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Abstract

We propose a generalization of Artin’s conjecture on primitive roots to the ring Z [i] of Gaus-
sian integers. We conjecture that for a fixed q ∈ Z+, every a ∈ Z [i] \ {±i, 0,±1} generates
a cyclic subgroup of the multiplicative group (Z [i] /p)× of index [(Z [i] /p)× : 〈a〉 /p] = q for
infinitely many prime ideals p. We prove the conjecture when a ∈ Z, and in several special
cases reduce it either to the classical Artin’s conjecture, or to its extension for near-primitive
roots, the Golomb’s conjecture. We conclude by showing that for every integer a, we have
∞∑
q=1

δa,q = 1, where δa,q is density of the prime ideals p yielding subgroups of index precisely q.

Summary

Artin’s conjecture on primitive roots tells us that every integer number is a primitive root for
infinitely many primes. In Golomb’s conjecture for near-primitive roots one of the conditions
of Artin’s problem is relaxed. We consider both conjectures in the ring of the Gaussian
integers Z [i]. We prove a special case of our conjecture where we pose the restriction that
one of the variables must be an integer instead of a Gaussian integer. We explore several
explicit constructions and reduce them to cases of Artin’s and Golomb’s conjectures. Finally,
we show that the sum over all densities of a fixed near-primitive root as the index changes
equals one.



1 Introduction

In 1927 the German mathematician Emil Artin [1] conjectured that for every square-free

integer a > 1, there exist infinitely many primes p such that ap−1 ≡ 1 (mod p), and a
p−1
q 6≡ 1

(mod p) for every q ∈ Z+ such that p ≡ 1 (mod q) and q 6= 1. Since it was proposed, Artin’s
conjecture has been widely researched. No significant progress was made, however, until 1967
when Hooley [2] proved the conjecture under the assumptions of the Generalized Riemann
Hypothesis. Later Murty [3] extended the result to a family of number fields. Murty and
Gupta [4] unconditionally proved that Artin’s conjecture holds for infinitely many integers
a. Heath-Brown [5] proved that there at most two prime values of a for which the conjecture
does not hold. A generalization of Artin’s conjecture was formulated by Golomb, which reads
essentially as follows: for every integer a > 1 that is not a perfect square and every q ∈ Z+,

there exist infinitely many primes p ≡ 1 (mod q) such that a
p−1
q ≡ 1 (mod p), and a

p−1
r 6≡ 1

(mod p) for every integer r > q, such that p ≡ 1 (mod r). Franc and Murty [6] partially
showed and then Moree [7] completely showed an analogous result to Hooley’s result for
Golomb’s conjecture.

We consider an extension of Golomb’s conjecture to the ring of the Gaussian integers Z [i].

Conjecture 1. Let a ∈ Z [i] \ {±i, 0,±1} and q ∈ Z+. For every pair (a, q) with possibly
certain restrictions, there exist infinitely many prime ideals p = pZ [i], such that a generates

a cyclic subgroup of (Z [i] /p)× of order
|(Z [i] /p)×|

q
.

In the context of the versions of Artin’s conjecture, the Gaussian integers are of specific inter-
est, since they are both a quadratic field extension and a cyclotomic field. Thus, they allow
us to observe properties of both algebraic objects. We examine several explicit constructions
in the setting of the conjecture and show how they can be reduced to Golomb’s conjecture.
We prove a case of Conjecture 1 when a ∈ Z. We also record several partial results. Finally,
we study the density of the set of primes satisfying our conjecture. All results are under the
assumptions of the Generalized Riemann Hypothesis (GRH).

Section 2 presents the necessary definitions for our problem and the notation used
throughout the paper. In Section 3 we formally outline the established theoretical results, and
in Section 4 we show how they directly relate to the generalized problem in Z [i]. Section 5
describes our Density Theorem, which shows how to express the density of the Gaussian
primes in terms of Wagstaff’s sum functions. In Section 6 we provide a result regarding the
sum of the densities over a fixed a for all (a, q).

2 Preliminaries

In this section we review classical notions and results from the algebraic number theory of
number fields, particularly focusing on imaginary quadratic fields and cyclotomic extensions.
We also reinterpret the definitions of primitive and near-primitive roots in those terms.
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Throughout the paper we assume familiarity with fundamental algebraic objects — group,
ring, field, ideal — and their standard notation. However, for a quick reference we provide
a broad overview in Appendix A. For a detailed introduction to algebraic number theory,
we refer the reader to Lidl and Niederreiter’s Introduction to Finite Fields [8] and Rotman’s
Galois Theory [9].

