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Abstract

One problem that has been unsolved for nearly a century is the Erdös-Turán Conjecture,
an important problem in additive number theory. It states that the efficiency of additive
bases of order two of positive integers is always infinite. In this paper, we work towards a
solution to the multiplicative analog of this problem. First, we prove that the Erdös-Turán
Conjecture implies its multiplicative analog. Then, we introduce the density of a set and
prove that finite efficiency is only possible if the basis has density zero. Furthermore, we
provide examples of bases and calculate their densities, where one of our bases has density
zero. Lastly, we consider a partially ordered set of the bases, and we consider which bases are
minimal elements in this set. If a basis is not minimal, we attempt to discover the smallest
subset which remains a basis along with its density.

Summary

In this paper, we explore a variation of a famous conjecture in additive number theory
proposed by Erdös and Turán. We explore the relationship between the Erdös-Turán Conjec-
ture and its multiplicative analog, the variation we consider. We define a basis to be a set of
fundamental building blocks for the set of positive integers and its density to be the fraction
of positive integers it contains. Then we prove a relation between the density and another
property of a multiplicative basis. Lastly we introduce some examples of bases, calculate
their densities, and determine whether or not they are minimal. A basis is minimal if we
cannot remove building blocks while preserving all properties. If the basis is not minimal,
we attempt to discover the smallest set of building blocks and calculate the new density.



1 Introduction

One interesting conjecture that has been extensively studied in the past century is the

Erdös-Turán Conjecture, an additive number theory problem. This problem was motivated

by Lagrange’s Theorem, which states that all positive integers can be expressed as the sum

of at most four perfect squares, and Vinogradov’s Theorem, which states that all sufficiently

large odd integers can be expressed as the sum of at most three primes. This leads to the

question of whether these sets are efficient at representing positive integers as sums of their

elements.

Let A be a subset of the positive integers. For each positive integer n, consider the

number of times n can be written as the sum of two not necessarily distinct elements of A.

The conjecture states that if this number is greater than 0 for all sufficiently large n, then

it approaches infinity as n approaches infinity.

Any set A so that every sufficiently large integer may be written as a sum of at most k

elements of A is called an additive basis of order k. Some examples include the set of odd

numbers, which has order 2, the set of perfect squares, which has order 4 by Lagrange’s

Theorem, and the set of primes, which has order 3 if Goldbach’s Conjecture is true.

We consider a variation of the Erdös-Turán Conjecture. Rather than use an additive basis

of order 2, we use a multiplicative basis of order 2. This means that each positive integer

except those in a finite set can be expressed as the product of two not necessarily distinct

elements of a subset A. We conjecture that if A is a multiplicative basis of order 2, then the

number of times a number n can be expressed as a product of two elements of A approaches

infinity as n approaches infinity.

First, in Section 2, we define terms relating to the Erdös-Turán Conjecture and its mul-

tiplicative analog. In Section 3, we prove that the Erdös-Turán Conjecture implies its mul-

tiplicative analog. In Section 4, we first prove a major component of our conjecture relating
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to the densities of bases. Multiplicative bases have been studied much less rigorously than

additive bases, so we then investigate a few properties. We construct some examples of bases

and calculate their density. Lastly, in Section 5, we consider the set of all bases as a partially

ordered set, and each set such that there is no set less than it is called a minimal set. We

then determine whether our examples of multiplicative bases are minimal and if not, try to

find a subset that is minimal.

2 Definitions and Background

First, we provide a mathematical definition for an additive basis as given by Erdös and

Turán [1].

Definition 2.1. A subset A ⊆ N is an additive base of order k if all positive integers except

a finite set can be written as a sum of k elements of A.

Next, we define the additive representation function and additive efficiency of a sequence.

Definition 2.2. The representation function of a subset A ⊂ N and h ∈ N is RA,h(n) =

#{(a1, a2, . . . , ah) ∈ Ah|a1 + a2 + · · ·+ ah = n}.

