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Abstract

We investigate Fq-rational points on hypersurfaces in weighted projective spaces over the
finite field Fq. Particularly, we consider the maximum number of Fq-rational points that
can lie on a hypersurface of a given degree, weighted projective space, and finite field. In
classical projective space, Serre answered this question by proving Serre’s inequality. We
provide conjectures generalizing Serre’s inequality to weighted projective spaces and prove
some partial results. We also prove which values the number of Fq-rational points on a given
hypersurface can take, and give some further conjectures about these possible values and
their distributions.



1 Introduction

Vanishing points in projective m-space over finite fields Fq are analogous to roots of
polynomials in affine space. Thus, it is natural to investigate the order of hypersurfaces,
the set of vanishing points for a degree d weighted homogeneous polynomial. An intuitive
approach, as described by Datta and Ghorpade [1], provides an upper bound of the number
of Fq-rational points on the hypersurface. By projecting the hypersurface V (F ) in m-space
onto (m− 1)-space, they bounded |V (F )| by

|V (F )| ≤ d
∣∣Pm−1(Fq)

∣∣ . (1)

Note that if d > q, this bound exceeds |Pm(Fq)|, and hence this bound is only interesting
for d ≤ q.

While this bound was proven, for example by Lidl and Neiderreiter [2], an example of a
homogeneous polynomial of degree d ≤ q with exactly d |Pm−1(Fq)| vanishing points could
not be found. However, the homogeneous polynomial

Gd(X0, X1, . . . , Xm) := (X1 − a1X0) . . . (X1 − adX0),

where a1, . . . , ad are distinct elements of Fq and d ≤ q, has exactly dqm−1+|Pm−2(Fq)| vanish-
ing points in Pm(Fq). Furthermore, Gq+1 := X0Gq also has exactly dqm−1+|Pm−2(Fq)| vanish-
ing points in Pm(Fq). For d,m > 1, we have dqm−1+|Pm−2(Fq)| < dpm−1. Tsfasman, possibly
motivated by these observations, conjectured in the late 1980’s that dqm−1 + |Pm−2(Fq)| was
the sharp upper bound for d ≤ q + 1, or in other words,

|V (F )| ≤ dqm−1 + |Pm−2(Fq)|. (2)

Due to the existence of Gd, this statement immediately implies

max
F
|V (F )| = dqm−1 + |Pm−2(Fq)|. (3)

This conjecture was proven in 1989 by Serre [3] in a letter to Tsfasman, and the resulting
inequality (2) is thus often called Serre’s inequality. An alternate proof to Serre’s inequality,
which uses the intersection of V (F ) with a hyperplane to perform induction on m, is provided
by Datta and Ghorpade [1].

Aubry et al. [4] attempted to generalize Serre’s inequality to weighted projective spaces,
a generalization of projective space formally defined in Section 2, over finite fields. They
posed the following conjecture about hypersurfaces in weighted projective space.
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Conjecture 1. (Aubry et al.) If 1 = a0 ≤ a1 ≤ a2 ≤ · · · ≤ am and lcm(a1, a2, . . . , am)|d,
then

max
F∈Sd[X0,X1,...,Xm]\{0}

|V (F )| = min

{
pm,

d

a1

qm−1 + pm−2

}
, (4)

where Sd[X0, X1, . . . , Xm] is the space of weighted homogeneous polynomials of degree d
in Fq[X0, X1, . . . , Xm] with respect to the weights a0, . . . , am.

Note that to prove Conjecture 1, one needs only to prove the result for d ≤ a1(q + 1), as
otherwise the right hand side of Equation (4) evaluates to pm = |Pm(Fq)|. In that case, the
degree is high enough so that one can make a polynomial in only X0 and X1 so that for all
values of X0 and X1, there is a factor of the polynomial that evaluates to 0.

Aubry et al. successfully proved Conjecture 1 for m ≤ 2. We extend this result to
higher dimensions by proving upper bounds and modular congruences that |V (F )| satisfies
for hypersurfaces in weighted projective spaces over finite fields.

In Section 2, we review the definitions of weighted homogeneous polynomials in weighted
projective space over finite fields. In Section 3, we expand the results of Aubry et al. [4]
of the m ≤ 2 case to prove specific cases of Conjecture 1 for all dimensions m. In Sec-
tion 4, we investigate what specific values |V (F )| can take. We prove that under certain
simple conditions, |V (F )| ≡ 1 (mod p), where p is the characteristic of Fq, and conjecture
that |V (F )| ≡ 1 (mod q). In Section 5, we also give some empirical data and observations
of the distribution of |V (F )| values that support this conjecture. Finally, in Section 6 we
discuss some applications of weighted projective space to error correcting code theory.

2 Preliminaries

Let k be a fixed field. Affine m-space Am(k) is the set of m-tuples of elements of k. It is
denoted as Am for simplicity. Each of these m-tuples is called a point in affine space, with the
individual elements of the m-tuple often called the point’s coordinates. Let q denote a prime
power and let Fq denote the finite field with q elements. When k = Fq, we have Am = Fm

q .
Projective m-space Pm is defined by

Pm =
(
Am+1 \ {0}

)
/ ∼,

where ∼ is defined by (x0, . . . , xm) ∼ (y0, . . . , ym) if there exists λ ∈ F∗q such that for
all i ∈ {0, . . . ,m}, we have yi = λxi.

