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Abstract

In this paper, we use Strang splitting to solve the variable-coefficient Burgers’ equation
ut = a(t)uxx + b(x, t)uux. We prove by showing the stability and consistency of Strang
splitting that if the equation is well-posed, then the Strang splitting method has first-order
convergence. The convergence of Strang splitting allows us to numerically solve the variable-
coefficient Burgers’ equation by solving its two constituent equations: the heat equation and
the inviscid Burgers’ equation. We have good numerical methods for these two equations
respectively.

Summary

In this paper, we apply a method called Strang splitting to solve a partial differential
equation called the variable-coefficient Burgers’ equation, which has applications in acoustics.
Strang splitting is an algorithm for computers to approximate the exact solution of the
equation and it can be useful when finding exact solutions is difficult. We prove that the
solution obtained by Strang splitting converges to the exact solution when we devote enough
computing power.



1 Introduction

One well-studied PDE that has applications in areas such as fluid mechanics and traffic

flow is Burgers’ equation [1]. In one-dimensional space, Burgers’ equation takes the form

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (1)

where u(x, t) is a scalar function of position x and time t, and the constant ν is called the

diffusive constant [2]. A generalization of the 1D equation is the variable-coefficient Burgers’

equation

∂u

∂t
= a(t)

∂2u

∂x2
+ b(x, t)u

∂u

∂x
, (2)

where a(t) is a functions of time and b(x, t) is a function of position and time. Equation

(2) is useful in nonlinear acoustics where the two coefficients are physical parameters of the

medium. Analytically, Equation (2) can no longer be solved using the Cole-Hopf transfor-

mation used for the regular Burgers’ equation [3], but requires transformations using Lie

groups [4].

Our study aims to solve the variable-coefficient Burgers’ equation numerically. Numerical

methods are algorithms that approximate the solutions of the equation. The main difficulty

in numerically solving Equation (2) is that Burgers’ equation is a mixed equation, because

it has both the term uux, which belongs to the hyperbolic inviscid Burgers’ equation, and

the term uxx, which belongs to the parabolic heat equation [5]. For parabolic equations, the

finite difference method usually works well, while for nonlinear hyperbolic equations, such

as the inviscid Burgers’ equation, the finite volume method is more suitable. For a mixed

equation, standard methods that apply to either hyperbolic or parabolic equations may not

be stable or converge.

There has been much research about numerical methods for Equation (1). For exam-

ple, Aref and Daripa [6] used the finite difference method that discretizes space only to solve

Equation (1). In 2011, Holden, Lubich, and Risebro [7] applied the operator splitting method
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to Equation (1) and proved second-order convergence for the method. Intuitively, the oper-

ator splitting method solves a mixed equation by solving its constitutive equations. In the

case of Burgers’ equation, this means we can use a combination of standard methods that

solve the heat equation and the inviscid Burgers’ equation to get a correct approximation.

In this paper, we focus on a type of operating splitting method called Strang splitting and

prove that the numerical solution obtained from Strang splitting has first-order convergence

to the exact solution of the variable-coefficient Burgers’ equation. The technique of using

consistency and stability to prove convergence is modeled after the proof in [7].

Section 2 includes a description of important definitions and theorems the proof requires.

Section 3 shows the convergence theorem we proved. Section 4 and Section 5 show results

in the stability and consistency of the Strang splitting method, which are necessary for the

proof of convergence in Section 6. Lastly, in Section 7, we discuss possible directions for

future research.

2 Preliminaries

Definition 2.1 (Weak derivative). On R, g(x) is a weak derivative of f(x) if for all φ ∈

C∞c (R), we have ∫
R
fφ′ dx = −

∫
R
gφ dx.

In this case, we write g = f ′ or ∂f .

Definition 2.2 (Hm norm). The Hm norm of a function f(x) on R is defined as

‖f‖Hm =

(
m∑
k=0

∫
R
(∂kxf)2 dx

) 1
2

.

where ∂
∂x

is a weak derivative in the sense of Definition 2.1.

