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Abstract

The problem of finding the largest π
2
-avoiding spherical set first appeared in the AMS

monthly journal in 1974. H. S. Witsenhausen asked readers to determine α(n) =
|U |
|Sn−1|

,

where U is the largest π/2-avoiding set in the n dimensional sphere Sn−1, that is, the largest
set on the sphere in n dimensions containing no orthogonal vectors. We look at a variation

of this problem: determine α(n, k) =
|U |
|Sn−1|

, where U is the largest set on the n dimensional

sphere Sn−1 that contains no k mutually orthogonal vectors. We prove a lower bound for
α(n, k) for any n ≥ 3. We specialize to the case n = k = 3 by considering spherical sets
that avoid three mutually orthogonal vectors in 3D in an attempt to determine α(3, 3) which
allows for more interesting configurations and visualization. We find the largest spherical
subset U not containing three mutually orthogonal vectors in the following cases: (i) U is
a large double cap; (ii) U is a centered band; or (iii) U is a wedge shape. We also find a
good lower bound for the maximal area in the case that U is the union of two double caps
and a centered band. The measures of these sets give a lower bound for α(3, 3). Additional
computational results suggest a configuration that gives an even better lower bound for
α(3, 3) as well as a possible relationship to the moving sofa problem.

Summary

The problem of determining the largest set in an n dimensional sphere that does not contain
perpendicular vectors has been an open question since 1974. In this paper, we explore a
variation of this problem. We find a lower bound for the largest spherical set in n dimensions
that does not contain k vectors perpendicular to each other. To gain insight about more
general cases, we study subsets of the usual unit sphere that does not contain three vectors
perpendicular to each other. We pay special attention to configurations including: (i) large
double caps, (ii) centered bands, (iii) wedge shapes, and (iv) combinations of two double caps
and a centered band. We found maximums for the first three configuration, and a good lower
bound for the maximal value attainable in the fourth configuration. The values from these
computations give a lower bound for the largest set in the unit sphere that does not contain
three mutually orthogonal vectors. Additional computational results suggest a candidate for
the largest set in the unit sphere that does not have three vectors perpendicular to each
other. This candidate reminds us of the moving sofa problem.



1 Introduction

In 1974, H. S. Witsenhausen posed the following problem in the American Mathematical

Society’s monthly journal [1]: Given a sphere in n dimensions, determine the largest subset

of points in the sphere that contains no orthogonal vectors; that is, given any two points in

the spherical set, the vectors drawn from the origin to the points do not form a right angle

[1]. Gil Kalai proposed in 2009 that the largest configuration is the double cap of geodesic

radius π
4

(Figure 1). This is called the double cap conjecture.

Figure 1: Double Cap of Geodesic Radius π
4

One approach to solving Witsenhausen’s problem is to construct upper bounds for the

largest surface area. The upper bound 1
n

Area(Sn−1) was first shown by Witsenhausen using

probabilistic methods [2]. Frankel and Wilson [3] improved this bound in 1981 using linear

algebraic methods and the Ray-Chaudeuri-Wilson theorem, but this improvement was only

a small step towards the conjectured value α(n) = (
√

2 + o(1))−n proposed by Kalai [4].

In this paper, we will begin by formalizing the double cap conjecture in Section 2. We then

look at variations of the problem in Section 3. We start by modifying Witsenhausen’s problem

and adding restrictions to divide the problem into cases. We shall discuss the following

variations: determine the largest set U ⊂ Sn−1 such that no k vectors in U are mutually

orthogonal for k ≤ n; in particular, determine the largest set U ⊂ S2 such that no three

vectors in U are mutually orthogonal. In Section 4, we show a lower bounds for k vectors

in n dimensions based on a configuration that works in any dimension. In Sections 5–7, we
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compare this lower bound to cases in three dimensions, offering specific results as well as

speculation backed by computations.