For any integer n, define pn as

pn =

{
qn + qn−1 + · · ·+ 1 for n ≥ 0

0 for n < 0.
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Note that pn = |Pn(Fq)| for n ≥ 0.
For any nonzero homogeneous degree d polynomial F ∈ Fq[X0, X1, . . . , Xm], the projective

hypersurface V (F ) is the set of vanishing points, defined by

V (F ) := {P ∈ Pm(Fq) : F (P ) = 0} .

Similarly, for any nonzero polynomial F ∈ Fq[X0, X1, . . . , Xm], the hypersurface Z(F ) is
the set of zeroes, defined by

Z(F ) :=
{
P ∈ Am+1 : F (P ) = 0

}
.

Weighted projective space over a finite field, a generalization of projective space, is defined
by

P(a0, a1, . . . , am) =
(
Fm+1

q \ {0}
)
/ ∼,

where Fq denotes the algebraic closure of Fq, the weights a0, a1, . . . , am are positive integers,

and ∼ is defined by (x0, . . . , xm) ∼ (y0, . . . , ym) if there exists λ ∈ F∗q such that yi = λaixi
for all i ∈ {0, . . . ,m}. Notice that P(1, 1, . . . , 1) = Pm(Fq).

The corresponding equivalence class under the equivalence relation ∼ is called a weighted
projective point and denoted by (x0 : x1 : · · · : xm). A weighted projective point is said
to be Fq-rational if (xq0 : xq1 : · · · : xqm) = (x0 : x1 : · · · : xm). Hilbert’s theorem 90 can
be used to show that every Fq-rational point has at least one representative in Fm+1

q \ {0}.
Reid [5] further showed that each Fq-rational point has exactly q − 1 such representatives.
Furthermore, the total number of Fq-rational points is pm, the same as in the unweighted
case.

The definition of homogeneity for a hypersurface of degree d must be generalized so that
a nonzero polynomial F ∈ Fq[X0, X1, . . . , Xm] is homogeneous of degree d if every term has
degree d when we measure Xi with weight ai, so that

F (λa0X0, λ
a1X1, . . . , λ

amXm) = λdF (X0, X1, . . . , Xm)

for all λ ∈ F∗q. This ensures that the notion of vanishing points is well-defined over the
different representatives of a weighted projective point.

The space of weighted homogeneous polynomials of degree d in the weighted projective
space P(a0, . . . , am) over Fq with variables X0, . . . , Xm is denoted by

Sd[X0, . . . , Xm] ⊂ Fq[X0, . . . , Xm].

By rescaling the weights, we have that for any positive integer b,

P(a0b, . . . , amb) ∼= P(a0, . . . , am).
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Delorme [6] showed that for any index i and any positive integer b coprime to ai, the
weight reduction

P(a0b, . . . , ai−1b, ai, ai+1b, . . . , amb) ∼= P(a0, a1, . . . , am)

holds. In particular, the Delorme weight reduction respects Conjecture 1 in the sense that
for a fixed q value, there exists a bijection between the hypersurfaces for degree db with
weights 1, a1b, . . . , amb and the hypersurfaces for degree d with weights 1, a1, . . . , am that
respects the number of vanishing points of the hypersurfaces.

Hence, in the statement of Conjecture 1 we may assume gcd(a1, a2, . . . , am) = 1. This
allowed Aubry et al. to assume that a1 and a2 are coprime in their proof of the m = 2 case
for Conjecture 1.

3 Hypersurfaces in P(1, . . . , 1, am−1, am)

We generalize the proof of Conjecture 1 for m ≤ 2 by Aubry et al. [4, Theorem 1] to
higher-dimensional weighted projective spaces by the following theorem.

Theorem 1. Let F ∈ Sd[X0, X1, . . . , Xm] be a weighted homogeneous polynomial where
the weights satisfy a0, . . . , am−2 = 1 and lcm(am−1, am)|d. If there exists a hyperplane H

given by
m−2∑
i=0

ciXi = 0 where c0, . . . , cm−2 ∈ Fq and at least one of them is nonzero, so

that |V (F ) ∩H| = 0, then

|V (F )| ≤ min

{
pm,

d

a1

qm−1 + pm−2

}
. (5)

Note that for m ≥ 3 we have a1 = 1.
We first give an example of the theorem, describe the assumptions that can be made

for the proof of the theorem, and provide some background notations and results before we
prove the theorem.