The function RA,h(n) represents the number of times a positive integer n can be expressed

as the sum of h not necessarily distinct elements of A.

Definition 2.3. The additive efficiency is given by

E(A) = lim sup
n→∞

RA,h(n).

The additive efficiency represents the smallest upper bound on the function RA,h(n) over

all positive integers n. We now give the statement of the Erdös-Turán Conjecture.

Conjecture 2.1 (Erdös-Turán [2], 1941). The additive efficiency of any additive basis of

order 2 is infinite.

2



Now we introduce our variation of this conjecture. We define a multiplicative basis as

given by Xiao [3].

Definition 2.4. A subset A ⊆ N is a multiplicative base of order k if all positive integers

except a finite set can be written as a product of k not necessarily distinct elements of A.

Corollary 1. A multiplicative basis A of order k must contain 1 and all sufficiently large

primes.

Proof. By the definition, we know all sufficiently large primes can be written as a product

of k elements of A. A prime p can only be expressed in this way by 1k−1 · p, which means

that both 1 and p must be elements of A.

Similarly, we also define a multiplicative representation function and multiplicative effi-

ciency for a given sequence.

Definition 2.5. Let the representation function of a set A and a number h ∈ N be rA,h(n) =

#{(a1, a2, . . . , ah) ∈ Ah|a1a2 . . . ah = n}.

The function rA,h(n) represents the number of times a positive integer n can be expressed

as the product of h not necessarily distinct elements of A.

Definition 2.6. The multiplicative efficiency is given by

e(A) = lim sup
n→∞

rA,h(n)

The multiplicative efficiency represents the smallest upper bound on the function rA,h(n)

over all positive integers n.

3 Variation of Erdös-Turán Conjecture

We introduce the main problem that is the focus of this paper.

Conjecture 3.1. The multiplicative efficiency of any multiplicative basis of order 2 is infi-

nite.
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3.1 Relation to Erdös-Turán Conjecture

Conjecture 3.1 is essentially the multiplicative case of Conjecture 2.1. Furthermore, the

two conjectures are intrinsically related.

First, we introduce two operations, the sum-set and product-set on two sets A and B.

Definition 3.1. A⊕B = {a+ b|a ∈ A ∪ {0}, b ∈ B ∪ {0}}

The sum-set of two sets A and B is the set containing all elements of either A or B and

positive integers that can be expressed as the sum of an element of A and an element of B.

Definition 3.2. A⊗B = {ab|a ∈ A, b ∈ B}

The product-set of two sets A and B is the set containing all elements that can be

expressed as the product of an element of A and an element of B. Now we proceed with the

relationship between the two conjectures given by Dr. Khovanova [4].

Claim 3.2. If the Erdös-Turán Conjecture is true, then Conjecture 3.1 is true.

Proof. Consider any multiplicative basis A of order 2. Construct two sequences B and C

such that B = A ∩ {2n|n ≥ 0} and C = log2B. We know that A ⊗ A contains all positive

integers except for a finite set. Powers of 2 can only be formed by the product of 2 powers

of 2, which means that all pairs of elements of A whose product is a power of 2 are also

elements of B. Hence, B ⊗ B contains all powers of 2 except for a finite set, and C ⊕ C

contains all positive integers except a finite set. If the Erdös-Turán Conjecture is true, then

the additive efficiency of C is infinite. This would mean that the multiplicative efficiency of

B is infinite, and hence infinite for A as well. This means that the Erdös-Turán Conjecture

implies Conjecture 3.1.

4 Efficiency with Positive Analytic Density

Given a subset A of N, let fA be the characteristic function of A.
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Definition 4.1.

fA(a) =


1 if a ∈ A

0 if a 6∈ A
.

Now we introduce the Dirichlet series of a sequence A.

Definition 4.2.

LA(s) =
∞∑
n=1

fA(n)n−s =
∑
n∈A

n−s.

Lastly, we define the analytic density of a sequence A.

