.

Theorem 2.3 (Hasse-Weil). There exists a constant A(n, d, r) depending only on n, d, r such

that for any variety V = Vn,d,r defined over a finite field Fnq we have

|N − qr| ≤ δqr−
1
2 + A(n, d, r)qr−1,

where δ = (d− 1)(d− 2).

Applying the result to a sphere as previously defined gives us an estimate for the number

of its rational points. A k-sphere is defined by a variety of dimension k and therefore the

number of rational points on it is ≈ qk.
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We now provide definitions for a stem, hairbrush and a page, which are integral to the

construction considered in the paper. These definitions are inspired by the construction

proposed by Oberlin for lines and planes in [5] and Wolff’s approach in [2]. The intuitive

meaning behind the names comes from their usage in the calssical problem by Wolff for lines

but we maintain for consistency with [5, 2].

Definition 2.2. Let C be a set of circles in Fnq and P be the set of points on those circles.

For an m-sphere or an m-plane S ⊂ P we define a hairbrush with a stem S as:

{c ∈ C : |c ∩ S| = 2, c 6⊂ S}.

In other words this is the collection of circles that intersect the stem in precisely 2 points.

Furthermore, we call each (m+ 1)-plane or (m+ 1)-sphere, containing the stem, a page.

We note that if the stem is an m-plane all pages are (m+ 1)-planes and if the stem is an

m-sphere all pages except one are (m+ 1)-spheres. In this case the (m+ 1)-plane containing

the m-sphere is also a page.

3 Circles and spheres in finite fields

In this section we generalize some of the results in [5] with respect to circles and m-spheres

instead of lines and m-planes.

Lemma 3.1. Suppose we have circles c1, . . . , cm in Fnq and m <
q

2
. Then∣∣∣∣∣

m⋃
j=1

cj

∣∣∣∣∣ ≥ qm

2
.

Proof. Each two circles intersect in at most 2 points. Suppose we add the circles one by one.

Then ∣∣∣∣∣
m⋃
j=1

cj

∣∣∣∣∣ ≥ q + (q − 2) + · · ·+ (q − 2(m− 1)) = qm− (m− 1)m ≥ qm

2
.
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The following is a modified version of the Bush argument adapted for circles (see [4]).

Lemma 3.2 (Bush argument). Suppose we have circles c1, . . . , cM in Fnq . Let P = {p : p ∈

cj} for some j and Q = {(x, y) : (x, y) ⊂ ci} for some i. Then

|P | & qM
1
3

and

|Q| & q2M
1
2 .

Proof. Let Pcj = {p : p ∈ cj}. From Theorem 2.3 |Pcj | ≈ q for each j = 1, . . . ,M . The

number of doubles (Ci, q) : q ∈ Q is Mq2 since each circle generates ≈ q2 doubles. Therefore

there exists a pair q ∈ Q, which participates in at least
Mq2

|Q|
doubles and therefore circles.

Two circles may intersect in at most two points and each circle contains ≈ q points. Noting

that |Q| ≤ |P |2 we get |P | & Mq3

|P |2
, hence |P | & M

1
3 q. Similarly |Q| & Mq4

|Q|
, hence |Q| &

M
1
2 q2.

One of the fundamental tools used in this paper is the hairbrush argument. The idea is

similar to that used by Oberlin in [5], but we apply it with respect to circles instead of lines.

Theorem 3.3 (Hairbrush argument). Suppose we have circles c1, · · · , cM in Fnq and there

are ≤ q

2
circles in each 2-plane and 2-sphere. Then∣∣∣∣∣

M⋃
j=1

Cj

∣∣∣∣∣ & q5/3M1/3.

Proof. First we will find a hairbrush with
q4M

2|P |2
circles. Let C = {ci} and µ(x, y) be the

number of circles, containing (x, y) ∈ P 2. We know that∑
x,y

µ(x, y) ≈ q2M. (1)

Consider the quadruples (ci, cj, x, y) ∈ C × C ×P ×P , where (x, y) = ci ∩ cj. The number of

triples is
∑

p µ(p)2, but from Jensen and (1) we get
∑

p µ(p)2 ≥ q4M2

|P |2
. Therefore there exists

a stem ci ∈ C with a hairbrush of size at least
q4M

2|P |2
. Consider all 2-spheres containing ci and
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the unique 2-plane containing ci. Each circle from the hairbrush is in exactly one 2-sphere

or in the said 2-plane. For every page s we denote with H(s) the number of circles from the

hairbrush in s. We know that
∑

s |H(s)| ≥ q4M

2|P |2
.