An example of the hyperplane intersection criterion is in P(1, 1, 2) over F5
∼= Z/5Z. The

weighted homogeneous polynomial F : X4
0 + 2X4

1 + X2
1X2 + X2

2 has projective hypersur-
face V (F ) = {(1:0:2), (1:0:3), (1:1:1), (1:1:3), (1:2:2), (1:2:4), (1:3:2), (1:3:4), (1:4:1), (1:4:3)}.
If hyperplane H is defined by X0 = 0, then we see that |V (F ) ∩ H| = 0. Furthermore,
as m = 2, we have that a0 = 1, as well as lcm(a1, a2) = 2|d, where d = 4. Hence, this
polynomial is an example of a weighted homogeneous polynomial that satisfies the criteria
for Theorem 1.
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To prove Theorem 1, we assume without loss of generality that am−1 ≤ am. From the
result by Aubry et al. [4, Theorem 1], we may assume m ≥ 3. Let F ∈ Sd[X0, . . . , Xm] be a
nonzero polynomial that satisfies the constraints of Theorem 1. As Aubry et al. [4, Remark 3]
demonstrated, under an Fq-rational change of variables that respects the grading, H can be
transformed into X0 = 0. Hence we assume that H is defined by X0 = 0. Assuming
that d < a1(q + 1) = q + 1, we are tasked with showing

|V (F )| ≤ d

a1

qm−1 + pm−2 = dqm−1 + pm−2. (6)

We do this by following the method of Aubry et al. [4]. First, note that having a0 = 1
allows for every point (x0 : x1 : · · · : xm) for which x0 6= 0 to have a unique representation
with (1 : x′1 : · · · : x′m), where x′i = xi/x

ai
0 . Furthermore, the point is Fq-rational if and only

if x′1, . . . , x
′
m ∈ Fq. Hence the embedding

Am ↪→ P(1, . . . , 1, am−1, am) : (x′1, . . . , x
′
m) 7→ (1 : x′1 : · · · : x′m)

identifies Am with the subset of P(1, . . . , 1, am−1, am) where X0 6= 0, in a manner that
continues to hold if one restricts to Fq-rational points. We use the notation of Aubry et al.
[4] of the hyperplane at infinity H∞ : X0 = 0.

The zeros of F in Am are the zeros of the dehomogenized polynomial F (1, x′1, . . . , x
′
m).

Conversely, there is a natural way of homogenizing a polynomial over variables x′1, . . . , x
′
m

by substituting Xi as x′i, and adding as many X0 factors to each term as minimally needed.
We generalize the notion of lines in P(1, a1, a2) as defined by Aubry et. al. [4] to hyperplanes
represented by either a homogenized linear equation, or the hyperplane at infinity.

Definition 1. An Fq-rational hyperplane, or simply a hyperplane, in P(1, a1, a2, . . . , am) is
a subset defined by an equation given by one of the following types.

• Type 0: H∞ : X0 = 0.

• Type 1: Lines of the form c0X
a1
0 +X1 = 0 with c0 ∈ Fq.

• Types 2 ≤ i ≤ m: Lines of the form

c0X
am
0 +

i−1∑
j=1

cjXjX
ai−aj
0 +Xi = 0

with ci ∈ Fq for all i ∈ {0, . . . ,m− 1}.

As Aubry et al. [4, Remark 3] demonstrated, each hyperplane of type i, under an Fq-
rational change of variables that respects the grading, can be transformed into Xi = 0.

To prove Theorem 1, we need the following lemmas about hyperplane intersections.
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Lemma 1. Any hyperplane in P(1, a1, a2, . . . , am) contains exactly pm−1 rational points, and
any pair of distinct Fq-rational hyperplanes in P(1, a1, a2, . . . , am) has at least pm−2 rational
points in common.

Proof. Use an Fq-rational change of variables that respects the grading to transform a hy-
perplane into the form Xi = 0, where the hyperplane is of type i. From there, the number
of rational points on the hyperplane is equal to |Pm−1(Fq)| = pm−1.

With a pair of hyperplanes, transform the hyperplanes so that one is of the form Xi = 0.
The other hyperplane, say of type j, where without loss of generality i ≤ j, is of the form

j−1∑
k=0

ckXkX
aj−ak
0 +Xj = 0

where all the ck are fixed.

If i = j, this becomes

j−1∑
k=0

ckXkX
aj−ak
0 = 0, which yields pm−2 solutions when X0 = 0, so

in this case there are at least pm−2 rational points in common.
If i < j, by combining the two equations, a point is on both the hyperplanes if and only

if it satisfies the equation

i−1∑
k=0

ckXkX
aj−ak
0 +

j−1∑
k=i+1

ckXkX
aj−ak
0 +Xj = 0.

A point satisfies this equation if and only if

Xj = −

(
i−1∑
k=0

ckXkX
aj−ak
0 +

j−1∑
k=i+1

ckXkX
aj−ak
0

)
,

which yields qm−1 − 1 choices from the m− 1 choices for X0, . . . , Xj−1, Xj+1, . . . , Xm except
when all coordinates are 0. However, as the equation is still homogeneous and we have not
distinguished points up to scaling, we must divide by q − 1 to yield pm−2 points on the
intersection of two distinct Fq-rational hyperplanes. �

Lemma 2. There are at least pm−2 hyperplanes through two given distinct affine rational
points, i.e. two points where X0 6= 0.