2.1 Primitive Roots

A nonzero integer a is a primitive root modulo prime p if ap−1 ≡ 1 (mod p) and a
p−1
q 6≡ 1

(mod p), for every q ∈ Z+ such that p ≡ 1 (mod q) and q 6= 1. A nonzero integer a is a

near-primitive root modulo prime p of index q if a
p−1
q ≡ 1 (mod p) and a

p−1
r 6≡ 1 (mod p),

for every integer r > q such that p ≡ 1 (mod r). In other words, a is a primitive root modulo
p if and only if a is a generator of the multiplicative group of the field of integers modulo
p, i.e. the finite group (Z/pZ)×; and a is a near-primitive root of index q if and only if it

generates a multiplicative subgroup of (Z/pZ)× of order
p− 1

q
.

2.2 Gaussian Integers

We denote by Z [i] the ring of the Gaussian integers. The Gaussian integers consist of all
complex numbers of the form a+ bi with a, b ∈ Z. It is straightforward to see that they form
a ring and Z [i] ⊂ C. For z ∈ C let the norm of z = a+bi be Nm(z) = zz̄ = (a+bi)(a−bi) =
a2 + b2. A Gaussian prime p we define as a Gaussian integer such that if p|ab for a, b ∈ Z [i],
then p|a or p|b. The following proposition is a well-known property of the Gaussian primes.

Proposition 1. A Gaussian integer p is a Gaussian prime if and only if either

• p ∈ Z and p is a prime of the form 4k + 3, or

• p 6∈ Z and Nm(p) is 2 or a prime number of the form 4k + 1.

By Z [i] /p we denote the finite quotient field modulo the Gaussian prime p, where p = pZ [i],
with (Z [i] /p)× being its multiplicative group. Further on, we use the fact that |(Z [i] /p)×| =
Nm(p)− 1.

2.3 Number Fields

The expression F/K denotes a field extension F of a field K, i.e. K is a subfield of F .
The symbol [F : K] denotes the degree of the extension F/K with respect to K. It equals
the dimension of F as a vector space over K. In the case of a finite degree extension, the
degree equals the smallest integer n such that there are elements f1, f2, . . . , fn ∈ F with the

property that every f ∈ F can be expressed in the form f =
n∑
i=1

kifi for k1, k2, . . . , kn ∈ K.

A finite degree extension of the field of rational numbers K = Q is called a number field.
The degrees of a sequence of extensions satisfies the tower law.
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Proposition 2. If K ⊂ F ⊂ E are fields with [E : F ] and [F : K] finite, then E/K is finite
and

[E : K] = [E : F ] [F : K] .

We introduce the notion of splitting. Recall that K[x] is the set of polynomials with
coefficient in K. We say a polynomial f(x) ∈ K[x] splits over F if it is a product of linear
factors in F [x]. Moreover, the splitting field of f(x) ∈ K[x] is a field extension F/K in which
f(x) splits, while f(x) does not split in any proper subfield F ′ of F .

The ring of integers of an algebraic number field K, denoted OK , is the set of elements
k ∈ K such that k is a root of a monic polynomial mk(x) ∈ Z[x]. A well-known result states
that every number field F is of the form Q(α) for some α ∈ F , and so F ∼= Q[x]/〈mα(x)〉,
where mα(x) is the monic polynomial with integer coefficients of smallest degree having α
as a root. Hence, pursuing analogy with the case of splitting for polynomials, one can define
the splitting of ideals.

Definition 1. Let p be a prime in the ring of integers OK of a number field K and let F/K
be a field extension of degree n. The prime p splits in F if

p = pOF = pe11 · · · pegg ,
where pi, i = 1, . . . , g are distinct maximal ideals of OF and g > 1. Furthermore, p is said
to split completely if ei = 1 for every i = 1, . . . , n and g = n.

2.4 Special Notation

By (a, q) we denote such a and q as in Conjecture 1. By N and N(x) we denote the
set of primes that satisfy a set of given conditions over all primes and the primes up to x
respectively (in our case these conditions are given by the variations of Artin’s conjecture).
Their corresponding natural densities (see Appendix B) we denote by δ and δ(x). By Lk/K
we denote the field extension K(ζk, k

√
a), where ζk is a k-th root of unity and a belongs to

some (a, q). In particular, when K = Q[i], we just write Lk. With µ(n) and ϕ(n) we denote
the Möbius function and Euler’s totient function respectively. We use nt to denote the biggest
power of t dividing n. Note that nt = tνt(n), where νt(n) denotes the largest e such that te|n
and te+1 - n. In equations, we denote the greatest common divisor and the least common
multiple of a and b by gcd(a, b) and [a, b] respectively.