From the problem statement we know that |H(s)| ≤ q

2
for each s and therefore we can apply

Lemma 3.1 for each page. We get that the number of points in s\ci & |H(s)|q. Therefore

|P | ≥
∑

s |H(s)|q & q5M

|P |2
. This implies |P | & q5/3M1/3.

Now we introduce a generalized version of the Wolff axiom, concerning higher-dimensional

objects.

Axiom. Consider a set of circles C in the finite field Fnq . We say that C satisfies the m-Wolff

axiom for some m ≤ n if for every m-sphere or m-plane S

|{c ∈ C :⊂ S}| ≤ q3(m−1)−1.

The following lemma shows that even without any structural hypothesis we can find a

dimension m, for which a significantly large (with respect to the original set of circles) subset

of the initial set circles is concentrated into a number of m-spheres and m-planes. From this

set of m-spheres and m-planes we later choose the stem of our modified hairbrush.

Lemma 3.4. Let C be a collection of k-spheres in Fnq and suppose d is a nonnegative integer

with k ≤ d ≤ n. There is an integer m with k ≤ m ≤ d, a collection of m-spheres and

m-planes S1, . . . , SN , and collections of k-spheres CS1 , . . . , CSN such that

a) CSi ∩ CSj = ∅ for all distinct i and j;

b) CSi ⊂ C for all i and c ⊂ Si for c ∈ CSi;
c) if m > k then |CSi | ≥ q(k+2)(m−k)−1;

d) if m = k then |CSi | = 1;

e) letting Cm = ∪iCSi, we have |Cm| ≥ 2−(d−m+1)|C|;
f) if m < m′ ≤ d then for every m′-sphere or m′-plane S the m′-Wolff axiom holds.

Proof. We set C∗,d+1 = C and go through the following procedure starting with m = d:
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1. Set U to be the union of all collections of k-spheres CS1 , . . . , CSj we have chosen at this

point (possibly 0);

2. If there is an m-sphere or an m-plane Sj+1, for which

|{c ∈ C∗,m+1\U : c ⊂ Sj+1}| > q(k+2)(m−k)−1,

we set

CSj+1
= {c ∈ C∗,m+1\U : c ⊂ Sj+1};

3. Repeat steps one and two until no longer possible;

4. Set C∗,m = C∗,m+1\U .

If |C∗,m| < |C
∗,m+1|
2

then e) is satisfied and we are done. Otherwise we continue with m− 1.

If we reach m = k let S1, . . . , SN be an enumeration of C∗,k+1. We set CSi = {Si} and we are

done.

The next lemma allows us to divide the set of circles in a hairbrush. If the stem is an

m-plane, the pages will be (m + 1)-planes. If the stem is an m-sphere, all the pages except

one will be (m+1)-spheres, but we must also consider the (m+1)-plane containing the stem

as a possible page.

Lemma 3.5. Suppose that S is an m-sphere or an m-plane in Fnq and consider a hairbrush

with stem S. Then we can find pages Q1, . . . , QN , such that for all pairs p and circles c

satisfying

a) p ⊂ c,

b) |c ∩ S| = 2,

c) p ∩ S = ∅

we have c ⊂ Ti for some i and p 6⊂ Ti′ for i′ 6= i.
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Proof. First let S be an m-sphere. We will use the fact that an m-sphere is defined by m+ 1

points if they do not lie in the same (m + 1)-plane. Two (m + 1)-spheres intersect in at

most an m-sphere. Therefore if we only consider two (m+ 1)-spheres Qi and Qj, containing