Proof. Express the two affine rational points as (1:x1: · · · :xm) and (1:y1: · · · :ym). We count
how many hyperplanes of type i for 1 ≤ i ≤ m pass through both the two affine rational
points.
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We solve for the possible values of ci, which must be solutions to the system of equations
c0 +

i−1∑
j=1

cjxj + xi = 0

c0 +
i−1∑
j=1

cjyj + yi = 0.

As long as c0 = −xi−
i−1∑
j=1

cjxj, the first equation is satisfied, and thus the second becomes

yi − xi +
i−1∑
j=1

cj(yj − xj) = 0.

If xj = yj for all j ∈ {1, 2, . . . , i−1}, then there are q choices for each cj, resulting in qi−1

hyperplanes through the two affine rational points.
Otherwise, there exists some value j ∈ {1, 2, . . . , i − 1} such that yj 6= xj. If there is

such a j with j < i, then cj is uniquely defined by the other ck, xk, and yk. Other than
that, there are no restrictions, so there are q choices each for the values of the i− 2 other ck
where k 6∈ {0, j}. This yields qi−2 hyperplanes through two affine rational points.

At minimum, there are qi−2 hyperplanes of type i through two affine rational points,
meaning that summing over all types i, there are at least 1 + q+ · · ·+ qm−2 = pm−2 number
of Fq-rational hyperplanes through two distinct affine rational points. �

We are now ready to prove the upper bound for |V (F )| stated in Equation (6).

Proof of Theorem 1. We prove the result by induction on m. The cases m ≤ 2 have been
proven by Aubry et al. [4, Theorem 1], so we assume in the inductive step that m ≥ 3.

Let H1, . . . , Ht be the distinct hyperplane factors of F , each of the types defined in
Definition 1. For each integer 1 ≤ i ≤ t, define Li = V (Hi), and similarly let L∞ = V (H∞).
Define L by

L =
t⋃

i=1

Li.

There are pm−2 total hyperplanes, the hyperplanes of type 0 through m − 2, inclusive,
that have degree 1. For m ≥ 3, we have pm−2 ≥ q+ 1, so as d ≤ q+ 1, we have d ≥ t as each
hyperplane has degree at least 1.
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The first part of the proof is to show that |L| ≤ t(qm−1)+pm−2. We proceed by induction
on t. The case t = 0 is trivial, and the case t = 1 follows from Lemma 1. For the inductive
step, we have

|L| =

∣∣∣∣∣
t⋃

i=1

Li

∣∣∣∣∣
=

∣∣∣∣∣
t−1⋃
i=1

Li

∣∣∣∣∣+ |Lt| −

∣∣∣∣∣
t−1⋃
i=1

Li ∩ Lt

∣∣∣∣∣
≤ (t− 1)(pm−1 − pm−2) + pm−2 + pm−1 − pm−2,

where the inequality uses Lemma 1. This reduces to

(t− 1)(pm−1 − pm−2) + pm−2 + pm−1 − pm−2 = t(pm−1 − pm−2) + pm−2

= tqm−1 + pm−2.

We proceed with three cases.
Case 1: Suppose that V (F ) \ L ⊆ L∞ \ {L′∞}, where L′∞ is the space with X0 = X1 = 0.

1. If there exists i such that Li = L∞, then V (F ) = L, so

|V (F )| = |L| ≤ tqm−1 + pm−2 ≤ dqm−1 + pm−2

by the previous observation.

2. Otherwise, Li 6= L∞ for all i. We consider two cases for whether t equals d or not.

• If t = d, then all Hi’s are of types 0 through m− 2, inclusive, and V (F ) = L as F
completely factors by the Hi’s, so again the bound follows.

• Otherwise, t < d, in which case

|V (F )| ≤ |L|+ |L∞ \ {L′∞}|
= |L|+ pm−1 − pm−2

≤ tqm−1 + pm−2 + qm−1

= (t+ 1)qm−1 + pm−2

≤ dqm−1 + pm−2.

Case 2: There exists a point P ∈ Am that lies in V (F ) \ L. Let X denote the set of
pairs (P ′, H) of Fq-rational points and Fq-rational hyperplanes such that P, P ′ ∈ V (F ) ∩H
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and P 6= P ′. We create upper and lower bounds of |X|. First,

|X| =
∑

P ′∈V (F )\{P}

|{H : H is a hyperplane with P, P ′ ∈ H}|

≥
∑

P ′∈V (F )aff\{P}

pm−2

=
∣∣V (F )aff \ {P}

∣∣ pm−2,

where the inequality results from Lemma 2 and V (F )aff = V (F )∩Am = V (F ) \L∞. On the
other hand, we have

|X| =
m∑
i=1

∑
H3P

H type i

(|V (F ) ∩H| − 1).

