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Abstract

In this paper, we try to calculate R+(S) for algebraic numbers S in order to show the
existence of symmetric monoidal functors between Deligne categories Rep(St) → Rep(S ′t).
We first evaluate R+(S) for rational S (R+(S) = Z[ 1

n
] = Z[m

n
]). In the case where S =

√
n,

we use the gained intuition from the rational case as well as quadratic reciprocity to reach
certain conclusions about the possibilities of R+(S). We not only get Z[

√
n] ⊂ R+(

√
n), but

also the stronger statement for n = 2 that R+(
√

2) = Z[ 1
p1
, 1
p2
, . . . , 1

pi
, . . .][

√
2] for primes pi

such that

(
2

pi

)
6= 1.

Summary

Representation theory is a branch of mathematics that studies algebraic structures by
representing their elements as vector spaces and linear transformations of these vector spaces.
It allows one to utilize linear algebra techniques to simplify problems in abstract algebra.
In this paper, we evaluate the properties of a specific algebraic structure R+(S) which is
generated from a set of binomial coefficients of an algebraic number S. In order to further
study this specific structure, we use number theoretical techniques to evaluate R+(S) for
rational S and for S =

√
2.



1 Introduction

Representation theory as a field has been around since Gauss in the beginning of the 19th

century, but was formally created by Frobenius about 100 years ago when he investigated

characters of finite nonabelian groups. [1]

Representation theory allows one to study specific algebraic structures by representing

their elements as vector spaces and linear transformations. Combining the fields of abstract

algebra and linear algebra makes it possible to investigate many properties of algebraic

structures.

Specifically, consider the Deligne category Rep(St), for t ∈ C. One can think about it as

a kind of algebraic continuation of the regular tensor categories of representations of Sn –

Rep(Sn) for integer n. One interesting question about such categories is whether there is

a symmetric monoidal functor between Rep(St) and Rep(St′) for t, t′ ∈ C. The existence of

such functors is dictated by the following lemma:

Lemma 1.1. Symmetric monoidal functors between Deligne categories Rep(St)→ Rep(St′)

with t, t′ /∈ Z≥0 exist iff t ∈ R+(t′).

Here, R+(t′) is the set of positive linear combinations of

(
t′

k

)
(see definition 2.1 be-

low). One important consequence of this result used below is that R+(t) is closed under

composition. This means that if t1 ∈ R+(t2) and t2 ∈ R+(t3), when t1 ∈ R+(t3) and so

R+(t2) ⊂ R+(t3) (indeed, take a composition of functors).

Hence, in order to study functors between Deligne categories, we need to calculate R+(t)

for different values of t. This is done in the current paper for rational t and for some algebraic

t satisfying quadratic equations.

For a more detailed discussion of the above see [2].
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2 Methods

For x, k ∈ N, the binomial coefficient

(
x

k

)
is the number of ways to choose k objects

from x total ones such that order does not matter. We can calculate it for x ≥ k using the

formula

(
x

k

)
= x!

k!(x−k)! .

This fact only works for non-negative integer values of x and k. However, we can generalize

the definition of binomial coefficients to work for non-integer values of x. For x ∈ C and

k ∈ N,

(
x

k

)
= x(x−1)(x−2)(x−3)···(x−k+1)

k!
.

Definition 2.1. Given v1, v2, v3, ..., vn ∈ C, a positive linear combination of these num-

bers is any expression of the form b1v1 + b2v2 + b3v3 + · · · + bnvn for non-negative integers

b1, b2, b3, ..., bn.

We define a positive linear span, Z+(v1, v2, ..., vn) ∈ C to be the set of all positive linear

combinations of a given set of numbers.

Now, we can define R+(S).

Definition 2.2. Let S ∈ C. We define R+(S ) as the positive linear span Z+

((
S

0

)
,

(
S

1

)
,

(
S

2

)
, ...

)
.

We now prove some basic properties of R+(S).

Lemma 2.1. R+(S) is a closed ring under multiplication.