2 The double cap conjecture

Formalization of the conjecture

Let Sn−1 denote the unit sphere in n dimensional space, that is Sn−1 = {(x1, ..., xn) ∈

Rn : x21 + ...+ x2n = 1} . We study subsets of Sn−1 that have a π
2
-avoiding property, meaning

that for any two vectors drawn from the origin to points within the subset, the angle formed

between these two vectors is not π
2
. We call such a subset of Sn−1 a π

2
-avoiding subset, and

denote by U a generic π
2
-avoiding spherical subset. The π

2
-avoiding property means that

∀~x, ~y ∈ U we have ~x · ~y 6= 0. Note that ~x ⊥ ~y if and only if ~x ⊥ −~y. One such π
2
-avoiding

subset is in the open double cap which consists of a cap of geodesic radius π
4

and its antipodal

copy; that is

Un−1 := (x1, x2, ...xn) ∈ Sn−1 : |xn| >
1√
2
.

We define α(n) as

α(n) := sup
U⊂Sn−1 π

2
-avoiding

|U |
|Sn−1|

.

Proposition 2.1. The double cap Un−1 of geodesic radius π
4

is π
2
-avoiding.

Proof. Let ~x, ~y ∈ Un−1. If a vector is orthogonal to ~p, it will be orthogonal to −~p as well.

Therefore, without loss of generality, we assume xn, yn ≥ 0. For all ~x, ~y ∈ Un−1, we show that

the angle between them never reaches π
2
, hence Un−1 is π

2
-avoiding. Recall that the double

cap Un−1 is open, and has a geodesic radius of π
4
, thus the angle between the north pole

~N = (0, ..., 0, 1) and ~x is less than π
4
. Similarly, the angle between ~N and ~y is also < π

4
.

Therefore, the angle between ~x and ~y is < π
4

+ π
4

= π
2
. Hence, Un−1 is π

2
-avoiding.

Kalai conjectured that the double cap Un−1 is the solution to Witenhausen’s problem.
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Conjecture 2.1 (Double Cap Conjecture [2]). The largest measure of a Lebesgue measurable

subset of the unit sphere of Rn containing no pair of orthogonal vectors is attained by Un−1 ∈

Sn−1.

By Proposition 2.1, the Double Cap subset has the π
2
-avoiding property, therefore we

know that
|Un−1|
|Sn−1|

≤ α(n), and as a restatement of the Double Cap conjecture we predict

that
|Un−1|
|Sn−1|

= α(n).

Existing Upper Bounds

Attempts to find the largest π
2
-avoiding subset U led to finding various upper bounds.

The bound proposed by Witsenhausen in 1974 used probabilistic methods of proof, which

will be our approach as well (presented in detail in Section 6).

Proposition 2.2 (Witsenhausen’s Upper Bound [1]). Let U be any subset of Sn−1 such that

no two vectors in U are orthogonal. For a sphere in n-dimensional space,

α(n) =
|U |
|Sn−1|

≤ 1

n
for n ≥ 2.

Proof. For n ≥ 2, choose a rotation ρ around the origin at random. The π
2
-avoiding subset U

must not contain orthogonal vectors, therefore the number of standard orthonormal vectors

{~e1, ~e2, ..., ~en} contained in ρ(U) is at most 1. We define the indicator function χ~ei as

χ~ei =


0 ~ei /∈ ρ(U)

1 ~ei ∈ ρ(U).

We use expected value to derive the upper-bound. We know that

E(# of elements of {~e1, ~e2, ..., ~en} in ρ(U)) ≤ 1.

Therefore for each n ≥ 2

1 ≥ E(χ~e1∈ρ(U) + ...+ χ~en∈ρ(U)) = Pr(~e1 ∈ ρ(U)) + ...+ Pr(~en ∈ ρ(U))

=
|U |
|Sn−1|

+
|U |
|Sn−1|

+ ...+
|U |
|Sn−1|

= n
|U |
|Sn−1|

,
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or in other words
|U |
|Sn−1|

≤ 1
n
.

Proposition 2.3. For n = 2, Witsenhausen’s upper bound α ≤ 1
n

is sharp, and the double

cap conjecture is true.

Proof. The measure of a curve created by an open geodesic radius is the same as the measure

of the same curve created by a closed geodesic radius because single points have measure

zero. Considering a unit circle, two caps each of π
2

radians have a cumulative arc length of

π. The perimeter of the circle is 2π, therefore the two caps are
1

2
the perimeter of the circle,

and
1

2
≤ α(2). By Witsenhausen’s Upper Bound, in two dimensions, α(2) ≤ 1/2, therefore,

α(2) =
1

2
. Therefore, for n = 2 the upper bound is sharp, and the double cap conjecture is

true.