Using the change of variables as defined by Aubry et al. [4, Remark 3], we view each
type i hyperplane as defined by Xi = 0. This reduces the summand to the number of Fq-
rational vanishing points of F (X0, . . . , Xi−1, 0, Xi+1, . . . , Xm) in P(a0, . . . , ai−1, ai+1, . . . , am).
By the inductive hypothesis, V (F ) ∩ H has at most d

a1
qm−2 + pm−3 zeroes if i > 1 and at

most d
a2
qm−2 + pm−3 vanishing points if i ≤ 1. Either way, it has at most dqm−2 + pm−3

vanishing points.
There are qi−1 hyperplanes of type i that pass through P out of the qi total hyperplanes

of type i. Hence,

|X| =
m∑
i=1

∑
H3P

H type i

(|V (F ) ∩H| − 1)

≤
m∑
i=1

qi−1
(
dqm−2 + pm−3 − 1

)
= pm−1

(
dqm−2 + pm−3 − 1

)
= qpm−1

(
dqm−3 + pm−4

)
.

Combining the two bounds on |X| yields∣∣V (F )aff \ {P}
∣∣ pm−2 ≤ |X| ≤ qpm−1

(
dqm−3 + pm−4

)
.
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This allows us to bound
∣∣V (F )aff

∣∣ by∣∣V (F )aff
∣∣ ≤ qpm−1

pm−2

(
dqm−3 + pm−4

)
+ 1

=

(
q2 +

q

pm−2

)(
dqm−3 + pm−4

)
+ 1

= dqm−1 + q2pm−4 +
qpm−4 + dqm−2

pm−2

+ 1.

Using the fact that d < q + 1, or equivalently d ≤ q, this simplifies to

∣∣V (F )aff
∣∣ ≤ dqm−1 + pm−2 − q +

qpm−4 + qm−1

pm−2

= dqm−1 + pm−2 + q

(
pm−4 + qm−2 − pm−2

pm−2

)
= dqm−1 + pm−2 − q

(
qm−3

pm−2

)
. (7)

To bound |V (F )|, we add |V (F ) ∩H∞| = 0 into Inequality (7), resulting in

|V (F )| ≤ dqm−1 + pm−2 − q
(
qm−3

pm−2

)
+ |V (F ) ∩H∞|

≤ dqm−1 + pm−2,

as desired. This ends the proof for Case 2.
Case 3: There exists a point P ∈ L′∞ that lies in V (F ) \ L.

As H is defined by X0 = 0 and |V (F ) ∩H| = 0, there is no element of L′∞ ⊂ L∞ that is
in V (F ). Hence, the proof is complete. �

Remark 1. Case 1 of the proof does not rely on any of the assumptions made specifically in
Theorem 1, and instead works in full generality under the conditions of Conjecture 1. Thus,
it could be used in a proof of Conjecture 1, though case 2 of the proof of Theorem 1 is not
strong enough for the generality of Conjecture 1.

Remark 2. If we do not assume the |V (F ) ∩ H| = 0 condition in Theorem 1, a nontrivial
bound can still be reached for m = 3, and a bound for any dimension can be created
inductively. However, the inequalities in Case 2 involve additional terms for each type of
hyperplane. This bound is worse than the bound in Conjecture 1. In addition, case 3 becomes
nontrivial, requiring a generalization of case 3 of the proof by Aubry et al. [4, Theorem 1].

10



Removing the requirements in Theorem 1 of having a0 = 1 and lcm(am−1, am)|d makes
Inequality (5) no longer hold. However, whenm = 1, the following theorem provides an upper
bound for |V (F )| without any requirements on the hypersurface other than gcd(a0, a1) = 1,
which can always be achieved through the Delorme weight reduction.

Theorem 2. Let F ∈ Sd[X0, X1] be a weighted homogeneous polynomial in P(a0, a1) where
gcd(a0, a1) = 1. Then

|V (F )| ≤

min
(
q + 1, d

a0a1

)
if a0a1|d,

min
(
q + 1,

⌈
d

a0a1

⌉
+ 1
)

otherwise.
(8)

Proof. Similar to Theorem 1, we need only to prove the nontrivial bound.
If a0a1|d, then the result follows from Aubry et al. [4, Example 1]. So we assume a0a1 - d.

Let d = qa0a1 + r, where q, r ∈ N and 0 < r < a0a1. Then
⌈

d
a0a1

⌉
+ 1 = q + 2. It suffices

to show that |V (F )| ≤ q + 2. We claim that F has a monomial factor of weighted degree of
either r or r + a0a1.

As r < a0a1, there is at most one solution to the Diophantine equation xa0 +ya1 = r in x
and y where 0 ≤ x and 0 ≤ y. Note that we may restrict x < a1 and y < a0 without losing any
solutions. If such a solution exists, say (x, y) = (x0, y0), where 0 ≤ x0 < a1 and 0 ≤ y0 < a0,
there are exactly two solutions to the Diophantine equation xa0 + ya1 = r+ a0a1 in x and y
where 0 ≤ x and 0 ≤ y, (x, y) = (x0 + a1, y0), (x0, y0 + a0), but none of these solutions
have x < a1 and y < a0. Moreover, the converse of this statement is true. Hence, as there
are either one or two solutions to the Diophantine equation xa0 + ya1 = r+ a0a1 in x and y
where 0 ≤ x and 0 ≤ y, if there is no such solution to xa0 + ya1 = r, then there is exactly
one solution to the Diophantine equation xa0 + ya1 = r + a0a1.