Proof. In order to prove the lemma, it’s sufficient to show that the product of

(
r

i

)
and(

r

j

)
can be expressed as a positive linear combination of

(
r

k

)
for some k. This specifically

follows from the fact that (1 + z)r(1 +w)r = (1 + (z+w+ zw))r. We can expand this to get

Σi,j

(
r

i

)(
r

j

)
ziwj = Σk

(
r

k

)
(z+w+ zw)k. It follows that

(
r

i

)(
r

j

)
is equal to the coefficient

of ziwj in Σk

(
r

k

)
(z + w + zw)k, which is a positive linear combination of

(
r

k

)
since all

coefficients in the expansion of (z + w + zw)k are positive integers.

Lemma 2.2. If t ∈ R+(S) and t′ ∈ R+(t), then t′ ∈ R+(S).
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Proof. This follows from Lemma 1.1 in the introduction as well as [2].

The main objective of our research is to study R+(S) for some values of S.

We can easily figure out R+(S) for integer S.

Theorem 2.3. For integer values of S, there are two possible cases for R+(S). If S ≥ 0,

then R+(S) is all positive integers. If S < 0, then R+(S) is all integers.

Proof. First consider the case of S ≥ 0.

Note that

(
S

k

)
= 0 if S < k.

Thus, we are looking at Z+

((
S

0

)
,

(
S

1

)
, ...,

(
S

S

))
. The numbers

((
S

0

)
,

(
S

1

)
, ...,

(
S

S

))
,

are all integers greater than zero, which implies we can’t achieve any negative integers in our

span. We can use the number

(
S

0

)
= 1 to span all positive integers.

Then, we look at the case of S < 0.

Lemma 2.4. For S < 0, it holds that Z+

((
S

0

)
,

(
S

1

))
= Z.

Proof. We know that

(
S

0

)
= 1 and

(
S

1

)
= S, a negative number. We can add (−S − 1) · 1

and S to get −1. Then, we can use 1 and −1 as generators to create the entirety of Z.

Since all

(
S

k

)
are integers, we conclude from the statement of our lemma that R+(S) = Z

for S < 0.

2.1 Facts about Z/pqZ

It’s useful for us to now show a few properties of Z/pqZ for prime p. These facts will be

used in later proofs.

Lemma 2.5. Multiplication by n such that p - n maps Z/pqZ to Z/pqZ bijectively.
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Proof. Denote the map of multiplication by n f : Z/pqZ→ Z/pqZ. Let’s start with proving

that f is injective. Given elements x1, x2 ∈ Z/pqZ, we want to show that iff f(x1) = f(x2),

then x1 = x2.

If f(x1) = f(x2), then we get that n·x1 ≡ n·x2 (mod pq). Thus, n(x1−x2) ≡ 0 (mod pq),

and as gcd(n, p) = 1, we get x1 ≡ x2 (mod pq) and x1 = x2 as elements of Z/pqZ.

Next, we prove that f is surjective.

Since we know that f is injective, we know that each a ∈ Z/pqZ maps to a unique element

of Z/pqZ. So it follows that the image of f has pq unique elements. However, we know that

|Z/pqZ| = pq, hence the image of f has to cover the whole |Z/pqZ|. This shows that f is

surjective, and the fact that f is bijective follows.

Lemma 2.6. Any equation of the form x2 −m for m ∈ Z has exactly 2 solutions in Z/pqZ

for p 6= 2 if the Legendre symbol

(
m

p

)
is equal to 1.

Proof. We use induction on q. In the base case of q = 1, this is true by the definition of the

Legendre symbol.

For the inductive step, assume that there are exactly 2 solutions in Z/pqZ, namely n1

and n2.

Since a solution in Z/pq+1Z must be a solution in Z/pqZ, we know that all solutions in

Z/pq+1Z are of the form ni + kpq where k ∈ N ranges from 0 to p− 1 and i = 1, 2.

We now check if these are solutions to the equation x2−m ≡ 0 (mod pq+1). Substituting,

we have n2
i + 2nikp

q + k2p2q ≡ m (mod pq+1). This is equivalent to n2
i + 2nikp

q ≡ m

(mod pq+1). We also have that n2
i ≡ m (mod pq), so n2

i ≡ m + lip
q (mod pq+1) and li ∈ N

such that 0 ≤ li < p. After plugging this in, we finally have lip
q + 2nikp

q ≡ 0 (mod pq+1).