Definition 4.3.

d(A) = lim
s→1

LA(s)

ζ(s)
where ζ(s) =

∞∑
n=1

n−s =
∏
p

(
1− p−s

)−1
.

Theorem 4.1. Given a multiplicative basis A of order 2, its analytic density must be 0 if it

has finite efficiency.

Proof. We have

LA(s)2 =
∞∑
n=1

(∑
d|n

fA(d)fA

(n
d

))
n−s

Notice that because fA(d)fA(n
d
) = 1 if and only if both d and n

d
are in A, we have

rA,2(n) =
∑
d|n

fA(d)fA

(n
d

)
.

Let B = A ⊗ A. Because rA,2(n) > 0 for all sufficiently large n, there exists a set C with a

finite number of elements such that B = N\C. It follows that

LB(s) =
∑
n∈N\C

n−s.

Suppose for the sake of contradiction that there exists a finite positive integer k such that

k ≥ rA,2(n) for all n. We then see that

lim sup
n→∞

rA,2(n) = k =⇒ kLB(s) + k
∑
n∈C

n−s ≥ LA(s)2.

Using the fact that the density of any sequence is at most 1, we have

k ≥ kd(B) = lim
s→1

kLB(s)

ζ(s)
≥ lim

s→1

LA(s)2 − k
∑

n∈C n
−s

ζ(s)
≥ 0.
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However, C is a finite set, so the numerator is finite while the denominator is infinite,

lim
s→1

k
∑

n∈C n
−s

ζ(s)
= 0.

This implies that

k ≥ lim
s→1

LA(s)2

ζ(s)
≥ 0 =⇒ lim

s→1

LA(s)2

ζ(s)2
= 0 =⇒ d(A) = 0.

Therefore, for a subset to have finite multiplicative efficiency, it must have density 0.

Now we must determine whether or not there exists a multiplicative basis of density 0.

4.1 Examples of Multiplicative Bases

First, we introduce some examples of multiplicative bases. Let S1 be the set containing 1

and all numbers pe11 . . . penn such that e1+e2+· · ·+en is odd as given by Dr. Khovanova [4]. Let

S2 be the set containing 1 and all numbers pe11 . . . penn such that each of e1, e2, . . . , en is odd as

given by Dr. Khovanova [4]. Let S3 be the set containing 1 and all numbers pe11 . . . penn such

that n is odd. For our last example, we first split the sequence of all primes into subsequences

Pi such that each prime is in exactly one subsequence, a subsequence contains consecutive

primes, and ∏
p∈Pi

(
1− 1

p

)
≤ 1

2
.

For example, we have P1 = {2}, P2 = {3, 5, 7}, and so on. It is well known that∏
p

(1− 1

p
) = 0,

which implies that there must be an infinite number of sets Pi. Let

Ap =
∞⋃
i=0

P2i+1 and Bp =
∞⋃
i=0

P2i+2

Now let A and B be the sets of all numbers which have all prime factors as elements of Ap

and Bp respectively. Let S4 = A ∪B as given by [5].

We wish to calculate the analytic densities of these two sequences. First, we define another

type of density, the asymptotic density.
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Definition 4.4.

∂(A, n) =
|A ∩ {1, 2, . . . , n}|

n
and ∂(A) = lim

n→∞
∂(A, n)

Given this new type of density, we relate it to the analytic density through the following

result.

Theorem 4.2 (Dirichlet-Dedekind [6]). If ∂(A) exists, then d(A) = ∂(A).

This means that the asymptotic density and analytic density are equal as long as the

asymptotic density exists.

4.1.1 Properties of S1

First, we will show that S1 is a multiplicative basis.

Claim 4.3. S1 is a multiplicative basis.

Proof. Since 1 ∈ S1, all elements of S1 are elements of S1 ⊗ S1. Therefore, we now just

need to show that all numbers greater than 1 where the sum of the exponents in its prime

factorization is even will be in S1⊗S1. For any x of this form, we know x > 1, so there exists

a prime p|x. We have p ∈ S1 and x
p
∈ S1, so x ∈ S1⊗ S1. Therefore, since S1⊗ S1 = N, S1 is

a multiplicative basis.