To conclude, there is exactly one integer solution to xa0 + ya1 ∈ {r, r+ a0a1} within the
bounds 0 ≤ x < a1 and 0 ≤ y < a0. Say this solution is (x, y) = (e0, e1). We show that
every monomial in F has Xe0

0 X
e1
1 as a factor.

Any monomial of F must be of the form cXd0
0 X

d1
1 , where d0a0 + d1a1 = d. Define

nonnegative integers q0, q1, r0 < a1, and r1 < a0 so that d0 = q0a1+r0 and d1 = q1a0+r1. This
gives us r0a0 +r1a1 = (q−q0−q1)a0a1 +r, but also r0a0 +r1a1 < 2a0a1, so q−q0−q1 ∈ {0, 1}.
By our analysis of this Diophantine equation, this means (r0, r1) = (e0, e1), and thus every
monomial in F has Xe0

0 X
e1
1 as a factor.

Hence, F has a monomial factor of weighted degree of either r or r + a0a1. This factor
gives us two solutions: (1:0) and (0:1). The remaining polynomial F ′ = FX−e0

0 X−e1
1 has

degree d′ ∈ {(q− 1)a0a1, qa0a1}. As a0a1|d′, we use the result of Aubry et al. [4, Example 1]
that such a weighted homogeneous polynomial has |V (F ′)| ≤ d′

a0a1
∈ {q − 1, q}. F ′ can thus

contribute at most q solutions to F . Combining the two solutions from the Xe0
0 X

e1
1 factor

11



with the at most q solutions from F ′ = FX−e0
0 X−e1

1 gives us |V (F )| ≤ q + 2, and the proof
is thus complete. �

Remark 3. If a0 = 1, this bound can be reduced to min
{
q + 1,

⌈
d
a1

⌉}
as the common factor

of weighted degree r < a1 cannot have an X1 term.

Remark 4. The gcd(a0, a1) = 1 condition can be removed from Theorem 2. This means that
the possible degrees d will all be multiples of gcd(a0, a1), and the a0a1|d case instead becomes
lcm(a0, a1)|d. For values of d that do not satisfy gcd(a0, a1)|d, the inequality is trivially true
as there is no such weighted homogeneous polynomial F .

Slightly modifying the same technique as in the proof by Aubry et al. [4, Theorem 1], but
using the result in Theorem 2, along with Remark 3 and Remark 4, the following corollary
addresses the P(1, a1, a2) case without the divisibility requirement of Theorem 1.

Corollary 3. Let F ∈ Sd[X0, X1, X2] be a weighted homogeneous polynomial where a0 = 1
and a1 ≤ a2. Then

|V (F )| ≤ min

(
q2 + q + 1,

⌈
d

a1

⌉
q + 2

)
.

4 Fq-rational Points of Hypersurfaces in Weighted Pro-

jective Space

After computing values of |V (F )| for all polynomials in a fixed weighted projective space,
finite field, and degree, only specific values of |V (F )| were observed. As a result of these
observations, we pose the following conjecture.

Conjecture 2. Let F ∈ Sd[x0, . . . , xm] be a weighted homogeneous polynomial in P(a0, . . . , am)
over Fq, where d ≤ m. Then |V (F )| ≡ 1 (mod q).

In addition to empirical evidence supporting Conjecture 2, the following theorem, a
weaker statement of the conjecture, was proven.

Theorem 4. Let F ∈ Sd[x0, . . . , xm] be a weighted homogeneous polynomial in P(a0, . . . , am)
over Fq, where d ≤ m. Let p denote the characteristic of Fq. Then |V (F )| ≡ 1 (mod p).

The proof of the theorem is a slight modification of the proof of the Chevalley-Warning
Theorem by Serre [7, Theorem 3]. To prove the theorem, we need the following two lemmas,
the former of which is a result by Serre [7, p. 5].
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Lemma 3 (Serre). For integer n ≥ 0,

∑
x∈Fq

xn =

{
−1 for n > 0, (q − 1) | n
0 otherwise,

where x0 = 1 even if x = 0.

Lemma 4. Let F ∈ Sd[x0, . . . , xm] be a weighted homogeneous polynomial in P(a0, . . . , am)
over Fq, where d ≤ m. Let p denote the characteristic of Fq. Then |Z(F )| ≡ 0 (mod p).

Proof. For ~x = (x0, . . . , xm) ∈ Am+1, define G(~x) = 1 − F (~x)q−1. For a fixed ~x, note
that G(~x) ∈ Fq. If ~x ∈ Z(F ), then G(~x) = 1; otherwise, G(~x) = 0. Thus,

|Z(F )| ≡
∑
~x

G(~x) (mod p).

For vectors ~d ∈ Nm+1 where
∑

i aidi = d(q − 1), define c~d ∈ Fq such that

F (~x)q−1 =
∑
~d

c~dx
d0
0 · · ·xdmm .

As
∑
i

aidi = d(q − 1) < (m+ 1)(q − 1), by the Pigeonhole Principle, there exists j such

that ajdj < q − 1, or in other words dj ≤ q−2
aj
≤ q − 2. Hence,

∑
~x∈Am+1

xd0
0 · · ·xdmm =

∑
x0,...,xj−1,xj+1,...,xm∈Fq

xd0
0 · · · x

dj−1

j−1 x
dj+1

j+1 · · ·xdmm
∑
xj∈Fq

x
dj
j

 .