As p - ni, Lemma 2.5 tells us that there exists exactly 1 solution for each ni, so there are 2

total solutions for the original equation.
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3 S is rational

We now consider R+(S) for rational S.

Theorem 3.1. For rational values of S = m
n

, R+(S) is equal to Z[ 1
n
] = Z[m

n
].

In order to prove this theorem, we need to first prove a few lemmas.

Proposition 3.2. All numbers of the form

(
m
n

k

)
can be written in the form of M

n
l1
1 ·n

l2
2 ·····n

ln
n

where n1, n2, ..., nn are prime factors of n.

Proof. Using the definition for

(
x

k

)
, we have(

m
n

k

)
=

m
n
· (m

n
− 1) · (m

n
− 2) . . . (m

n
− k + 1)

k!

. Multiplying the numerator and denominator by nk, we get m(m−n)(m−2n)...(m−(k−1)n)
nk·k! .

Denote the numerator of the above fraction, xk = m(m− n)(m− 2n) . . . (m− (k− 1)n).

Furthermore, define the p-adic valuation of a number x, written as νp(x), to be the largest

exponent of p that divides x.

Now, we will show that for all primes p such that p - n, νp(xk) ≥ νp(k!).

In order to find νp(xk), we denote the terms of xk in the following way: a0 = m, a1 = m−n,

a2 = m − 2n and more generally, ai = m − ni. Note that in each set of p consecutive

terms, {a0, a1, ..., ap−1}, {ap, ap+1, ..., a2p−1}, and more generally, {aip, aip+1, ..., ap(i+1)−1}, it

is obvious by Lemma 2.5 that there is 1 term divisible by p where p - n. Thus among ai,

there are at least bk
p
c numbers divisible by p in the first k terms.

Given the set of remainders modulo pq, {pqi (mod pq), ..., pq(i+ 1)− 1 (mod pq)}, this is

equivalent to Z/pqZ.

From our Lemma 2.5, we have that {npqi (mod pq), . . . , n(pq(i + 1) − 1) (mod pq)} is

also equivalent to Z/pqZ.

We can shift each term by −m to get {npqi − m (mod pq), ..., n(pq(i + 1) − 1) − m

(mod pq)} which is also equivalent to Z/pqZ, since Z/pqZ is a group under addition..
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From this, it follows that the set contains 0, so among {apqi, ..., apq(i+1)−1}, one number is

divisible by pq and thus, there are at least b k
pq
c numbers divisible by pq in the first k terms.

However, in the first k positive integers, there are exactly b k
pq
c numbers divisible by pq.

We now have that νp(xk) ≥ νp(k!). From this, it follows that if p - n, then there are no

factors of it in the denominator after simplification, since there are enough powers of p in

the numerator to cancel out all the powers of p in k!.

Lemma 3.3. For m,n co-prime, Z[ 1
n
] = Z[m

n
].

Proof. In order to show this, we need to show that Z[m
n

] ⊆ Z[ 1
n
] and Z[ 1

n
] ⊆ Z[m

n
]. The

first part is obvious. For the second part, note that Bezout’s identity tells us that there

exist positive integer solutions to the equation Am + Bn = 1 for integers A,B. Dividing

by n, we get Am
n

+ B = 1
n

which means that 1
n
∈ Z[m

n
]. It immediately follows then that

Z[ 1
n
] ⊆ Z[m

n
].

Lemma 3.4. For S ∈ Q, we have R+(S) ⊆ Z[S].

Proof. Let S = m
n

for relatively prime positive integers m,n. We will instead prove that

R+(S) ⊆ Z[ 1
n
] (Lemma 3.3).

By Proposition 3.2, we get that all numbers of the form

(
m
n

k

)
can be written in the form

of M

n
l1
1 ·n

l2
2 ·····n

ln
n

where n1, n2, ..., nn are prime factors of n. Since we can write this number in

the form, M ′

nα
where α,M ′ ∈ Z this number is in Z[ 1

n
] as we can take 1

n
, raise it to the αth

power, and multiply by M ′. It follows that

(
m
n

k

)
∈ Z[ 1

n
] and thus R+(S) ⊆ Z[S].