For n ≥ 3 Witsenhausen’s upper bound becomes less accurate. If the double cap subset

is the largest subset, then we have that α(3) = 1− 1√
2
≈ .2928, while the upper-bound only

states it must be less than 1/3 [2]. As n increases,
1

n α(n)
increases exponentially, assuming

that the double cap is the largest configuration. Additionally, smaller bounds than the one

supplied by Witsenhausen have also been found that are more accurate, notably that of

Frankl and Wilson which states α(n) ≤ (1 + o(1))(1.13)−n [4]. This bound is of similar

order to the conjectured value α(n) = (
√

2 + o(1))−n proposed by Kalai [2] and is a step

towards proving the conjecture. For the remainder of the paper, we focus on a variation of

the problem.

3 A Variant of Witsenhausen’s problem

As mentioned in section 1, the double cap configuration is a proposed solution to the

problem of determining the largest space on a n-dimensional sphere that has the property

of containing no two orthogonal vectors. We wish to determine the largest space on a sphere

4



that has the property of containing no k mutually orthogonal points for k ≤ n. We define

α(n, k) where k ≤ n to be the largest subset of points in the (n− 1)-sphere in n dimensions

which does not contain k mutually orthogonal vectors. For example, Witsenhausen’s problem

asks for the largest value for α(n, 2). The upper bound for α(n, k) is
k − 1

n
.

Remark. The upper-bound α(n, k) is
k − 1

n
can be proven by probabilistic methods similar

to the proof of Proposition 2.2.

A specialization in three dimensions

The variation of the conjecture concerns all dimensions making the problem hard to

visualize and find concrete examples to test. Therefore, we specialize to three dimensional

spheres in order to determine the largest set that cannot contain three mutually orthogonal

vectors, that is we wish to find α(3, 3). Because we are only looking at three dimensional

space, it is possible to visualize proposed configurations. Additionally because there are fewer

constraints, Witsenhausen’s original problem becomes simpler. To attempt to determine

α(3, 3), we impose restrictions to simplify the problem further and break it down into cases.

Note that we are asking what the largest subset U ⊂ S2 is, such that no three vectors in U

are mutually orthogonal. We analyze these cases in Section 5-8, but first we will begin by

finding a general lower bound that works in all dimensions.

4 A Lower Bound

In order to construct a lower bound, we must find a configuration that works in n

dimensions. Building upon the double cap conjecture, we know that a single double cap

cannot contain two orthogonal vectors, and so for a larger k, we can consider the addition

of more double caps to the space. We consider k − 1 of the original double caps U2 on the

sphere, rather than a single double cap, as shown in Figure 2 for three dimensions.
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Figure 2: Two double caps in two dimensions

Proposition 4.1. The disjoint union of k − 1 double caps Un−1 cannot contain k mutually

orthogonal vectors, that is, α(k, n) ≥ (k − 1)
|Un−1|
|Sn−1|

Proof. Assume to the contrary that the disjoint union of k − 1 double caps Un−1 contains

n mutually orthogonal vectors. By the pigeonhole principle, in order to fit k mutually

orthogonal vectors within k−1 double caps, one of the double caps must contain two vectors

orthogonal to each other. We know that Un−1 does not contain two vectors orthogonal to each

other, which contradicts our assumptions. Therefore, we conclude that a given configuration

of n− 1 double caps in n dimensions fulfills the necessary conditions. If they were to have a

larger geodesic radius, the combined geodesic diameters would add to over 2π, hence this is

the largest area that the caps can have without beginning to overlap. With a geodesic radius

of π
4

we know we can place the caps such that no two caps will intersect. Because we have

an empty intersection,

α(k, n) ≥
|
⋃k−1
j=1 U

j
n−1|

|Sn−1|
=

∑k−1
j=1 |U

j
n−1|

|Sn−1|
= (k − 1)

|Un−1|
|Sn−1|

.

5 Large Double Cap and Complementary Band

To find lower bounds α(3, 3), we start by imposing restrictions to simplify the problem.

Note that we are asking what the largest subset U ⊂ S2 is, such that no three vectors in U

are mutually orthogonal. Recall that we define α(n, k) where k ≤ n to be the largest volume
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we can have in n dimensions such that it will never contain k mutually orthogonal vectors.

We start by looking at two related cases with distinctive restrictions.