Definition 2.3 (Well-posedness). In this paper, Burgers’ equation and its variable-coefficient

versions are well-posed in Hs if for a given time T , for any initial condition ‖u0‖Hs ≤ R,
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there is a unique strong solution u ∈ C([0, T ];Hs) that is Lipschitz continuous, which means

that there exists a Lipschitz bound K(R, T ) such that

‖ū(t2)− u(t2)‖Hs ≤ K‖ū(t1)− u(t1)‖Hs . (3)

for all [t1, t2] ⊂ [0, T ] where ū(t1) and u(t1) are arbitrary solutions to initial data u0, u0 at

time t1 that have ‖ū(t1)‖Hs ≤ R and ‖u(t1)‖Hs ≤ R.

Definition 2.4 (Fréchet Derivative for Operators). Let T : Hm → Hs be an operator acting

on Sobolev spaces. The Fréchet derivative of T at f ∈ Hm is another operator, denoted as

dT (f) such that for all h ∈ Hm, we have

lim
ε→0

‖T (f + εh)− Tf − dT (f)[εh]‖Hs

ε‖h‖Hm

= 0.

Theorem 2.1 (Sobolev embedding [8]). For integers s, k ≥ 0 such that s > 1/2 + k, if

f(x) ∈ Hs, then f ∈ Ck(R) and in fact, there exists a constant C > 0 such that
k∑
j=0

‖∂jxf‖L∞ ≤ C‖f‖Hs .

Theorem 2.2 (Moser’s Inequality [9]). For functions f(x), g(x) ∈ Hm+2((−∞,∞)), in

particular f, g ∈ L∞(R) by the theorem above, we have the Moser’s inequality
m+2∑
k=0

‖∂kx(fg)− f∂kxg‖L2 ≤ C(‖fx‖L∞‖∂m+1
x g‖L2 + ‖∂m+2

x f‖L2‖g‖L∞),

where C is a positive constant that only depends on m+ 2.

Theorem 2.3 (Algebra structure [9]). Given f(x), g(x) ∈ Hs where s > 1/2, there exists a

constant C such that

‖fg‖Hs ≤ C‖f‖Hs‖g‖Hs . (4)

Theorem 2.4 (Grönwall’s Inequality [8]). Given continuous functions u(t) and f(t) on

interval [a, b], if

u′ ≤ f(t)u(t),

then for t ∈ [a, b]

u(t) ≤ e
∫ t
a f(s)dsu(a).
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Theorem 2.5 (Well-posedness of ut = uxx + uux [10]). The constant-coefficient Burgers’

equation ut = uxx + uux is well-posed in Hs for all s ≥ 0.

Theorem 2.6 (Well-posedness of ut = a(t)uxx + b(t)uux). The space-independent-variable-

coefficient Burgers’ equation ut = a(t)uxx + b(t)uux is well-posed in Hs for all s ≥ 0.

The proof is similar to the constant coefficient equation in the literature; the only differ-

ence is that in the proof we need ∫ T

0

‖ux(t, ·)‖2
L2
x
dt <∞

To ensure this, we need a(t) ≥ c > 0 for some constant c and all t ∈ [0, T ]. But this is

automatically true if we assume a > 0 and continuous.

Strang Splitting

To give a precise definition of Strang splitting, we introduce some key notations. Let

the heat operator A be defined by A : u 7→ uxx and the Burgers operator be defined by

B : u 7→ uux. For brevity, we define the operator At = a(t)A and Bt = b(x, t)B. Using this

notation, the variable-coefficient Burgers’ equation can be written as

ut = Atu+Btu, (5)

Given the solution of Equation (5) u(t1) at time t1, we can express the exact solution of

Equation (5) at time t2 as

u(t2) = e
∫ t2
t1
At+Btdtu(t1).

We use Φt1,t2
A+B to denote the solution operator of e

∫ t2
t1
At+Btdt. Similarly, for the heat equation

ut = Atu, (6)

we use Φt1,t2
A to denote heat equation solution operator e

∫ t2
t1
Atdt. For the inviscid Burgers’

equation

ut = Btu, (7)

we use Φt1,t2
B to denote its solution operator e

∫ t2
t1
Btdt.
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Discretizing the time domain [0, T ] into time steps 0 = t0 < t1 < · · · < tN = T with

uniform mesh size ∆t = T/N , we use un to denote the numerical solution at time tn ∈

{t1, t2, . . . , tN}. Using the Strang splitting method to solve the variable-coefficient Burgers’

equation, given the numerical solution un, the solution at the time step (n+ 1)∆t by

un+1 = Φ
(n+ 1

2
)∆t,(n+1)∆t

A Φ
n∆t,(n+1)∆t
B Φ

n∆t,(n+ 1
2

)∆t

A un. (8)

We use the shorthand Ψn∆t,(n+1)∆t = Φ
(n+ 1

2
)∆t,(n+1)∆t

A Φ
n∆t,(n+1)∆t
B Φ

n∆t,(n+ 1
2

)∆t

A for convenience.