3 Previous Results

In this section, we outline previously established results that are fundamental to our ques-
tion. The theorems in this section are all proved under the assumptions of the Generalized
Riemann Hypothesis.

3



3.1 Early Findings

Theorem 1 states Artin’s conjecture in the corrected form that Hooley [2] proved. Theo-
rem 2 shows the corrected version of Golomb’s conjecture proved by Franc and Murty [6].

Theorem 1. For every non-square integer a > 1, there exist infinitely many primes p, so
that it is a primitive root modulo p. Let a = bc2 where b is square-free. Then the natural
density (see Appendix B) of the set of satisfactory primes Na(x) is

δa(x) ∼ β(b)A
x

log x
,

where A is the Artin constant, defined as

A =
∏
q

(
1− 1

q(q − 1)

)
,

for q prime and

β(b) =


1 for b 6≡ 1 (mod p),

1− µ(b)
∏
q|b

1

q(q − 1)− 1
for b ≡ 1 (mod p).

Theorem 2. Let a = ±ah0 be a nonzero integer. Let Na,q(x) be the set of primes p < x, such
that a is a near-primitive root of index q modulo p. Then δa,q = 0, in the following disjoint
cases
• 2 - q, d(a) | q;
• a > 0, 2h2 | q2, 3 - q, 3 | h, d(−3a0) | q;
• a < 0, h2 = 1, q2 = 2, 3 - q, 3 | h, d(3a0) | q;
• a < 0, h2 = 2, q2 = 2, d(2a0) | 2q;
• a < 0, h2 = 2, q2 = 4, 3 - q, 3 | h, d(−6a0) | q;
• a < 0, 4h2 | q2, 3 - q, 3 | h, d(−3a0) | q,

where d(n) = n if n ≡ 1 (mod 4), and d(n) = 4n otherwise. In all other cases δa,q is positive
and

δa,q(x) ∼ β(a, q)A
x

log x
,

where A is the Artin constant and β(a, q) is a constant depending on a and q.

3.2 Lenstra’s Theorem

A general version of Artin’s conjecture in terms of a generator of a subgroup of a fixed
index modulo a prime ideal was studied by Lenstra in [10]. He proved the following theorem
(see Appendix C for theoretical background).

Theorem 3. Let there be given a field extension K of Q, a finite Galois extension F of
K, a subset C ⊂ Gal(F/K) which is a union of conjugacy classes, a finitely generated
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subgroup W ⊂ K×, and an integer k > 0 which is coprime to the characteristic of K. Let
M(K,F,C,W, k) be the set of prime ideals p of OK which satisfy
• the Artin symbol (F/K, p) ⊂ C (see [11] for detailed description of the Artin symbol),
• ordp(w) = 0 for all w ∈ W ,
• if ψ : W → (K/p)× is reduction of W over p, then the index of ψ(W ) in (K/p)×

divides k.
Let c(n) = |C ∩Gal(F/F ∩ Ln)|. Then, M has natural density δM , given by

δM =
∞∑
n=1

µ(n)c(n)[
F · Lf(n)/K : K

] ,
where for a prime n, set f(n) equal to the smallest power of n not dividing k, whereas, for

a composite n, set f(n) =
∏
l|n

f(l).

3.3 Wagstaff’s Sum Functions

In his research on Artin’s conjecture, Wagstaff [12] introduced special sum functions as
an efficient intermediary step in the examination of the density δa,q of some (a, q) as in
Conjecture 1. We describe them briefly. The sum function S(h, q,m) is defined as follows:

S(h, q,m) =
∞∑
n=1
m|nq

µ(n) gcd(nq, h)

ϕ(nq)nq
.

We present several lemmas regarding the behaviour of these sum functions. Lemma 1 is
due to Wagstaff [12] and Lemma 2 and 3 are due to Moree [7].

Lemma 1. Let M =
m

gcd(m, q)
, H =

h

gcd(Mq, h)
and p be a prime, then,

S(h, q,m) = Aµ(M) gcd(Mq, h)
∏

p| gcd(M,q)

1

p2 − 1

∏
p|M
p-q

1

p2 − p− 1

∏
p| gcd(H,q)

p-M

p

p+ 1

∏
p|H
p-Mq

p(p− 2)

p2 − p− 1
,

where A is the Artin constant.