Now we solve for the density of S1. First, we used a program to find the asymptotic

density up to the first one million terms. Our results are shown in Table 1.
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n ∂(S1, n)

100 0.52

1000 0.508

10000 0.5048

100000 0.50145

1000000 0.500266

Table 1: Density of the sequence S1 over the first 100, 1000, 10000, 100000, and 1000000

terms calculated with a computer.

As shown in Table 1, the asymptotic density of S1 approaches 0.5 and is already very

close with small values of n. We will now show analytically that this is indeed true using [7].

Claim 4.4. d(S1) = 1
2

Proof. For any positive integer x, we let the function Ω(x) be the sum of the exponents in

its prime factorization. This means that

1− (−1)Ω(x)

2
= fS1(x) =⇒ ∂(S1) = lim

x→∞

x∑
i=1

1− (−1)Ω(i)

2x
.

It is well known that
x∑
i=1

(−1)Ω(i) = o(x) =⇒ d(S1) = ∂(S1) =
1

2
− lim

x→∞

x∑
i=1

(−1)Ω(i)

2x
=

1

2
.

Hence, the density of S1 is 1
2
.

4.1.2 Properties of S2

First, we will show that S2 is a multiplicative basis.

Claim 4.5. S2 is a multiplicative basis.

Proof. For any positive integer x we express it as pe11 . . . penn q
f1
1 . . . qfnn such that all ei are even

while all fi are odd. We take

x1 =
n∏
i=1

pi and x2 =
n∏
i=1

pei−1
i

m∏
i=1

qfii .
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Both x1 and x2 are elements of S2. Therefore, since S2 ⊗ S2 = N, S2 is a multiplicative

basis.

n ∂(S2, n)

100 0.7

1000 0.707

10000 0.7055

100000 0.70457

1000000 0.704464

Table 2: Density of the sequence S2 over the first 100, 1000, 10000, 100000, and 1000000

terms calculated with a computer.

As shown in Table 2, the asymptotic density of S2 approaches approximately 0.7044

and that it does not change much between small and large values of n. We will now show

analytically that this is indeed true using [8]. First, we define a multiplicative sequence A.

Definition 4.5. A sequence A is multiplicative if for any two a, b ∈ N such that gcd(a, b) = 1,

fA(a)fA(b) = fA(ab).

Now we define the Euler product expansion of a Dirichlet Series of a multiplicative

sequence A.

Definition 4.6.

LA(s) =
∞∑
n=1

fA(n)n−s =
∏
p

(
∞∑
n=0

fA(pn)p−ns

)
.

We can use the Euler product expansion to calculate the density of S2.

Claim 4.6. d(S2) = K1π2

6
≈ 0.7044422 where K1 is the carefree constant.
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Proof. Notice that S2 is a multiplicative sequence, and fS2(p
n) = 1 if and only if n is odd or

0. The Euler product expansion for S2 is

LS2(s) =
∏
p

(
1 +

p−s

1− p−2s

)
.

Using the expression for ζ(s) given in Definition 4.3,

d(S2) = lim
s→1

LS2(s)

ζ(s)
= lim

s→1

∏
p

(
1 + p−s − p−2s

1 + p−s

)
=
∏
p

(
1− 2p−2 + p−3

1− p−2

)
=
∏
p

(
1− 2p− 1

p3

)∏
p

(
1− p−2

)−1
.

The first product is known as the carefree constant which is approximately 0.4282495,

while the second product is 1
ζ(2)

= π2

6
. Hence, we obtain d(A) = K1π2

6
≈ 0.7044422.

4.1.3 Properties of S3

Claim 4.7. S3 is a multiplicative basis.

Proof. For any positive integer x we express it as pe11 . . . penn . If n is odd, then x ∈ S3 =⇒

x ∈ S3 ⊗ S3. If n is even, we take

x1 = penn and x2 =
n−1∏
i=1

peii .