Lemma 3.5. For S ∈ Q, we have Z[S] ⊆ R+(S).

Proof. If we can show that 1, m
n
,−1 ∈ R+(m

n
), then we can show that Z[S] ⊆ R+(S). Indeed

take y ∈ Z[m
n

], we have y =
∑
yi
(
m
n

)i
where yi are integers. Since R+(S) is closed under

addition, it’s sufficient to show that each term belongs to R+(S). To create each term, raise
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m
n

to the i-th power and if yi ≥ 0, multiplied by yi. If yi < 0, then we multiply by −1 and

−yi.

We have

(
m
n

0

)
= 1 and

(
m
n

1

)
= m

n
, so 1, m

n
∈ R+(m

n
).

From Proposition 3.2, we have that all numbers of the form

(
m
n

k

)
can be written as

M

n
l1
1 ·n

l2
2 ·····n

ln
n

where n1, n2, ..., nn are prime factors of n. Also, note that there exists k such that(
m
n

k

)
< 0 since we can simply take the first k such that k > m

n
if m

n
is positive and k = 1

otherwise.

For such a k, then consider M

n
l1
1 ·n

l2
2 ·····n

ln
n

· nl1
1 · nl2

2 · · · · · nln
n + (−M − 1) = −1 (which works

as (−M − 1) is positive) and thus, −1 ∈ R+(m
n

).

Now, we can finally prove Theorem 3.1, R+(S) = Z[ 1
n
] = Z[m

n
].

Proof. From Lemma 3.3, we have that Z[ 1
n
] = Z[m

n
] Lemma 3.4 tells us that R+(m

n
) ⊆ Z[m

n
].

Lemma 3.5 tells us that Z[m
n

] ⊆ R+(m
n

). Combining these lemmas, we finally have that

R+(m
n

) = Z[m
n

] = Z[ 1
n
]

We now define the notion of an algebraic number.

Definition 3.1. [3] A complex number ξ is called an algebraic number if it satisfies some

polynomial equation f(x) = 0 where f(x) is a polynomial over Q.

We know that all rational numbers m
n

are algebraic, they are roots of polynomials of the

form nx − m = 0. It’s natural then to try to calculate R+(S) for more general algebraic

numbers, which is the goal of our research.

4 S =
√
n

In this section, we take S to be of the form,
√
n for nonsquare n > 0.

We calculate R+(S) for S =
√
n.

7



Theorem 4.1. We have Z[
√
n] ⊂ R+(

√
n) for nonsquare n > 0.

In order to prove this theorem, we need to first prove a few lemmas.

Lemma 4.2. All numbers of the form

(√
n

k

)
can be expressed in the form ak − bk

√
n for

even k or ck
√
n− dk for odd k where ak, bk, ck, dk are non-negative rational numbers.

Proof. We prove this by induction. The base cases of k = 0 and k = 1 give values of 1 and

√
n respectively.

Now for the inductive step. Note that

( √
n

k + 1

)
equals

(√
n

k

)
·
√
n−k
k+1

. Take k to be odd.

We have the number

(√
n

k

)
to be of the form ck

√
n− dk, and the next number for even k is

of the form nck+kdk
k+1

− (dk+kck)
√
n

k+1
. Take k to be even. We have

(√
n

k

)
of the form ak − bk

√
n,

and the next

( √
n

k + 1

)
is of the form (ak+kbk)

√
n

k+1
− nbk+kak

k+1
.

In both cases, k is odd and k is even, we have a

( √
n

k + 1

)
of the desired form, so we are

done.

Let ak
bk

= hk for even k and dk
ck

= hk for odd k.

Lemma 4.3. If there is an h2j+1 that is larger than h2i for i, j ∈ N, then −
√
n ∈ R+(

√
n).

Proof. Let’s take a linear combination of a2i− b2i
√
n and c2j+1

√
n− d2j+1. Multiply the first

equation by d2j+1, the second by a2i and add them.