Lemma 2. We have

S(h, q, 1) =
gcd(q, h)

t2

∏
p|q
hp|qp

(
1 +

1

p

)∏
p-q

(
1− gcd(p, h)

p(p− 1)

)
.

In particular, S(h, q, 1) = 0 if and only if 2|h and 2 - q.

Lemma 3. Let m be an integer, having square-free odd part. Let h and q be positive integers,
with the requirement that q is even if h is even. Then,

S(h, q,m) = S(h, q, 1)E(m2)
∏
p|m
p-q

−1
p(p−1)
gcd(p,h)

− 1
,
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where p is prime and

E(m2) =


1 if m2|q2,

−1

3
if m2 = q2 and [2, h2] |q2,

−1 if m2 = q2 and [2, h2] - q2,

0 m2 - q2.

4 Explicit Constructions in Z [i]

This section demonstrates our results in Lemmas 4 through 6 in the cases when a of some
(a, q) as in Conjecture 1 is either purely imaginary or an integer. The following result due
to Murty [3] is fundamental for our findings:

Theorem 4. Every Gaussian integer a ∈ Z [i] \ {±i, 0,±1} is a generator of (Z [i] /p)× for
infinitely many Gaussian primes p.

Lemmas 4 and 5 summarize our results for an integer a when the Gaussian prime is either
an integer or not.

Lemma 4. Let the nonzero integer a 6= ±1 satisfy the conditions of Theorems 1 and 2. Let
p be a Gaussian prime with Im(p) = 0, such that the integer a is a near-primitive root of
index q modulo p. Then it generates a cyclic subgroup of (Z [i] /p)× of index (p+ 1)q.

Lemma 5. Let the nonzero integer a 6= ±1 satisfy the conditions of Theorems 1 and 2. Let
p be a Gaussian prime with Im(p) > 0. If the integer a is a near-primitive root of index q
modulo Nm(p), then a generates a cyclic subgroup (Z [i] /p)× of index q.

Lemma 6 presents a similar result for a purely imaginary ai for a ∈ Z.

Lemma 6. Let the nonzero integer a 6= ±1 be a near-primitive root of index q modulo
p = 4k + 3 (k ∈ Z) for a prime p. Let us have a purely imaginary ai. If q is odd, then ai

generates a cyclic subgroup of (Z [i] /p)× of index
q(p+ 1)

2
. If q is even, then ai generates a

cyclic subgroup of (Z [i] /p)× of index
q(p+ 1)

4
.

5 Main Density Theorem

This section presents our main result concerning Conjecture 1 when a is an integer, i.e.
when Im(a) = 0. For the sake of clarity let us define d(a0) = a0 if a0 ≡ 1 (mod 4) and
d(a0) = 4a0 otherwise. We set m = [2h2, d(a0)] if a > 0, and m = [4h2, d(a0)] if a < 0.

Theorem 5 (Density Theorem). Let us consider (a, q) as in Conjecture 1, where a 6= ±1 is
a nonzero integer such that a = ±ah0 and a0 ∈ Z \ {−1, 0, 1}. Then if a > 0,

δa,q = S(h, q, 1) + S(h, q, 4) + S(h, q,m) + S(h, q, [4,m]),
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and if a < 0

δa,q = S(h, q, 1) + S(h, q, [4, 2h2]) + S(h, q,m) + S(h, q, [4,m]),

where the S-functions are Wagstaff’s sum functions.

5.1 Proof

We begin by connecting the general construction in Conjecture 1 with Lenstra’s result.
Then we consider the case in Theorem 5. It is imperative to note that we work in Q[i] because
Z [i] = OQ[i]. Recall that Lt = Q[i](ζt, t

√
a) for t ∈ N and t > 2.

Lemma 7. Let the set M(K,F,C,W, k) be defined as in Theorem 3. For an integer a the
set of primes satisfying Conjecture 1 is exactly M(K,F,C,W, k) = M(Q[i],Lq, idLq , 〈a〉 , q).
Moreover, it has density

δa,q =
∞∑
n=1

µ(n)

[Lnq : Q[i]]
.