S, we have Qi ∩ Qj = S. Furthermore for each circle c such that |c ∩ S| = 2 there exists

an unique (m + 1)-sphere or an (m + 1)-plane Qi such that S ⊂ Qi and c ⊂ Qi. Consider

m + 1 points on S and one point x ∈ S\c. We know that x exists since |c ∩ S| = 2 and c

is defined by 3 points. If c is in the same (m + 1)-plane as S, then we will consider it as a

page instead of an (m+ 1)-sphere. These m+ 2 points define an unique page since they are

not in the same (m + 1)-plane. Therefore we can find the Qi’s as desired. Now if S is an

m-plane we go through the same operation, but all the pages are going to be (m+ 1)-planes.

an (m+ 1)-plane is defined by (m+ 2)-points and we have |c ∩ S| = 2 for each c. Therefore

each circle lies in an unique page.

The next lemma provides us with a simple tool to estimate the number of rational points

on a collection ofm-spheres andm-planes, given a restriction on the number ofm-dimensional

objects.

Lemma 3.6. Suppose that C is a collection of m-spheres and m-planes(possibly only one of

them), P is a collection of (k − 1)-spheres such that for each c ∈ C

|{p ∈ P : p ⊂ c}| ≥M,

and

|C|q(k+1)(m−k) ≤M. (2)

Then

|P| & |C|M. (3)

Proof. For each c ∈ C, let Pc = {p ∈ P : p ∈ c}. We enumerate C = c1, . . . , c|C|. Then for
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each n ≤ |C|

|P| ≥
n∑
j=1

|Pcj | −
n∑
j=1

∑
j′<j

|Pcj ∩Pc′j
|

≥
n∑
j=1

M −
n∑
j=1

2K(j − 1)q(k+1)(m−k).

The second inequality holds because two m-spheres intersect at most in an (m − 1)-sphere

and each (m − 1)-sphere contains q(k+1)(m−k) (k − 1)-spheres. By (2) we can now choose

n ≈ |C|
2K

in order to obtain (3).

The next theorem is the main result of the paper. We use the previous lemmas and results

to find a lower bound for the number of pairs on a set of circles of fixed cardinality. If the

set of circles satisfies the generalized Wolff axiom, we provide an improved bound.

Theorem 3.7. Suppose d ≥ 1 is an integer, 0 < γ and λ ≤ 1. Let −1 ≤ β ≤ 2 and C is a

collection of circles in Fnq . Suppose that

|C| ≥ γq3(d−1)+β

and P is a collection of pairs of points in Fnq satisfying

|{p ∈ P : p ∈ c}| ≥ λq2

for every c ∈ C. Then we have for some K depending on d, γ, λ,

|P | > Kq
3
2
d+β

2
+ 1

2 .

If the d-Wolff axiom is satisfied we have

|P | > Kq
3
2
d+β

2
+ 3

4 .

Proof. We are going to do the proof by induction on d.

For the base case when d = 1 we apply Lemma 3.6 with m = 1, k = 1. We select a subset

of C with size min(λ, γ)qβ. The M from Lemma 3.6 in this case is λq2. We know that

|{p ∈ P : p ∈ c}| ≥ λq2 from the proposition statement.

After applying Lemma 3.4 to C, we obtain m-spheres and m-planes S1, . . . , SN . Note that if

C satisfies the d-Wolff axiom respectively, then we must have m < d.
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Case 1: m = d. We directly apply the Bush argument(Lemma 3.2) to the set of circles.

It has size |C| = q3(d−1)+β and therefore we get

|P | & q
3
2
d+β

2
+ 1

2 ,

as we wanted.

Case 2: m < d. First we will construct a set of lines and points using a ”popularity”

argument. We fix a constant C, which is to be determined later. Let

P# = {p ∈ P : |{c ∈ C : p ∈ c}|} & Cq
3d
2
+β

2
− 7

4

and

C# = {c ∈ C |{p ∈ P# : p ∈ c}| & 1

4
λq2}.

Letting Cm = ∪jCSj we then have either

|P | ≥

1

2
λq2|Cm|

Cq
3
2
d+β

2
− 7

4

(4)

or

|C#| ≥ 1

8
|Cm|. (5)

If (4) is satisfied then we are done because the right hand side is greater than q
3
2
d+β

2
+ 3

4 . Now

suppose (4) does not hold. We will prove that then (5) is satisfied. Set

I = {(p, c) : p ∈ Pc, c ∈ Cm},

where Pc is a subset of the pairs in c and λq2 ≤ |Pc| < 2λq2. Now let

I ′ = {(p, c) : p ∈ Pc\P#, c ∈ Cm}.