The initial condition is denoted by u0 = u(0). Given an initial condition, the numerical

solution un is therefore produced by

un = Ψ(n−1)∆t,n∆tΨ(n−2)∆t,(n−1)∆t, . . . ,Ψ∆t,0u0.

3 Main Result

We prove the convergence of Strang splitting under the following conditions. Let inte-

ger m ≥ 2. The value of m is kept fixed in the rest of the paper. We assume b(x, t) ∈

C
(
[0, T ];Cm+2(R)

)
, a(t) > 0, and a(t) ∈ C1([0, T ]). We consider the solution of the equa-

tion on the domain (−∞,∞) × [0, T ] with the vanishing at infinity boundary condition:

limx→∞ ∂
j
xu(x, t) = 0, limx→−∞ ∂

j
xu(x, t) = 0 for all j ∈ {0, 1, 2, . . . ,m+ 2}. Moreover, given

time T , we consider solutions with the bound

‖u(t)‖Hm+2 ≤ ρ < R,

for all t ∈ [0, T ]. In particular, the initial data satisfies

‖u0‖Hm+2 ≤ ρ < R.

The main convergence theorem is the following.

Theorem 3.1 (First-order convergence). Given a(t) and b(x, t), if ut = a(t)uxx + b(x, t)uux

is well-posed in Hm, and hence in Hm+2 in the sense of Definition 2.3, then there exists a

∆t such that for any ∆t ≤ ∆t and tn = n∆t ≤ T ,

‖un − u(tn)‖Hm ≤ γ∆t, (9)
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where ∆t, γ depend only on T , R, and ρ.

Because Theorem 2.6 ensures the well-posedness of the space-independent-variable-coefficient

Burgers’ equation

ut = a(t)uxx + b(t)uux, (10)

we know that Strang splitting converges when solving this equation. However, well-posedness

for space-dependent coefficients is harder and beyond the scope of the paper.

4 Stability of the Inviscid Burgers’ Operator

In this section, we show that the solution to the variable-coefficient inviscid Burgers’ equa-

tion ut = b(x, t)uux is bounded in Hm+2 norm. This result is needed for proving consistency

in Section 5 and convergence in Section 6.

Lemma 4.1. Given b(x, t), if ‖u(t)‖H2 ≤ κ for all t ∈ [0, T ], then the solution u(t1) to the

variable-coefficient inviscid Burgers’ equation at time t1 has

‖u(t1)‖Hm+2 ≤ ecκ(t1−t0)‖u(t0)‖Hm+2 ,

where c depends only on T and u(t0) is the solution at time t0 for any [t0, t1] ⊆ [0, T ].

Proof. We bound ‖u(t)‖Hm+2 by first bounding the derivative of its square d
dt
‖u(t)‖2

Hm+2 .

Differentiating Equation (7) j times and taking the integral over R gives us

1

2

d

dt
‖∂jxu(t)‖2

L2 =

∫ ∞
−∞

∂jxu ∂
j
x(buux) dx.

Summing the terms for j ∈ {0, 1, 2, . . . ,m+ 2} produces

1

2

d

dt
‖u(t)‖2

Hm+2 =
m+2∑
j=0

∫ ∞
−∞

∂jxu ∂
j
x(buux) dx.
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Applying the product rule on ∂kx(b(x, t)uux) produces