Large Double Cap

In the first case, we assume Udc must be a double cap subset of some height h. Under

these assumptions we find α(3, 3). Note that this double cap is not equivalent to U2, the

double cap from Conjecture 2.1.

Figure 3: Large Double Cap

Definition 5.1. Double caps are sets of points of the form

Udc(h) := {(x, y, z) ∈ S2 : |z| > 1− h},

where h is the height of the cap.

Proposition 5.1. The set Udc

(
1− 1√

3

)
⊂ S2 is the largest set of points forming a double

cap that does not contain three mutually orthogonal points. Moreover, we have α(3, 3) ≥

1− 1√
3
≈ 0.423.

Proof. Fix ~v = (a, b, c) ∈ Udc
(

1− 1√
3

)
. Then, |c| > 1√

3
and we assume c >

1√
3

without

loss of generality. We assume a = 0 without loss of generality because we can rotate S2

around the z axis. Let A be the intersection of the plane perpendicular to ~v and the upper

cap

A := {(a1, a2, a3) ∈ Udc(1− 1
√

3) : ~v · (a1, a2, a3) < 0}.
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In order to show that no three points in the cap are mutually orthogonal, it suffices to show

no two points in the arc A are orthogonal.

Figure 4: Visualization of points v, η1, η2, α, β and arc A

Let ~η1 = (x, y, 1/
√

3) and ~η2 = (−x, y, 1/
√

3) be points on the boundary of the cap

orthogonal to ~v. Let α, β ∈ A be arbitrary points, such that ∠αOβ < ∠η1Oη2 where O is

the origin (Figure 4). We seek to find whether ~η1 · ~η2 > 0 because if so, it implies that α and

β are not orthogonal.

We solve the following system of equations for x and y
~v · ~η1 = by + c√

3
= 0

x2 + y2 = 2
3
.

We get

~η1 · ~η2 =
2c2

3b2
− 1

3
=

2

3

(
−1 +

1

1− c2

)
− 1

3
,

which by the assumption c > 1√
3

implies ~η1 · ~η2 > 0. Therefore, because ∠αOβ < ∠η1Oη2,

we determine that α and β cannot be orthogonal to each other, thus the cap cannot contain

three mutually orthogonal vectors.

By setting h = 1 − 1
√

3, we find
|Udc(1− 1

√
3)|

|S2|
= 1 − 1

√
3 ≈ 0.423, and therefore

α(3, 3) ≥ 1− 1√
3
.

Centered Band

In the second case, we look at a centered band.

8



Figure 5: Centered Band

Definition 5.2. Centered Bands are sets of points of the form

Ub(h) := {(x, y, z) ∈ S2 : |z| < h},

where 2h is the height of the band.

Proposition 5.2. The set Uband(1
√

3) ⊂ S2 is the largest set of points forming a centered

band that does not contain three mutually orthogonal points. Moreover, we find that α(3, 3) ≥
1√
3
≈ 0.577.

Proof. Take the threshold case where one vector is on the top boundary and two vectors

are on the bottom boundary. Because mutually orthogonal vectors (
√
2√
3
, 0, 1√

3
), ( 1√

6
, 1√

2
,− 1√

3
)

and ( 1√
6
, 1√

2
,− 1√

3
) are in the band if h > 1√

3
, we know h ≤ 1√

3
. Next, we wish to show that

if Ub(h) contains three mutually orthogonal vectors, then h > 1/
√

3. Fix three mutually

orthogonal vectors ~p, ~q, ~r on the sphere. By taking −~p instead of ~p, −~q instead of ~q and −~r

instead of ~r if necessary, we assume without loss of generality that p1, q1, r1 ≥ 0. We are then

able to rotate the sphere such that two points are on the boundary of the band of height

z = −h and the third point is of on the plane of height z = h. If we solve for h, we find that

h = 1√
3
. The band is open, therefore if Ub(h) contains ~p, ~q and ~r, then h > 1/

√
3. Taking the

contrapositive, we know that if h ≤ 1/
√

3, then it cannot contain three mutually orthogonal

vectors.
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6 Wedges

In the next case, we assume U be a union of wedge shapes (Figure 6).

Definition 6.1. Wedges are sets of points of the form

Uγ = {(x, y, z) ∈ R3 :
1

x2 + y2
(x, y) ∈ γ},

such that
|γ|
S1

=
|Uγ|
S2

, where x and y not both 0 and γ ⊂ S1 ⊂ R2.