Proof. Let Na be the set of primes satisfying our conjecture. It is straightforward to see that
Na ⊂M(Q[i],Q[i], idQ[i], 〈a〉 , q), since this implies that M is the set of prime ideals p ∈ Q[i],
such that the index of a modulo p is divisible by q. Let us denote the index of a by k. To
enforce equality we need to strengthen the condition on the field extension. We want q|k,
hence, we want p to split completely over Lq. We have

a
Nm(p)−1

q ≡ 1 (mod p) ⇐⇒ a ≡ xq (mod p),

for some x ∈ Q[i]/p. By a principle of Dedekind for prime ideals ([13], Chapter 1, §8, Propo-
sition 25), this is equivalent to p splitting completely over Q[i](ζq, q

√
a) = Lq, since it is the

splitting field of the polynomial g(x) = xq − a with g ∈ Q[i][x] and g does not split in any
proper subfield of Q[i](ζq, q

√
a). Hence, Na = M(Q[i],Lq, idLq , 〈a〉 , q)).

Now, we can apply the summation formula from Theorem 3 to the density δa,q of the
primes satisfying Conjecture 1 for (a, q) as in Conjecture 1. Hence,

δa,q =
∞∑
n=1

µ(n)c(n)

[Lnq : Q[i]]

Because C = {idLq}, we get that the constant c(n) = 1. After decomposing the index we get

δa,q =
∞∑
n=1

µ(n)

[Lnq : Q[i]]
=
∞∑
n=1

µ(n)

[Q[i](ζnq, nq
√
a) : Q[i](ζnq)] · [Q[i](ζnq) : Q[i]]

.

Lemma 8 and 9 address the two indices in the denominator separately.

Lemma 8. If 4|k, then [Q[i](ζk) : Q[i]] =
ϕ(k)

2
, and [Q[i](ζk) : Q[i]] = ϕ(k) otherwise.
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Proof. If 4|k, then i is a k-th root of unity. We have [Q[i](ζk) : Q[i]] =
[Q(ζk) : Q]

[Q[i] : Q]
. Hence,

[Q[i](ζk) : Q[i]] =
ϕ(k)

2
. Now, if 4 - k, then i is not a k-th root of unity. Similarly,

[Q[i](ζk) : Q[i]] =
[Q[i](ζk) : Q]

[Q[i] : Q]
=

[
Q(ζ[4,k]) : Q

]
[Q[i] : Q]

.

Hence, [Q[i](ζk) : Q[i]] =
ϕ([4, k])

2
= ϕ(k).

Lemma 9. Let a = ±ah0 and a, a0 ∈ Z. Then [Q[i](ζk, k
√
a) : Q[i](ζk)] =

k

gcd(k, h)ε(k)
. If

a > 0,

ε(k) =

{
2 2h2|k and d(a0)|k ⇐⇒ m|k
1 otherwise,

and if a < 0,

ε(k) =


2 2h2|k and d(a0)|k ⇐⇒ m|k
1

2
4|k and 2h2 - k

1 otherwise.

Proof. Let us first note that the introduction of the constant ε(k) is due to the fact that
Q(
√
a) ⊂ Q(ζt) for some t, which is a direct consequence of the Kronecker-Weber theo-

rem ([13], Chapter X, §3, Corollary 3). Moreover, we know that Q( l
√
a) 6⊂ Q(ζt) for all l > 2

(ibid). Hence, ε(k) ≤ 2.
We have ε(k) = 2 if and only if Q(

√
a) ⊂ Q(ζk), therefore, again from Kronecker, we get

d(a)|k. Furthermore, we want the index to be an integer; hence, 2| k
gcd(k,h)

⇐⇒ 2h2|k. The

only special case occurs when a < 0. Since k
√
−1 6∈ Q(ζk) , when 4|k and k2 ≤ h2, we need

to have ε(k) =
1

2
in order to compensate for it.

Proof of Theorem 5. Combining the summation formula with the two previous lemmas we
get the following expression for the density

δa,q =
∞∑
n=1

µ(n) gcd(nq, h)ε′(nq)

ϕ(nq)nq
.

where ε′(nq) is a constant term, determined by the values of ε(nq) in Lemma 9 and the
1

2
coefficient from Lemma 8. Taking into account the divisibility requirements we can ex-

press the summation formula in terms of Wagstaff’s sum functions as done in the theorem
statement.

5.2 Corollaries

A few corollaries follow from the density formulas in Theorem 5.
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Corollary 1. If 2|h and 2 - q, then δa,q = 0.

Proof. Let us note that from Lemma 2, we have S(h, q, 1) = 0 if and only if 2|h and 2 - q.
Since q is odd, we have

S(h, q, 4) =
∞∑
n=1
4|nq

µ(n) gcd(nq, h)

ϕ(nq)nq
=
∞∑
n=1
4|n

µ(n) gcd(nq, h)

ϕ(nq)nq
= 0.