1

2

d

dt
‖u(t)‖2

Hm+2 =
m+2∑
j=0

j∑
k=0

(
j

k

)∫ ∞
−∞

∂jxu ∂
j−k
x b ∂kx(uux) dx

=
m+2∑
j=0

j∑
k=0

(
j

k

)∫ ∞
−∞

∂jxu ∂
j−k
x b (∂kx(uux)− u∂k+1

x u) dx︸ ︷︷ ︸
I

+
m+2∑
j=0

j∑
k=0

(
j

k

)∫ ∞
−∞

∂jxu ∂
j−k
x b u∂k+1

x u dx︸ ︷︷ ︸
II

Let µ be the maximum binomial coefficient, which means
(
m+2
k

)
≤ µ for all k, and applying

the Cauchy-Schwarz inequality to I, we have

I ≤ µbmax

m+2∑
j=0

j∑
k=0

‖∂jxu‖L2‖∂kx(uux)− u∂k+1
x u‖L2 ,

where bmax = maxj∈{0,1,2,...,m+2} ‖∂jxb‖L∞
x,t

. Moser’s inequality produces

I ≤µbmax
m+2∑
j=0

j∑
k=0

2C‖ux‖L∞‖∂jxu‖2
L2

≤µbmaxp‖ux‖L∞‖u‖2
Hm+2

(Theorem 2.1) ≤µbmaxp‖u‖H2‖u‖2
Hm+2 .

To bound II, we write II as a sum of two expressions produced by taking k = j and k < j

II =
m+2∑
j=0

∫ ∞
−∞

∂jxu ∂
j+1
x u bu dx︸ ︷︷ ︸

II1

+
m+2∑
j=0

j−1∑
k=0

(
j

k

)∫ ∞
−∞

∂jxu ∂
k+1
x u ∂j−kx b u dx︸ ︷︷ ︸

II2

.

From the chain rule, we have II1 =
∑m+2

j=0

∫∞
−∞

1
2
∂x(∂

j
xu)2bu dx. We apply integration by parts

to II1 and because u vanishes at the boundary, we get

II1 =
m+2∑
j=0

−1

2

∫ ∞
−∞

b(∂jxu)2ux dx ≤
m+2∑
j=0

1

2
bmax‖ux‖L∞‖∂jxu‖2

L2 =
1

2
bmax‖u‖H2‖u‖2

Hm+2

We continue to bound II2

II2 ≤
m+2∑
j=0

j−1∑
k=0

µbmax‖u‖L∞

∫ ∞
−∞
|∂jxu| |∂k+1

x u| dx

≤
m+2∑
j=0

j−1∑
k=0

µbmax‖u‖L∞‖∂jxu‖L2‖∂k+1
x u‖L2 .
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Because k + 1 ≤ j, from Sobolev embedding, we get

II2 ≤
m+2∑
j=0

j−1∑
k=0

µbmax‖u‖L∞‖∂jxu‖2
L2 ≤ µbmaxp‖u‖H2‖u‖2

Hm+2 .

Because µ only depends on m + 2, which is fixed, and bmax only depends on time T with

b(x, t) given, summing up I and II gives us

1

2

d

dt
‖u(t)‖2

Hm+2 ≤c(T )‖u‖H2‖u‖2
Hm+2

d

dt
‖u(t)‖Hm+2 ≤c(T )‖u‖H2‖u‖Hm+2 .

Applying Grönwall’s Lemma bounds ‖u(t)‖Hm+2 by the exponential growth in Equation (4.1)

and the proof is therefore complete.

Lemma 4.2. Given b(x, t) and t0 ∈ [0, T ], there exists a constant ∆tc with t0 + ∆tc ∈ [0, T ]

that depends only T and ‖u(t0)‖Hm such that for all ∆t ∈ [0,∆tc] we have

‖u(t0 + ∆t)‖Hm ≤ 2‖u(t0)‖Hm .

Proof. Replacing m+ 2 with m in the proof of Lemma 4.1 gives us

d

dt
‖u(t)‖Hm ≤c(T )‖u‖H2‖u‖Hm .

Applying Sobolev inequality to ‖ux‖L∞ produces

d

dt
‖u(t)‖Hm ≤ c(T )‖u‖2

Hm .

Because we have an inequality in the form of y′ ≤ ky2, where y(t) = ‖u(t)‖Hm . Integrating

gives us

y(t0 + ∆t) ≤ y(t0)

1− c(T )∆ty(t0)
.

This bound for ‖u(t)‖Hm shows that lemma is proven.

.

5 Consistency of Strang Splitting

This section proves that Strang splitting is second-order consistent, which informally

means that the local error at a single time step is proportional to (∆t)2. This bound for local
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error is necessary to prove the convergence of Strang splitting in Section 6.