Both x1 and x2 are elements of S3. Therefore, since S3 ⊗ S3 = N, S3 is a multiplicative

basis.

n ∂(S3, n)

100 0.44

1000 0.469

10000 0.5009

100000 0.50361

1000000 0.500955

Table 3: Density of the sequence S3 over the first 100, 1000, 10000, 100000, and 1000000

terms calculated with a computer.
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As shown in Table 3, the asymptotic density of S3 starts below 0.5 but then approaches

0.5 from above. It is not very close to 0.5 for small values of n, but approaches it when n is

larger. We were unable to prove this, but it is supported by our numerical calculations.

4.1.4 Properties of S4

Claim 4.8. S4 is a multiplicative basis.

Proof. For any positive integer x we express it as pe11 . . . penn q
f1
1 . . . qfnn such that all pi ∈ Ap

and all qi ∈ Bp. Notice that x1 = pe11 . . . penn ∈ A ⊂ S4 and x2 = qf11 . . . qfnn ∈ B ⊂ S4. Both

x1 and x2 are elements of S4. Therefore, since S4 ⊗ S4 = N, S4 is a multiplicative basis.

Claim 4.9. d(S4) = 0.

Proof. Notice that A and B are both multiplicative sequences, and fA(pn) = 1 if and only if

p ∈ Ap and fB(pn) = 1 if and only if p ∈ Bp. The Euler product expansion for A is

LA(s) =
∏
p∈Ap

(
1− p−s

)−1
.

Furthermore, we know that Ap and Bp together contain all the primes without any overlap,

so using the expression for ζ(s) given in Definition 4.3,

d(A) = lim
s→1

LA(s)

ζ(s)
= lim

s→1

∏
p

(
1− p−s

) ∏
p∈Ap

(
1− p−s

)−1
= lim

s→1

∏
p∈Bp

(
1− p−s

)
=
∞∏
n=0

∏
p∈P2n+2

(
1− p−1

)
≤
∞∏
n=0

1

2
= 0 =⇒ d(A) = 0.

Similarly, we may obtain that d(B) = 0. Since S4 = A ∪B and A ∩B = ∅,

LS4(s) =
∑
n∈S4

n−s =
∑
n∈A

n−s +
∑
n∈B

n−s = LA(s) + LB(s)

=⇒ d(S) = d(A) + d(B) = 0.

Hence, the density of S4 is 0.

Corollary 2. There exists a multiplicative basis with density 0 for any order greater than 1.
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Proof. We provide an example of a multiplicative basis with density 0 for order k > 1. We

create the k sets

Qip =
∞⋃
n=0

Pkn+i.

These k sets are disjoint and cover all primes. Let Qi be the set of all numbers which have

all prime factors as elements of Qip. We obtain

d(Qi) = lim
s→1

∏
p 6∈Qip

(
1− p−s

)
=

∏
n 6≡i (mod k)

∏
p∈Pn

(
1− p−1

)
≤

∏
n6≡i (mod k)

1

2
= 0 =⇒ d(Qi) = 0.

Notice that the set

Q =
k⋃

n=1

Qi

is a basis of order k and

d(Q) =
k∑

n=1

d(Qi) = 0

We have constructed a basis of order k with density 0, so we are done.

5 Minimality of Multiplicative Bases

Consider a partially ordered set (poset) containing all multiplicative bases. We consider

a set A less than a set B if A ⊂ B and there are an infinite number of positive integers that

are elements of B and not A. We call a basis A minimal if there are no bases that are less

than A. For this poset, there may be infinitely many minimal sets.

Previously, we found a basis of order 2 with density 0, so a natural question is to consider

whether minimal bases are all of density 0 and if not, find other minimal bases based on the

bases we found.

Theorem 5.1. S1 is a minimal set.