Figure 6: Arbitrary Wedges (top view)

It can be proven that the wedge shape will not contain three mutually orthogonal points,

and that α(3, 3) with these restrictions will never reach more than 1
2
.

An Upper Bound for the Wedges Case

Lemma 6.1 (Upper Bound for
|Uγ|
S2

). Given a wedge shaped set Uγ,
|Uγ|
S2
≤ 1

2
.

Proof. Suppose Uγ is any wedge shaped set not containing three mutually orthogonal vectors.

We randomly and uniformly choose a rotation σ of the circle S1 around the origin. Let

x = |{(0, 1), (1, 0)} ∩ σ(γ)|,

then E(x) ≤ 1. Using methods similar to that of Witenhausen’s proof of Proposition 2.2, we

also have that

1 ≥ E(x) =E(χ(1,0)∈γ + χ(0,1)∈γ) = E(χ(1,0)∈γ) + E(χ(0,1)∈γ)

=
|γ|
|S1|

+
|γ|
|S1|

= 2
|γ|
|S1|

or in other words,
|γ|
|S1|
≤ 1

2
. Hence, from

|γ|
|S1|

=
|Uγ|
|S2|

, we get that
|Uγ|
|S2|

≤ 1

2
.
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An Exact Value for the Wedges Case

Lemma 6.2. The upper bound for
|Uγ|
S2

is attainable by a set Q ⊂ S2 such that

Q = {(p1, p2, p3) ∈ R3 : p1 × p2 > 0}.

Proof. Assume to the contrary that Q contains three mutually orthogonal vectors, ~x =

(x1, x2, x3), ~y = (y1, y2, y3), and ~z = (z1, z2, z3) . Because they are mutually orthogonal, we

know 
x1y1 + x2y2 + x3y3 = 0 (1)

x1z1 + x2z2 + x3z3 = 0 (2)

y1z1 + y2z2 + y3z3 = 0 (3).

Additionally, because p1 and p2 are always either both negative or both positive, we can

assume without loss of generality that x1, x2, y1, y2, z1, and z2 are all positive. Therefore

in order for the equations to be satisfied, x3y3, x3z3, and y3z3 must be negative. If x3 is

positive, then both y3 and z3 must be negative to satisfy Equations 1 and 2, but this leads

to a contradiction. If both y3 and z3 are negative, then their product will be positive, leaving

Equation 3 unsatisfied. Similarly, if x3 is negative, a contradiction also follows. Therefore,

Q cannot contain three mutually orthogonal points, and the configuration of Q is a valid

configuration of U .

7 A Union of Double Caps and a Band

Now that we have established several cases, we consider the union of two of these cases:

two of the original double caps U2 (see Section 4), and a band. Note, this band is a different

height than the one found in Section 5).

Definition 7.1. The union of Two double caps sets and a band are the sets of points
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Udcb(h) = U1
2 ∪ U2

2 ∪B(h) such that

U1
2 :=

{
(x, y, z) ∈ S2 : |x| > 1√

2

}
U2
2 :=

{
(x, y, z) ∈ S2 : |y| > 1√

2

}
B(h) :=

{
(x, y, z) ∈ S2 : |z| < h

}
.

We are looking for the largest configuration Udbc(h) that does not contain three mutually

orthogonal vectors. We know h < 1
2

because for h > 1
2
, Udcb(h) contains mutually orthogonal

vectors (1
2
,− 1√

2
, 1
2
), (−1

2
,− 1√

2
, 1
2
) and ( 1√

2
, 0,− 1√

2
). We know by calculation that Udcb(1/2)

also contains three mutually orthogonal vectors, and while we don’t know the optimal B(h),

we choose a lower bound h ≥
√

2−1 such that Udcb(
√

2−1) does not contain three mutually

orthogonal vectors. To prove this, we reference the projection of the space onto the (y, z)

plane as seen in Figure 7b.

(a) 3D Visualization (b) 2D Projection

Figure 7: The union of twodouble caps and a band. Yellow denotes U1
2 \B, Orange denotes

U2
2 \B and blue denotes B \ (U1

2 ∪ U2
2 .