Lemma 5.1. Given functions a(t) and b(x, t), if ‖u0‖Hm+2 < R and ∆t ≤ T , then the local

error of the Strang splitting in Hm norm satisfies

‖Ψ0,∆t(u0)− Φ0,∆t
A+B(u0)‖Hm ≤ c1(R, T )∆t2, (11)

where c1 is a constant that depends only on R and T .

Proof. In this proof, we use the shorthand b(t) = b(x, t) and b′(t) = ∂tb(x, t) for convenience.

Let φ(s) be e
∫ t
s Aβdβu(s), we have φ′(s) = e

∫ t
s AβdβBtu. The equation φ(t) = φ(0) +

∫ t
0
φ′ ds

from the variation-of-constants formula therefore gives us an expression for the exact solution

to the variable-coefficient Burgers’ equation at time t

u(t) = e
∫ t
0 Aβdβu0 +

∫ t

0

e
∫ t
s AβdβBtu(s) ds. (12)

Let φ(σ) = e
∫ s
σ Aβdβu(σ), then d

dσ
Bt(φ(σ)) = b′(σ)B(φ) + b(σ)dB(φ)[φ′]. Here, dB(u)[v] is

the notation for the Fréchet derivative of the operator B at u acting on v and dB(u)[v] =

uxv + uvx. Hence

Bt(u(s)) = Bt(e
∫ s
0 Aβdβu0) +

∫ s

0

b′(σ)B(φ) + b(σ)dB(φ)[φ′] dσ, (13)

where φ′(σ) = e
∫ s
σ AβdβBtu(σ). Using equation (12) and (13) and having t = ∆t, we have

Φ0,∆t
A+B(u0) = u(∆t) = e

∫ ∆t
0 Aβdβu0 +

∫ ∆t

0

e
∫ ∆t
s AβdβBt(e

∫ s
0 Aβdβu0) ds+ e1, (14)

where

e1 =

∫ ∆t

0

∫ s

0

e
∫ ∆t
s Aβdβ(b′(σ)B(φ(σ)) + b(σ)dB(φ(σ))[φ′(σ)]) dσds.

Let v0 be the initial condition for the inviscid Burgers’ equation vt = Btv, the solution

at time ∆t can be written as a Taylor series with an integral remainder

v(∆t) = v0 + ∆tb(0)Bv0 + ∆t2
∫ 1

0

(1− θ)(b′(∆tθ)Bv + b(∆tθ)dB(v)[v′]) dθ

= v0 + ∆tb(
∆t

2
)Bv0 + ∆t2

∫ 1

0

(1− θ)(b′(∆tθ)Bv + b(∆tθ)dB(v)[v′]) dθ

−∆t2
Bv0

2

∫ 1

0

b′
(

∆t

2
θ

)
dθ.

We therefore get an expression for the numerical solution Ψ0,∆t(u0) produced by Strang
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splitting

Ψ0,∆t(u0) = e
∫ ∆t
0 Aβdβu0 + ∆te

∫ ∆t
∆t
2
Aβdβ

b

(
∆t

2
θ

)
B(e

∫ ∆t
2

0 Aβdβu0) + e2, (15)

where

e2 = ∆t2
∫ 1

0

(1− θ)e
∫ ∆t

∆t
2
Aβdβ

(b′(∆tθ)Bv + b (∆tθ) dB(v)[v′]) dθ︸ ︷︷ ︸
e21

−∆t2

2
e
∫ ∆t

∆t
2
Aβdβ

Bv0

∫ 1

0

b′
(

∆t

2
θ

)
dθ︸ ︷︷ ︸

e22

.

Using Equation (15) and (14), the local error in Equation (11) can then be written as

Ψ∆t(u0)− Φ∆t
A+B(u0) =∆te

∫ ∆t
∆t
2
Aβdβ

b

(
∆t

2
θ

)
B(e

∫ ∆t
2

0 Aβdβu0) (16)

−
∫ ∆t

0

e
∫ ∆t
s AβdβBt(e

∫ s
0 Aβdβu0) ds+ e2 − e1 (17)

=e0 + e2 − e1. (18)

Now, we show that this error term is second order with respect to ∆t. The principle error

term, e0, can be considered as the quadrature error of the midpoint rule for the integral∫ ∆t

0
f(s) ds, where

f(s) = e
∫ ∆t
s Aβdβb(s)B(e

∫ s
0 Aβdβu0).