Now we have

|I ′| < Cq
3d
2
+β

2
− 7

4 |P| < 1

2
|I|

because (4) does not hold. Therefore

|{(p, c) : p ∈ Pc ∩P#, c ∈ Cm}| ≥ 1

2
λq|Cm|.

Now since

|{(p, c) : p ∈ Pc ∩P#, c ∈ Cm\C#}| ≤ 1

4
λq|Cm|
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because of the definition of C#, we have

|{(p, c) : p ∈ Pc ∩P#, c ∈ C#}| ≥ 1

4
λq|Cm|.

This gives us (5) by the upper bound on |Pc|. After we acquire a ”big” set of ”populated”

lines and a stem (m-sphere or m-plane), we need to use induction for the circles on each

page. This is where the problem arises.

Let C#Rj = CRj ∩ L# and P#
Rj

= Rj ∩ P#,

C ′Rj = {c ∈ Cm : |c ∩Rj| = 2},

and

P ′Rj = P\Rj.

Fix j so that |C#Rj | & |CRj |. We use the case d′ = d− 1, β = 2 and the inductive hypothesis

to get

P#
Rj
> q

3
2
m.

For each pair p ∈ P#
Rj

, there are ≥ Cq
3
2
d+β

2
+c circles from Cm intersecting p. We have . qm−1

of those circles contained in Rj. Therefore

|{c ∈ C ′Rj : p ∈ c}| ≥ 1

2
q

3
2
d+β

2
− 7

4

for a large enough C. Therefore

|C ′Rj | & |P
#
Rj
|q

3
2
d+β

2
− 7

4

& q
3
2
d+ 3

2
m+β

2
− 7

4

We now divide Fnq into (m+ 1)-pages using Lemma 3.5, all of them containing Rj. Let

Ci = {c ∈ C ′Rj : c ⊂ Ti},

Pi = {p ∈ P ′Rj : p ∈ Ti}.
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Then

|P | ≥
∑
i

|Pi|

&
∑
i

|Ci|
q

3
2
m− 5

2

≥
|C ′Rj |
q

3
2
m− 5

2

& q
3
2
d+ b

2
+ 3

4 .

In the second inequality we used the fact that the circles in each page satisfy the m-Wolff.

Because of that we can find m′ ≤ m and β′ such that the number of circles in the page is

q3(m
′−1)+β′

and apply induction to estimate the number of pairs in the page.

4 Conclusion

We generalized the bush and hairbrush arguments, proposed by Wolff in [2] for lines,

with respect to circles. Then we recreated the construction of a generalized bush argument

Oberlin proposed in [5] again with respect to circles and k-spheres instead of lines and k-

planes as in the original paper. Let C be a set of circles in Fnq and let |C| = q3(d−1)+β for some

integer d and −1 < β ≤ 2 and P be the set of pairs of points on those circles. The bush

argument yields

|P | & q
3
2
d+β

2
+ 1

2 .

We obtained an improved bound for the number of pairs |P | when a d-Wolff axiom holds for

C, namely

|P | & q
3
2
d+β

2
+ 3

4 .
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5 Future Work

We propose the following conjecture for a tight bound for the number of pairs of points

in a set of circles.

Conjecture 5.1. Let C be a set of circles in Fnq and let |C| = q3(d−1)+β for some integer d

and −1 < β ≤ 2. Then if P is the set of pairs of points on those circles

|P | > Kq2d+max(0,β).

One case when the proposed boundary is tight is when β = 0. Then we can fill up a d-plane

with all possible circles which are exactly q3(d−1). Another possible area of further research

is expanding the type of objects to random varieties, including such of higher degrees. An

initial bound should be achievable with similar methods to ours, as we have not used neither

the center, nor the radius in an integral way. A problem may arise though with determining

the number of rational points on the intersections of more widely-defined varieties.
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