Proposition 7.1. The largest set of points Udcb(h) ⊂ S2 forming a union of two original

double caps and a band that does not contain three mutually orthogonal points has a lower

bound for the height of the band at h >
√

2− 1. Moreover, we have α(3, 3) ' 0.594.

Proof. Assume to the contrary that Udcb(
√

2−1) contains three mutually orthogonal vectors

~p, ~q and, ~r. By taking −~p instead of ~p, −~q instead of ~q and −~r instead of ~r if necessary,
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we assume without loss of generality that p1, q1, r1 ≥ 0. For the sake of brevity, we refer to

B(
√

2 − 1) as B. We know the band can contain at most two orthogonal vectors, therefore

one vector must be in (U1
2 ∪U2

2 )\B. Symmetry allows us to assume without loss of generality

that ~p ∈ U1
2 and p3 < 0.

The double caps, U1
2 ∪U2

2 , contain at most two orthogonal vectors. Hence, B \ (U1
2 ∪U2

2 )

must contain at least one of the vectors ~q and ~r. Without loss of generality we assume

~q ∈ B \ (U1
2 ∪U2

2 ). The plane perpendicular to ~p does not intersect (B \ (U1
2 ∪U2

2 ))∩{x, y, z ∈

S2 : z < 0}, therefore ~q is in the upper half of the band.

The plane perpendicular to an arbitrary ~p will not intersect (B \ (U1
2 ∪ U2

2 )) ∩ {x, y, z ∈

S2 : z < 0} twice. Thus, the final vector ~r must be in U2
2 . To determine the location of

~r, we consider all vectors ~pε =

(
1√
2
,
√
ε
√

2− ε2, ε− 1√
2

)
on the boundary of U1

2 wtih

ε, 0 ≤ ε ≤ 1/
√

2 −
√

2 − 1. If we take an arbitrary ~p in U1
2 and the circle that contains all

points orthogonal to ~p on the sphere, as we shift ~p to the right, the arc length between the

intersects of the circle and the upper boundaries of B and U2
2 decreases. Because we take ~pε

to be the vector shifted as far right as possible for some vertical shift ε, we get the smallest

arc length between the intersects of the circle and the upper boundaries of B and U2
2 . We

assign the points of intersection to ~qε = (q1, q2,
√

2 − 1) and ~rε = (r1,
1√
2
, r3), respectively,

where the values of q1, q2, r1, r3 are given in terms of ε by the system of equations
1√
2
q1 + q2

√
ε
√

2− ε2 +

(
ε− 1√

2

)(√
2− 1

)
= 0

q21 + q22 + (
√

2− 1)2 = 1

(1)


1√
2
r1 +

√
ε
√

2− ε2√
2

+ (ε− 1√
2

)r3 = 0

r21 + r23 = 1/2.

(2)

If the angle between ~qε and ~rε is obtuse, i.e. ~qε ·~rε < 0, then in order for ~r to be perpendicular

to ~q, it must lie outside the set U2
2 , and we arrive at a contradiction.

We show ~qε · ~rε < 0 by solving this system of equations for ~qε and ~rε using Wolfram
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Mathematica to take their dot product in terms of ε (these values can be found in Appendix

A). We graph ~qε · ~rε for 0 ≤ ε ≤ 1/
√

2−
√

2− 1 (Figure 8).

Figure 8: ~qε · ~rε as a function of ε

We find that for 0 ≤ ε ≤ 1/
√

2 −
√

2 − 1, a maximum is attained at ε ≈ 0.0635 where

~qε ·~rε = −2.78× 10−17 < 0, and therefore, ~r must lie outside the set U2
2 . Hence, Udcb(

√
2− 1)

does not contain three mutually orthogonal vectors. Calculations to obtain α(3, 3) ' 0.594

can be found in Appendix B.

Remark. Such a small value for ~qε · ~rε suggests that
√

2 − 1 may be the value of h for the

largest band possible for Udcb(h). Because Wolfram Mathematica cannot store all digits in

every step, there may be a rounding error that returns a value for ~qε · ~rε of −2.78 × 10−17

rather than 0.

8 Computational Results

In Section 7, we find results for ~qε ·~rε in terms of ε. Because ~qε ·~rε did not remain constant

at 0, we can adjust the band in which ~qε lies, such that when on the boundaries of their

respective areas, ~qε · ~rε = 0. To do this, we create a construction of the configuration on

GeoGebra.
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Figure 9: Combination of Curves

We find this curve by fixing ~p and ~r to the boundaries of U1
2 and U2

2 respectively, using a

slider variable ε and vector ~pε = (
1√
2
,
√√

2ε− ε2, ε− 1√
2
) to calculate the other two vectors.