The principle error term can therefore be written as

e0 = ∆tf

(
∆t

2

)
−
∫ ∆t

0

f(s) ds = ∆t2
∫ 1

0

k(θ)f ′(∆tθ) dθ

where k(θ) is the Peano kernel [7]. To bound e0, we expand f ′(s) and get

f ′(s) =e
∫ ∆t
s Aβdβb′(s)B(e

∫ s
0 Aβdβu0)

− e
∫ ∆t
s Aβdβ(As(b(s)B(e

∫ s
0 Aβdβu0))− b(s)dB(e

∫ s
0 Aβdβu0)[Ase

∫ s
0 Aβdβu0])

= e
∫ ∆t
s Aβdβb′(s)B(e

∫ s
0 Aβdβu0)︸ ︷︷ ︸

e01

−a(s)e
∫ ∆t
s Aβdβ(bxxB(e

∫ s
0 Aβdβu0) + 2bx(x, s)(B(e

∫ s
0 Aβdβu0))x)︸ ︷︷ ︸

e02

−a(s)e
∫ ∆t
s Aβdβ(b(s)[A,B](e

∫ s
0 Aβdβu0)︸ ︷︷ ︸

e03

,

where [A,B] is the Lie commutator defined by [A,B](v) = dA(v)[Bv]− dB(v)[Av]. Because
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the operator e
∫ ∆t
s Aβdβ decreases Hm norm we get

‖e01‖Hm ≤ ‖b′‖L∞‖B(e
∫ s
0 Aβdβu0)‖Hm

≤ ‖b′‖L∞C‖e
∫ s
0 Aβdβu0‖Hm‖e

∫ s
0 Aβdβu0‖Hm+1

≤ C‖b′‖L∞‖u0‖Hm‖u0‖Hm+1

For e02 we compute

‖e02‖Hm ≤‖a‖L∞(‖bxx‖L∞C1‖u0‖Hm‖u0‖Hm+1 + 2‖bx‖L∞‖u0‖Hm+1‖u0‖Hm+2)

From [7], we have ‖[A,B](v)‖Hm ≤ C‖v‖2
Hm+2 , which allows us to compute the bound for

e03

‖e03‖Hm ≤ C‖b(s)‖L∞‖a(s)‖L∞‖u0‖2
Hm+2 . (19)

Because the Peano kernel k(θ) is bounded, we have ‖e0‖Hm ≤ C∆t2, where C only depends

on ‖b′‖L∞ , ‖bxx‖L∞ , ‖bx‖L∞ , ‖b(s)‖L∞ , and ‖a(s)‖L∞ . Next we compute the bound for e1,

plugging in φ(σ) = e
∫ s
σ Aβdβu(σ), we have

‖e1‖Hm ≤
∫ ∆t

0

∫ s

0

‖b′(σ)B(e
∫ s
σ Aβdβu(σ)) + b(σ)dB(e

∫ s
σ Aβdβu(σ))[e

∫ s
σ AβdβBσu(σ)]‖Hm dσds.

Because dB(u)[v] = (uv)x, we get

‖e1‖Hm ≤C1‖b′(σ)‖L∞

∫ ∆t

0

∫ s

0

‖u(σ)‖Hm‖u(σ)‖Hm+1 dσds

+ ‖b(σ)‖L∞

∫ ∆t

0

∫ s

0

‖((e
∫ s
σ Aβdβu(σ))(e

∫ s
σ AβdβBσu(σ)))x‖Hm dσds

(Theorem 2.3) ≤C1‖b′(σ)‖L∞

∫ ∆t

0

∫ s

0

‖u(σ)‖2
Hm+2 dσds

+ C2‖b(σ)‖L∞

∫ ∆t

0

∫ s

0

‖u(σ)‖Hm+1‖b(σ)Bu(σ)‖Hm+1 dσds

(Theorem 2.3) ≤C1‖b′(σ)‖L∞

∫ ∆t

0

∫ s

0

‖u(σ)‖2
Hm+2 dσds

+ C2‖b(σ)‖2
L∞

∫ ∆t

0

∫ s

0

‖u(σ)‖2
Hm+1‖u(σ)‖Hm+2 dσds

≤C(R, b)∆t2.