We thus have (a2ic2j+1 − b2id2j+1)
√
n. If b2id2j+1 > a2ic2j+1 (this is equivalent to h2j+1 >

h2i), we get a negative rational multiple (say −M
N

for positive integer M,N) of
√
n. We can

then multiply by N and add (M − 1)
√
n to get the desired −

√
n.

Lemma 4.4. We can get a recursive formula for hj for positive integers j. Namely hj+1 =

jhj+n

hj+j
for j ≥ 2 with h2 = n.
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Proof. We show this is true for j is odd and j is even. If j is odd, then we have hj+1 =

aj+1

bj+1
=

cjn+jdj
dj+jcj

=
jhj+n

hj+j
as aj+1 =

cjn+jdj
j+1

and bj+1 =
dj+jcj
j+1

. If j is even, then we have

hj+1 =
dj+1

cj+1
=

bjn+jaj
aj+jbj

=
jhj+n

hj+j
as dj+1 = bjn+ jaj and cj+1 = aj + jbj.

Let mj = hj −
√
n. Note that mj is positive if hj ≥

√
n and negative if hj <

√
n.

Lemma 4.5. The sequence mj is monotonic for j >
√
n.

Proof. Take the difference hj+1 − hj =
n−h2

j

hj+j
.

This means that we have hj+1 > hj iff hj <
√
n.

Calculate mj+1 =
mj(j−

√
n)

mj+
√
n+j

.

For j >
√
n, we know that mj+1 has the same sign as mj. As j + 1, j + 2, and so on are

all greater than
√
n, we get a chain of terms all of the same sign after j >

√
n.

Thus after j >
√
n, we have all hj >

√
n (mj > 0) or hj <

√
n (mj < 0), so hj is

monotonic after j >
√
n.

Proposition 4.6. −
√
n ∈ R+(S)

Proof. Given that the sequence is monotonic after j >
√
n, it is true that we can simply

choose any pair of consecutive terms after j >
√
n such that the term with odd j is greater

than the term with even j. If the sequence is increasing, simply take h2n, h2n+1 for 2n >
√
n.

If the sequence is decreasing, simply take h2n+1, h2n+2 for 2n >
√
n.

Recall that we are trying to show Z[
√
n] ⊂ R+(

√
n) for nonsquare n > 0.

Proof. Note that if we show 1,
√
n,−1,−

√
n ∈ R+(S), then it is sufficient to conclude that

Z[
√
n] ⊂ R+(S). Indeed, from this using positive linear combinations, we can get any a+b

√
n.

We have

(√
n

0

)
= 1 and

(√
n

1

)
=
√
n. From the conclusion of Proposition 4.6, we have

that −
√
n ∈ R+(S). To get −1, we take

√
n · −

√
n and add n− 1 (a positive number).
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4.1 Denominators of fractions of the form

(√
2

k

)
We now consider the fractions

(√
2

k

)
where k is a natural number.

From Lemma 4.2, we know all numbers of this form can be expressed as ak − bk
√

2 for

even k or ck
√

2− dk for odd k where ak, bk, ck, dk are non-negative rational numbers.

We can combine these numbers into simplified fractions over the denominator, and we

are specifically interested in the prime factors of these denominators.

Before we proceed, we need some more definitions of some concepts in algebraic number

theory.

The general concept of an algebraic field is as follows.

Definition 4.1. [3] An algebraic field is any subset of the set of all algebraic numbers which

is a field itself.

Then, we define algebraic integers.

Definition 4.2. [3] An algebraic number ξ is called an algebraic integer if it satisfies some

monic polynomial equation f(x) = xn + b1x
n−1 + · · ·+ bn = 0 with integral coefficients.

Now, we move on to the definition of a norm.

Definition 4.3. [3] Denote the norm N(α) of a number α = (a+ b
√
m)/c in Q(

√
m) as the

product of α and its conjugate. Thus, we have N(α) = a2−b2m
c2

.

A unit is defined as an element having norm 1. It is known that all units are invertible.

Furthermore, we need the definition of an associate.

Definition 4.4. Two numbers are associated in an algebraic field if they differ by multipli-

cation by a unit.