Since 2|h, we also get 4|m, 4| [4, 2h2] and 4| [4,m]. Let us consider S(h, q,m). Because 4|m
and q is odd, we get S(h, q,m) = 0 due to µ(n) = 0 for 4|m|n. We similarly examine
S(h, q, [4, 2h2]) = 0 and S(h, q, [4,m]) = 0. Hence, for a > 0,

δa,q = S(h, q, 1) + S(h, q, 4) + S(h, q,m) + S(h, q, [4,m]) = 0,

and for a < 0,

δa,q = S(h, q, 1) + S(h, q, [4, 2h2]) + S(h, q,m) + S(h, q, [4,m]) = 0.

Corollary 2. If h is odd or q is even, then δa,q = S(h, q, 1)β(m), where if a > 0,

β(m) = 1 + E(4) + E(m2)
∏
p|m
p-q

−1
p(p−1)
gcd(p,h)

− 1
+ E([4,m]2)

∏
p|[4,m]
p-q

−1
p(p−1)
gcd(p,h)

− 1
,

and if a < 0,

β(m) = 1 + E([4, 2h2]2) + E(m2)
∏
p|m
p-q

−1
p(p−1)
gcd(p,h)

− 1
+ E([4,m]2)

∏
p|[4,m]
p-q

−1
p(p−1)
gcd(p,h)

− 1
.

Proof. We apply Lemma 3 directly.

Now, building on Corollary 2 we formulate the following theorem describing the zeros of
the density δa,q (for proof of the different cases see Appendix E).

Theorem 6 (Vanishing of the Density). Let d′(a0) =
d(a0)

d(a0)2
. The set Na,q has density

δa,q = 0 in the following mutually disjoint cases
• 2 - q, 2|h,
• q2 = 2, h2 = 1, 3 - q, 3|h, d(3a0)|q,
• q2 = 4, h2 = 2, d′(a0)|q,
• a < 0, q2 = 2h2, h2 > 2, 3|h, d′(a0)|q,
• 4h2|q2, h2 > 2, 3 - q, 3|h, d(3a0)|q.

6 Sum of Densities

In this section we describe a property of the densities δa,q over all positive integers q for
a fixed a, which follows from the summation formula, derived from Lemma 7.
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Theorem 7. Let us fix an integer a. Then δa :=
∞∑
q=1

δa,q = 1, where δa,q are as in Theorem 5.

Proof. Let f(k) = [Q[i](ζk, k
√
a) : Q[i]]

−1
and τ(t) be the number of divisors of t. We have

f(k) ≤ 4h

kϕ(k)
due to Lemma 8 and 9. Hence, f(k) = O(k−2+ε) for some ε > 0. Moreover,

for ε > 0, we have τ(t) = O(tε) when t→∞. Therefore, the sum
∞∑
k=1

f(k)τ(k) converges.

Now, we find that

δa =
∞∑
q=1

δa,q =
∞∑
q=1

∞∑
n=1

f(nq)µ(n)

is an absolutely convergent double sum, since

δa ≤
∞∑
q=1

∞∑
n=1

f(nq)|µ(n)| ≤
∞∑
t=1

f(t)τ(t).

Therefore, δa =
∞∑
t=1

f(t)
∞∑
d|t

µ(d) = f(1) = 1.

7 Conclusion

We have examined a generalization of Artin’s conjecture on primitive roots into the field of
the Gaussian integers Z [i]. We have shown a connection between several special constructions
and already known instances of an Artin-type problem, namely Golomb’s conjecture on near-
primitive roots. For an integer a we have reduced the problem to finding the non-zero values
of a certain arithmetic function. Finally, we have proved a fact about the overall structure
of the primes satisfying Conjecture 1.

The next step in this research project would be to study Conjecture 1 when a has a non-
zero imaginary part. Another idea would be to generalize our results to an arbitrary quadratic
extension Q(

√
d) or an arbitrary cyclotomic field Q(ζk) as they are abelian extensions of Q,

i.e. their Galois group is abelian, and allow us to utilize the full force of class field theory.
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A General Algebraic Objects

A group is a set G closed under an associative binary operation ◦ : G × G → G, such
that there is an identity element e satisfying a ◦ e = e ◦ a = a, and for every a ∈ G there
is an inverse element a′ satisfying a ◦ a′ = a′ ◦ a = e. A group with a commutative binary
operation is called an abelian group. By |G| we denote the number of elements in the group,
also called the order of the group. A generator of a group G is an element g such that for
every a ∈ G there is some integer j for which a = gj. Moreover, a generator of index q of
a group G is an element g such that for every element a of a subgroup G′ ⊆ G with order

|G′| = |G|
q

there is some integer j such that a = gj.