Proof. Suppose we remove an element k ∈ S1 and call the new set S ′1. We claim that

k 6∈ S ′1⊗S ′1. If k = 1, then this is clearly true since the only way to achieve 1 is through 1 ·1.
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Now consider some other k ∈ S1. Assume for the sake of contradiction that k = xy where

x, y ∈ S ′1. If x, y 6= 1, then the sum of the exponents in the prime factorization of xy is even.

This means that k 6= xy. If x = 1, then y = k 6∈ S ′1, and similarly for y = 1. Hence, we have

reached a contradiction, so k 6∈ S ′1 ⊗ S ′1.

Suppose there exists a basis S that is less than S1. There must be an infinite number of

elements of S1 that are not in S, which means an infinite number of elements of S1 are not

in S⊗S. However, this must imply that S is not a basis of order 2, which is a contradiction.

Hence, S1 is a minimal basis.

This also shows that not all minimal bases have density 0.

Theorem 5.2. S2 is not a minimal set.

Proof. We claim that we can remove all elements of the form pe11 p
e2
2 . . . penn such that n is

even and the number of exponents which are 1 is less than n
2

to form a new basis S ′2.

We will show that any positive integer can be formed by the product of two not necessarily

distinct elements of S ′2. We can express any positive integer as k =

pe11 p
e2
2 . . . penn q

f1
1 q

f2
2 . . . qfmm such that e1, e2, . . . en are even while f1, f2, . . . , fm are odd. We

want to find two numbers x1 and x2 that multiply to k such that both x1 and x2 are in S ′2.

This means that both x1 and x2 must be divisible by p1, p2, . . . pn while only one of the two

is divisible by each of q1, q2, . . . qn. We now split this proof into four different cases.

Case 1: m+ n is even and n is even

If m = 0, then we take

x1 =

n
2∏
i=1

pi

n∏
i=n

2
+1

pei−1
i and x2 =

n
2∏
i=1

pei−1
i

n∏
i=n

2
+1

pi.

Both x1 and x2 have an even number of prime factors, but the number of exponents that

are 1 in both numbers is at least n
2
, so both x1 and x2 are elements of S ′2.
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If m > 0, then we find odd positive integers a and b such that a+ b = m. Take

x1 =
n∏
i=1

pi

a∏
i=1

qfii and x2 =
n∏
i=1

pei−1
i

m∏
i=a+1

qfii .

Both x1 and x2 have an odd number of prime factors, so they are both elements of S ′2.

Case 2: m+ n is even and n is odd

Take the two numbers

x1 = qf11

n∏
i=1

pi and x2 =
n∏
i=1

pei−1
i

m∏
i=2

qfii .

Notice that x1 has an even number of prime factors but n ≥ 1, so the number of exponents

that are 1 is at least n+1
2

, and x2 has an odd number of prime factors, so they are both

elements of S ′2.

Case 3: m+ n is odd and n is even

Take the two numbers

x1 =
n∏
i=1

pi and x2 =
n∏
i=1

pei−1
i

m∏
i=1

qfii .

Notice that x1 has an even number of prime factors but n ≥ 0, so the number of exponents

that are 1 is at least n
2
, and x2 has an odd number of prime factors, so they are both elements

of S ′2.

Case 4: m+ n is odd and n is odd

Take the two numbers

x1 =
n∏
i=1

pi and x2 =
n∏
i=1

pei−1
i

m∏
i=1

qfii .

Both x1 and x2 have an odd number of prime factors, so they are both elements of S ′2.

We have now considered all possible parity cases for n andm+n, and every positive integer

is able to be constructed from elements in S ′2. Therefore, S ′2 is a multiplicative basis.

It is still possible to remove more elements, but we were unable to find a systematic way

to do so. Using the new set, we numerically estimated the density.
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n ∂(S ′2, n)

100 0.7

1000 0.704

10000 0.7045

100000 0.70423

1000000 0.70437

Table 4: Density of the sequence S ′2 over the first 100, 1000, 10000, 100000, and 1000000

terms calculated with a computer.