Finally, we can define primes in an algebraic field.
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Definition 4.5. An algebraic integer α, not a unit, in a quadratic field Q(
√
m) is called

prime if it is divisible by only its associates and the units of the field.

We now move on to the classification of primes.

Proposition 4.7. (Theorem 9.29 in [3]) Primes in Q(
√

2) are given by: p for

(
2

p

)
= −1,

pairs p1 6= p2 such that N(p1) = N(p2) = p = p1p2, for

(
2

p

)
= 1,

√
2, and all their associated

primes.

After these definitions, we move on to the main theorem we want to prove in this section.

Theorem 4.8. Denominators of the simplified fraction

(√
2

k

)
where k ∈ N only contain

multiples of primes p such that

(
2

p

)
= 0,−1.

We start by proving a lemma.

Lemma 4.9. The sum Σk−1
i=0 νp[N(

√
2− i)] is more than 2 times νp(k!).

Proof. We want to show inductively that for q ≥ 1, there are at least 2 times b k
pq
c factors of

pq in the numerator. This is shown if we can say that there are exactly 2 solutions to x2 − 2

(mod pq) from ipq to (i+ 1)pq − 1 for any i.

This is true by Lemma 2.6.

From the previous lemma, we know that the denominator of the norm of the fraction(√
2

k

)
has no factors of p. Now, we want to show it for the fraction itself.

Lemma 4.10. If L1 and L2 are two integers from ipq to (i+1)pq−1 such that pq|N(
√

2−L1)

and pq|N(
√

2−L2) (which exist from the previous lemma), then (
√

2−L1)(
√

2−L2) is divisible

by pq.

Proof. Expanding, we want to now show that 2−
√

2(L1 +L2) +L1L2 is divisible by pq. As

L1 and L2 are solutions to x2 − 2 = 0 in Z/pqZ, it follows that L1 ≡ −L2 (mod pq). Then

we get that L1 + L2 ≡ 0 (mod pq) and L1L2 ≡ −2 (mod pq), so we are done.
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Now we can prove Theorem 4.8.

Proof. From Lemma 4.10, we get that (
√

2−L1)(
√

2−L2) is divisible by pq. From a similar

reasoning to Proposition 3.2, there are enough factors of p in the numerator to cancel all the

factors of p in the denominator.

After showing this, we can say that there are no powers of p such that

(
2

p

)
= 1 in the

denominator of the simplified fraction

(√
2

k

)
.

Now, we want to more generally calculate R+(
√

2).

Theorem 4.11. R+(
√

2) = Z[ 1
p1
, 1
p2
, 1
p3
, ..., 1

pi
, ...][
√

2] for all pi such that

(
2

pi

)
6= 1.

Proof. We first show that R+(
√

2) ⊂ Z[ 1
p1
, 1
p2
, 1
p3
, . . . 1

pi
, . . .][

√
2] for pi such that

(
2

pi

)
6= 1.

This is true from Theorem 4.8.

To show Z[ 1
p1
, 1
p2
, 1
p3
, . . . 1

pi
, . . .][

√
2] ⊂ R+(

√
2), we just need to show 1,−1,

√
2, 1

p1
, 1
p2
, . . . , 1

pi
, . . . ∈

R+(
√

2).

Lemma 4.12. The numerator of the simplified fraction

(√
2

k

)
contains no powers of primes

p such that

(
2

p

)
= −1.

Proof. This follows from the fact that N(

(√
2

k

)
has no factors of p as n2 − 2 6= 0 (mod p)

which is in fact equivalent to saying

(
2

p

)
= −1.

Given p such that

(
2

p

)
= −1. Because of Lemma 4.12, it’s true that in the simplified

fraction

(√
2

p

)
, there are no factors of p in the numerator that can cancel the factor of p in

the denominator.

We get that

(√
2

p

)(
−
√

2

p

)
= N(

(√
2

p

)
which is equivalent to some fraction M

Np2
for

relatively prime M,N .

12



We gather that 1
p
∈ R+( M

Np2
from Theorem 3.1. We also have that M

Np2
∈ R+(

√
2) by

Lemma 2.2. This means that 1
p
∈ R+(

√
2).

This concludes the proof.
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