A ring is a set R closed under addition (+) and multiplication (×), such that R is an
abelian group under addition, multiplication is associative, for every non-zero a ∈ R there is
a multiplicative identity e satisfying a× e = e× a = a and the distributive law holds — for
every a, b, c ∈ R we have a× (b+ c) = (a× b) + (a× c) and (b+ c)× a = (b× a) + (c× a).
An ideal, denoted I, is a subset of a ring R, such that I is a subgroup of R under addition
and for every r ∈ R and i ∈ I, it follows that ir ∈ I. An ideal is prime if ab ∈ I implies
a ∈ I or b ∈ I. Finally, a field is a set F , such that F is a ring with a multiplicative inverse
a−1 satisfying a−1 × a = a × a−1 = e, where e is the multiplicative identity of F . With
〈a1, a2, . . . , an〉 we denote an algebraic object — group, ring, field, ideal — generated by a1
through an.

B Natural Density

Definition 2. Let A ⊆ Z be a subset of the integers. Let N(x) denote the elements a ∈ A
such that a ≤ x, then the natural density δ of A is defined to be

|N(x)|
x

∼ δ,

as x→∞ provided that the limit exists.

In other words, the natural density is a way of measuring how large a subset of the
integers is. It is clear from the definition that for the natural density δ satisfies 0 ≤ δ ≤ 1.

Notice that positive natural density implies the infinite order of the subset, however, a
zero density does not directly lead to a finite order. For example, the set of prime integers has
natural density δ equal to zero. This is a direct consequence of the Prime Number Theorem,

which tells us that the number of primes up to a fixed x, denoted π(x), is π(x) ∼ x

log(x)
.

Hence, δ = limx→∞
1

log(x)
= 0.
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C Theoretical Background of Theorem 3

Here we outline the necessary theoretical background needed to fully grasp Theorem 3.
We refer the reader to Rotman’s Galois Theory [9] and Lang’s Algebraic Number Theory [13]
for a more in-depth overview of the presented theory.

Definition 3. An extension F/K is normal if every polynomial f(x) ∈ K[x] either has no
roots in L or splits into linear factors over L.

Definition 4. An extension F/K is separable if for every f ∈ F the minimal polynomial
of f in K — the polynomial of least degree for which f is root — has no two equal roots
over K.

Separability is automatic for all fields of characteristic zero; in particular, all extensions
of number fields are separable.

Definition 5. A field extension F/K is a Galois extension if and only if it is both normal
and separable.

Definition 6. For a Galois extension F/K, the Galois group, denoted Gal(F/K), is the
group of automorphisms σ : F → F , such that σ(k) = k for every k ∈ K.

Definition 7. Let G be a group. Two elements a, b ∈ G are conjugates if there exists an
element g ∈ G such that gag−1 = b. The equivalence class that contains the element a ∈ G
is defined as

Cl(a) = {b ∈ G | ∃g ∈ G s.t.b = gag−1}.
Moreover, Cl(a) is called the conjugacy class of a.

Definition 8. Let F/K be a finite extension of number fields and let p be a prime ideal in
OF . We say that p is unramified in K if in the prime ideal decomposition

pOF = Pe1
1 ·Peg

g

all ei equal to 1.

It is a classical result that in a finite extension of number fields all but finitely many
primes are unramified. The ramified primes are precisely these dividing the discriminant of
the extension.

Definition 9 ([11]). Given a number field K, a Galois extension field F , and prime ideals p
of OK and P of OF unramified over p, there exists a unique element σ = (F/K,P), denoted
the Artin symbol, of the Galois group Gal(F/K) such that for every element f ∈ F , we have

σ(f) = fNm(p) (mod P),

where Nm(p) is the norm of the prime ideal p in OK .

The Artin symbols (F/K,P) and (F/K,P′) for two distinct primes P and P′ lying over p
are conjugate inside Gal(F/K). Particularly, if F/K is an abelian extension of K — namely,
its Galois group is abelian — then (F/K,P) depends only on the prime ideal p (and not on
the choice of a prime P above), so we may denote it by (F/K, p).
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D Proofs of Lemma 4, 5 and 6

Proof of Lemma 4. Since Im(a) = 0, a is an integer. Hence, a is a generator of index q for

infinitely many integer primes with 〈a〉 ⊂ Z/pZ and |〈a〉| =
|Z/pZ|
q

. The desired result

follows from 〈a〉 also being a subgroup of (Z [i] /p)× with order

q |(Z [i] /p)×|
|Z/pZ|

=
q(p2 − 1)

p− 1
= q(p+ 1).