As shown in Table 4, the asymptotic density of S ′2 is barely different from S2. Removing

the elements we found unnecessary barely changed the densities. This suggests that the

removed set has very few elements compared to the positive integers and has density 0.

Theorem 5.3. S3 is not a minimal set.

Proof. We claim that we can remove all elements of the form pe11 p
e2
2 . . . penn where n is not of

the form 2k − 1 and e1, e2, . . . , en > 1 to form a new basis S ′3.

We will show that for all natural numbers x = pe11 p
e2
2 . . . penn it is possible to express

x = x1x2 such that x1, x2 ∈ S ′3. We now split this proof into three cases.

Case 1: e1, e2, . . . , en > 1

First we find the k such that 2k − 1 ≤ x < 2k+1 − 1. Now let y = x+ 1− 2k and find the

l such that 2l−1 − 1 ≤ x+ 1− 2k < 2l − 1. Let z = 2k + 2l − x− 2. We can express

x1 =
z∏
i=1

pi

2k−1∏
i=z+1

peii and x2 =
z∏
i=1

pei−1
i

x∏
i=2k

peii .

Notice that x1 has 2k − 1 prime factors and x2 has 2l − 1 prime factors, so x1, x2 ∈ S ′3.

Case 2: min(e1, e2, . . . , en) = 1 and n is odd

These elements themselves are already elements of S ′3 since they were originally in S3

and not removed.
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Case 3: min(e1, e2, . . . , en) = 1 and n is even

Without loss of generality, suppose that e1 = 1. Take

x1 =
n−1∏
i=1

peii and x2 = penn .

We know x1 ∈ S ′3 since it has an odd number of prime factors and at least one exponent is

one. Hence, x1, x2 ∈ S ′3.

We have considered every possible case for the exponents in the prime factorization of

x. Every positive integer is able to be expressed as the product of two elements of S ′3, so

therefore S ′3 is a multiplicative basis.

While it is possible to remove more elements, we were unable to find a systematic way to

do so. We numerically estimated the density of the new set. We found that the values were

the exact same as with S3, so the set of numbers we removed does not contain any of the

first million positive integers. This suggests that our removed set contains very few numbers

compared to the set of all positive integers and has density 0.

Theorem 5.4. S4 is a minimal set.

Proof. By our definition of S4, we know that there is no element x ∈ S4 such that it has

prime factors in both Ap and Bp. Hence, the only way to express such a number x = x1x2

such that x1, x2 ∈ S4 is if x1 ∈ A and x2 ∈ B or vice versa.

Without loss of generality, suppose we remove an element y > 1 of A from S4 to get S ′4.

For any element z > 1 of B, the only way to form yz from S4 is from y and z. However,

y 6∈ S ′4, so it is impossible to form yz from two elements of S ′4. There are infinitely many

elements of B, so there are infinitely many positive integers not in S ′4 ⊗ S ′4. Similarly, S ′4 is

not a basis if we remove an element of B.

Suppose there exists a basis S that is less than S4. There must be elements in S4 that are

not in S, which means an infinite number of positive integers are not in S⊗S. Therefore, S is

not a basis of order 2, so we have reached a contradiction. Hence, S4 is a minimal basis.
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6 Conclusion and Future Work

In summary, we have worked towards the multiplicative variation of the Erdös-Turán

Conjecture. We proved that it is only possible for a basis to have finite efficiency if its

density is 0. To explore this last case more, we considered some examples of multiplicative

bases and calculated their density both numerically and analytically. However, we were not

able to disprove the case of density 0 bases as we successfully found a construction for one.

As a basis with density 0 existed, we investigated whether all bases had a subset of density

0 that was also a basis. For our bases, we proved whether they were minimal and tried to

find a minimal subset of it if it was not minimal.

In the future, we plan on continuing our work on our conjecture. Although we were

unable to prove the case with density 0, our conjecture is not disproved by the example.

Furthermore, we will investigate more examples of multiplicative bases to understand more

about them as well as the set of minimal bases.
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