By Lemma 3, the internal sum is zero, and so the entire sum evaluates to 0. Now,∑
~x∈Am+1

G(~x) = qm+1 −
∑

~x∈Am+1

F (~x)q−1

= −
∑

~x∈Am+1

∑
~d

c~dx
d0
0 · · ·xdmm = −

∑
~d

(
c~d

∑
~x∈Am+1

xd0
0 · · ·xdmm

)
= 0

where the final step results from the observation that
∑

~x∈Am+1

xd0
0 · · ·xdmm = 0.

Hence, |Z(F )| ≡ 0 (mod p). �
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We are now ready to prove Theorem 4.

Proof of Theorem 4. By Lemma 4, in Am+1 there are |Z(F )| ≡ 0 (mod p) roots to F . As ~0
is a trivial root of F in Am+1, there are |Z(F )| − 1 ≡ −1 (mod p) roots to F in Am+1 \ {~0}.
Thus,

|V (F )| ≡ −1(q − 1)−1 ≡ 1 (mod p),

as each point in P(a0, . . . , am) has q − 1 representatives in Am+1 \ {~0}. �

Remark 5. Applying the Delorme weight reduction when gcd (a1, . . . , am) > 1 allows the
degree d to decrease by a factor of b while decreasing a1, . . . , am by a factor of b as well;
however, this does not change m, and thus it may be possible to reduce d to a value of at
most m, allowing Theorem 4 to apply to the hypersurface.

5 Distribution of |V (F )| in Weighted Projective Space

Through a computer search that iterates over all degree d polynomials in a given weighted
projective space P(a0, . . . , am) over Fq, the distribution of |V (F )| for all the polynomials was
calculated. The data is collated into Table 1, Appendix A.

Figure 1 shows a histogram of the values of |V (F )| and the number of polynomials F
that have each number of vanishing points for q = d = 2 and ~a = (1, 1, 1, 1, 2).
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Figure 1: Distribution of |V (F )| for q = d = 2 and ~a = (1, 1, 1, 1, 2).

This data supports Conjecture 2. It also supports Conjecture 1: the dashed line indicates
the nontrivial bound in Equation (4).

The data in Table 1 also illustrates that if there is a weight, say without loss of generality
it is am, such that am > d, Xm will never appear in any weighted homogeneous polynomial in
that weighted projective space for degree d. Because of this, there exists a natural bijection
between these weighted homogeneous polynomials and those of degree d in P(a0. . . . , am−1)
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over the same finite field. If a weighted homogeneous polynomial F in P(a0. . . . , am−1)
has x vanishing points, then that same weighted homogeneous polynomial in P(a0. . . . , am)
has qx+ 1 vanishing points. This is because each of the x vanishing points in (m− 1)-space
makes the polynomial in m-space vanish, but there are q choices for Xm. The final solution
is the trivial solution where X0, . . . , Xm−1 = 0 and Xm 6= 0.

The distribution typically has an increasing and then decreasing pattern, though in cer-
tain cases, for example q = 3, d = 4, ~a = (1, 1, 2), there are additional turning points,
as in occasionally the distribution is not monotonically increasing and then monotonically
decreasing. In addition, quite often the most common value of |V (F )| is pm−1, but again
this is not always the case: q = 3, d = 2, ~a = (1, 1) is an example.

6 Applications to Coding Theory

In 1950, American mathematician Richard Hamming [8] invented the first error-correcting
code, the Hamming (7,4) code. An error correcting code is used for resolving errors in data
over noisy communication channels where the receiver may erroneously receive incorrect
information. Essentially, the sender encodes the message with redundancy, following a pat-
tern dictated by the error correcting code. This redundancy allows the receiver to handle
a number of errors anywhere in the message and often correct them without need for re-
transmission. Hence, error correcting codes are incredibly useful and often implemented in
situations where reverse channels to request retransmission are either expensive, impossible,
or otherwise impractical, such as with deep space communication where messages can take
hours or days to reach their desired target, or when broadcasting information to multiple
sources via multicast.

Reed-Muller codes are error-correcting codes based in finite field theory that are closely
related to polar codes, which the proposed 5G standard relies on. Furthermore, Aubry et
al. [4] demonstrated how to generalize Reed-Muller codes to weighted projective Reed-Muller
codes. Lachaud [9] created a metric for performance of codes that factors into account both
the capability of a code to withstand errors, measured by the relative distance of the code, as
well as the additional length needed to be added to the code, represented by the transmission
rate. Based on this, Aubry et al. [4] calculated that weighted projective Reed-Muller codes
had higher performances than both projective Reed-Muller codes and generalized Reed-
Muller codes.