By taking the intersection Ip of the plane perpendicular to ~pε and the sphere, we can find

~rε at the intersection of I and y = 1√
2
. This is equivalent to solving System 2 in Section

7. Then by taking the intersection Ir of the plane perpendicular to ~rε and the sphere, and

taking the intersection of Ip and Ir, we can find ~qε. This is equivalent to solving the system

of equations 
~pε · ~qε = 0

~rε · ~qε = 0

~q · ~q = 1.

This system is very complicated to solve, therefore, the trace function in GeoGebra was

used to draw the curve on the sphere for values of ε from 0 to
1√
2
− 1

2
, in increments of

.01. The upper bound for the height of this curve is h = 1/2 and the lower bound can be

approximated to be h =
√

2 − 1, as seen in Section 7. Until the exact value of ~qε is found

in terms of ε, we cannot compute the parametric equation for the curve on the sphere, and
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therefore, we cannot find the exact area of this configuration. No larger configurations on a

sphere were found that avoid three mutually orthogonal vectors, and because of the way this

configuration is constructed, this result may eventually suggest a value for α(3, 3) once the

equation of the curve is found.

Historical Remark

Combining multiple curves (Figure 9) to find the largest volume of points on a sphere

that does not contain three mutually orthogonal vectors is similar to a solution posed to the

ambidextrous moving sofa problem. In his solution, Dan Romik [5] combines 18 curves of

different sizes (Figure 10) and proposes that the area bounded by these curves may be the

largest solution to the ambidextrous moving sofa problem.

Figure 10: Romik’s Ambidexterous Sofa [5]

9 Conclusion

In this paper at a variant of the Witsenhausen problem posed in the AMS Monthly

Journal in 1974. Rather than discussing the largest π
2
-avoiding set, we discuss the largest set

in n dimensions that cannot contain k mutually orthogonal vectors, in particular, the largest

set in three dimensions that does not contain three mutually orthogonal vectors. We find a

lower bound for the largest set in n dimensions that cannot contain k mutually orthogonal

vectors. In three dimensions, we consider subsets of the sphere in various configurations that

give us further insight as to the largest set in three dimensions that does not contain three

16



mutually orthogonal vectors. The configuration taking up the largest portion of the sphere

that we are able to prove to not contain three mutually orthogonal vectors was a union of two

double caps and a band, B(
√

2− 1) giving us α(3, 3) ≥ 0.594. It is known that α(3, 3) ≤ 2
3
.

Computational results suggest a larger set of points with this property, but these remain a

conjecture until the equation of the boundary is found and can be proven.

In further research, methods of construction for the various three dimensional cases may

give insight as to large subsets in higher dimensions. Additionally, as we have not proved

that the upper bound for the largest set in n dimensions that cannot contain k mutually

orthogonal vectors is attainable, we wish to explore further configurations.
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A Computed vector values for ~qε, ~rε, and ~qε · ~rε

~qε =


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B Lower Bound for α(3, 3) from Proposition 7.1

We compute |Udcb| by taking the area of the double caps and the area of the band, then

subtracting the intersection so that we do not over count.

|Udcb|
|S2|

=
2|U2|+ |B| − |(U1

2 ∪ U2
2 ) ∩B|

|S2|

2|U2|+ |B|
|S2|

=
2
(

4π
(

1− 1√
2

))
+ 4π

(
2−
√

2
)

4π
= 1

|(U1
2 ∪ U2

2 ) ∩B| = 4×
∫ √2−1
−
√
2+1

∫ √ 1
2
−z2

−
√

1
2
−z2

1

1− y2 − z2
dy dz

= 4×
∫ √2−1
−
√
2+1

2 arctan


√

1
2
− z2√

1− z2 − (1
2
− z2)

 dz

= 4×
∫ √2−1
−
√
2+1

2 arctan
(√

1− 2z2
)
dz ≈ 5.105

|(U1
2 ∪ U2

2 ) ∩B|
|S2|

≈ 5.105

4π
= 0.406

|Udcb|
|S2|

≈ 0.594
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