Proof of Lemma 5. First, because p = x + yi is a prime with positive imaginary part, it
follows that Nm(p) = x2 + y2 = 4k + 1 = l, where k ∈ Z and l is an integer prime. Now, we
seek to show

a
l−1
q ≡ 1 (mod p).

This is equivalent to showing that a
l−1
q = pz + 1 for some appropriate z ∈ Z [i]. After

multiplying with the conjugate of p and taking into account that l is a prime number, we
get that

(x− yi)
(
a

l−1
q − 1

)
≡ 0 (mod l).

Since l is an integer and both the real and the imaginary parts need to be divisible by l.

Hence, the desired result is, in fact, equivalent to a
l−1
q ≡ 1 (mod l). The latter is true by the

assumption that a is a near-primitive root of index q modulo l.

Proof of Lemma 6. Since a is an integer, the powers of ai alternate between the imaginary
and the real axis. Hence, ai is a generator of a subgroup of the union of the groups (Z/pZ)×

and i(Z/pZ)×, whose order is 2(p − 1). Recall that |(Z [i] /p)×| = p2 − 1 = (p − 1)(p + 1).

From a
p−1
q ≡ 1 (mod p), we get that q is either odd or even with 4 - q. If q is odd, then

(ai)
2(p−1)

q ≡ 1 (mod p) with
2(p− 1)

q
being the smallest power satisfying the equivalence.

Hence, ai is a near-primitive root of index
q(p+ 1)

2
. If q is even, for the imaginary term

to vanish, we need 4 to divide the power. Similarly, we get (ai)
4(p−1)

q ≡ 1 (mod p) with
2(p− 1)

q
being the smallest power satisfying the equivalence. Hence, ai is a near-primitive

root of index
q(p+ 1)

4
.
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E Proof of Theorem 6

We use the result from Corollary 2. We note that∏
p|m
p-q

−1
p(p−1)
(p,h)

− 1
=


1, if d′(a0)|q,
−1, if d(3a0)|q, 3 - q, 3|h,

(−1, 1), otherwise.

The case (2 - q, 2|h). This is just the statement in Lemma 1. Hence, δa,q = 0.
The case (q2 = 2, h2 = 1, 3 - q, 3|h, d(3a0)|q). Since E(4) = E([4, 2h2]) = 0 for h2 = 1 and
q2 = 2, we can examine the cases a > 0 and a < 0 simultaneously. By the assumptions in
the case, we get ∏

p|m
p-q

−1
p(p−1)
(p,h)

− 1
= −1.

Moreover, E(m2) = 1 and E([4,m2]) = 0 because q2 = 2 and h2 = 1. Hence, δa,q = 0.
The case (q2 = 4, h2 = 2, d′(a0)|q). Due to d′(a0)|q, we have∏

p|m
p-q

−1
p(p−1)
(p,h)

− 1
= 1.

Moreover, E(4) = E([4, 2h2]) = E(m2) = E([4,m2]) = −1

3
because q2 = 4 and 2h2 = 4.

Hence, after plugging these values, we get δa,q = 0.
The case (a < 0, q2 = 2h2, h2 > 2, d′(a0)|q). Due to d′(a0)|q, we have∏

p|m
p-q

−1
p(p−1)
(p,h)

− 1
= 1.

Moreover, E([4, 2h2]) = E(m2) = E([4,m2]) = −1

3
because q2 = 2h2 and h2 ≥ 4. Thus, the

density δa,q = 0.
The case (4h2|q2, h2 > 2, 3 - q, 3|h, d(3a0)|q). Due to 3 - q, 3|h, d(3a0)|q, we have∏

p|m
p-q

−1
p(p−1)
(p,h)

− 1
= −1.

We have E(4) = E([4, 2h2]) = 1 and E([4,m2]) = E([4,m2]) = 1 because 4h2|q2 and h2 ≥ 4.
Thus, the density δa,q = 0.

16


	Introduction
	Preliminaries
	Primitive Roots
	Gaussian Integers
	Number Fields
	Special Notation

	Previous Results
	Early Findings
	Lenstra's Theorem
	Wagstaff's Sum Functions

	Explicit Constructions in Z[i]
	Main Density Theorem
	Proof
	Corollaries

	Sum of Densities
	Conclusion
	Acknowledgements
	General Algebraic Objects
	Natural Density
	Theoretical Background of Theorem 3
	Proofs of Lemma 4, 5 and 6
	Proof of Theorem 6