While weighted projective Reed-Muller codes have thus been empirically demonstrated
to be higher-performing than both projective and generalized Reed-Muller codes, the perfor-
mance of weighted projective Reed-Muller codes as a whole is not well-understood. While the
transmission rate of the code is simple to calculate, the relative distance is dependent on the
number of solutions to a hypersurface in weighted projective space over a finite field. Specif-
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ically, the more solutions such a hypersurface has, the lower the relative distance and thus
the lower the performance of the code. This project focuses on providing an upper bound to
the maximum number of solutions to such a hypersurface, and thus proving such a bound
corresponds to knowing the worst-case performance of a weighted projective Reed-Muller
code.

7 Conclusions and Further Research

We generalized the results of Aubry et al. [4] to Theorem 1, proving specific cases of Con-
jecture 1 for all dimensions m instead of only m ≤ 2 as they proved. Moreover, we removed
the divisibility conditions on d in Conjecture 1, resulting in Theorem 2 and Corollary 3
that address the m ≤ 2 case in more generality than Conjecture 1. In addition, we proved
in Theorem 4 that when d ≤ m, the order of any hypersurface must satisfy the modular
congruence |V (F )| ≡ 1 (mod p).

For further research, one may generalize the results of Theorem 1 to a proof of Con-
jecture 1. In addition, one may expand and possibly strengthen the results of Theorem 2
and Corollary 3 to higher dimensions. Better understanding the specific values |V (F )| can
take by improving Theorem 4 to a proof of Conjecture 2 is also of interest. Finally, further
investigating the distributions of |V (F )| will also provide information that may be useful in
improving the bounds and increasing the generality of Theorem 1.
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A Distributions of |V (F )| for Fixed q, d, and ~a

The following distributions of |V (F )| for the specified values of q, d, and ~a were calculated
using a complete search program in SageMath

q deg weights (a) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 2 1,1 1 3 3
2 2 1,2 0 3
2 2 1,1,1 0 7 0 35 0 21
2 2 1,1,2 0 1 0 11 0 3
2 2 1,2,2 0 0 0 7
2 2 1,1,1,1 0 0 0 35 0 168 0 435 0 280 0 105
2 2 1,1,1,2 0 0 0 7 0 0 0 99 0 0 0 21
2 2 1,1,2,2 0 0 0 1 0 0 0 27 0 0 0 3
2 2 1,2,2,2 0 0 0 0 0 0 0 15
2 3 1,1 2 6 6 1
2 3 1,3 0 3
2 3 1,1,1 8 56 168 280 280 168 56 7
2 3 1,1,3 0 2 0 22 0 6 0 1
2 3 1,3,3 0 0 0 7
2 3 1,1,1,3 0 8 0 56 0 168 0 1304 0 280 0 168 0 56 0 7
2 3 1,1,3,3 0 0 0 2 0 0 0 54 0 0 0 6 0 0 0 1
2 3 1,3,3,3 0 0 0 0 0 0 0 15
2 4 1,1 4 12 12 3
2 5 1,1 8 24 24 7
2 6 1,1 16 48 48 15
2 7 1,1 32 96 96 31
2 8 1,1 64 192 192 63
2 9 1,1 128 384 384 127
3 2 1,1 3 4 6
3 2 1,2 0 4
3 2 1,1,1 0 39 0 0 247 0 0 78
3 2 1,1,2 0 3 0 0 31 0 0 6
3 2 1,2,2 0 0 0 0 13
3 2 1,2,2,2 0 0 0 0 0 0 0 0 0 0 0 0 0 40
3 3 1,1 8 16 12 4
3 3 1,3 0 4
3 3 1,1,3 0 8 0 0 97 0 0 12 0 0 4
3 3 1,3,3 0 0 0 0 13
3 3 1,3,3,3 0 0 0 0 0 0 0 0 0 0 0 0 0 40
3 4 1,1 24 48 36 12 1
3 4 1,2 3 4 6
3 4 1,4 0 4
3 4 1,1,2 81 348 810 1944 2235 2025 1458 684 81 162 12 0 0 1
3 4 1,1,4 0 24 0 0 291 0 0 36 0 0 12 0 0 1
3 4 1,2,2 0 39 0 0 247 0 0 78
3 4 1,2,4 0 3 0 0 31 0 0 6
3 4 1,4,4 0 0 0 0 13
3 4 1,4,4,4 0 0 0 0 0 0 0 0 0 0 0 0 0 40
4 2 1,2 0 5
4 2 1,1,2 0 6 0 0 0 69 0 0 0 10
4 2 1,2,2 0 0 0 0 0 21
4 3 1,3 0 5
4 3 1,1,3 0 20 0 0 0 291 0 0 0 20 0 0 0 10
4 3 1,3,3 0 0 0 0 0 21
4 4 1,2 6 5 10
4 4 1,4 0 5
4 4 1,2,2 0 126 0 0 0 1029 0 0 0 210
4 4 1,2,4 0 6 0 0 0 69 0 0 0 10
4 4 1,4,4 0 0 0 0 0 21
5 4 1,2,4 0 10 0 0 0 0 131 0 0 0 0 15
9 2 1,2,2 0 0 0 0 0 0 0 0 0 0 91
9 5 1,5,5 0 0 0 0 0 0 0 0 0 0 91

Table 1: Calculated Distributions of |V (F )|.
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