11



With e0 and e1 bounded, we are left with e2. Separating e21 into two terms, we get

‖e21‖Hm ≤∆t2(

∫ 1

0

‖b′(∆tθ)Bv‖Hm dθ +

∫ 1

0

‖b (∆tθ) dB(v)[v′]‖Hm dθ)

(Theorem 2.3) ≤∆t2(C1‖b′‖L∞

∫ 1

0

‖v(∆tθ)‖Hm‖v(∆tθ)‖Hm+1 dθ

+ ‖b‖L∞

∫ 1

0

‖v(∆tθ)Bt(v(∆tθ))‖Hm+1)

(Theorem 2.3) ≤∆t2(C1‖b′‖L∞

∫ 1

0

‖v(∆tθ)‖Hm‖v(∆tθ)‖Hm+1 dθ

+ C2‖b‖2
L∞

∫ 1

0

‖v(∆tθ)‖2
Hm+1‖v(∆tθ)‖Hm+2 dθ).

Because v(∆tθ) = Φ0,θ∆t
B e

∫ ∆t
2

0 Aβdβu0, and Lemma 4.2 has ‖Φθ∆t
B u0‖Hm+2 ≤ 2R when ∆t is

sufficiently small, we have ‖e21‖Hm ≤ C∆t2, where C only depends on R, ‖b′‖L∞ , and ‖b‖L∞ .

Lastly, we look at e22 and get

‖e22‖Hm ≤ ∆t2
‖b′‖L∞

2
‖u0‖Hm‖u0‖Hm+1 .

Summing up norms of e0, e1, and e3, we see that ‖Ψ∆t(u0)− Φ∆t
A+B(u0)‖Hm ≤ c1∆t2, where

c1 depends on ‖a(t)‖L∞ for t ∈ [0, T ], and ‖b(x, t)‖L∞ , ‖∂tb(x, t)‖L∞ , ‖∂xb(x, t)‖L∞ , and

‖∂2
xb(x, t)‖L∞for t ∈ [0, T ] and x ∈ [0, 1]. With a and b given, the L∞ norms only depend on

T . The proof is complete.

6 Proof of Convergence

Proof. The proof for Theorem 3.1 is similar to the proof in [7] and uses the same strong

induction. Assuming n∆t ≤ T , the induction hypothesis is that for k ≤ n− 1, we have

‖uk‖Hm ≤R

‖uk‖Hm+2 ≤e2cRk∆t‖u0‖Hm+2 ≤ C0

‖uk − u(tk)‖Hm ≤γ∆t,

where C0 = e2cRT‖u0‖Hm+2 with c from Lemma 4.1, and γ = K(R, T )c1(C0, T )T , where c1 is

the constant from Lemma 5.1. We prove that these conditions hold for k = n. For simplicity,

12



we use the shorthand Φk,n
A+B = Φk∆t,n∆t

A+B . We adopt the notation ukn from [7], which is defined

by

ukn = Φk,n
A+B(uk).

where uk is the numerical solution at time k∆t. The global error ‖un−u(tn)‖Hm is bounded

by

‖un − u(tn)‖Hm ≤
n−1∑
k=0

‖uk+1
n − ukn‖Hm

≤
n−1∑
k=0

‖Φk+1,n
A+B (Ψk,k+1uk)− Φk+1,n

A+B (Φk,k+1
A+B uk)‖Hm .

Because of the Lipschitz continuity of the well-posedness assumption, we can find K(R,∆t)

such that

‖ū(t+ ∆t)− u(t+ ∆t)‖Hm ≤ K(R,∆t)‖ū(t)− u(t)‖Hm

for any t ∈ [0, T ] and any ‖ū(t)‖Hm ≤ R, ‖u(t)‖Hm ≤ R. We look at the bound of the Hm

norm of Φk,k+1
A+B u using K(R,∆t) and get

‖Φk,k+1
A+B uk‖Hm ≤‖Φk,k+1

A+B uk − Φk,k+1
A+B u(tk)‖Hm + ‖u(tk+1)‖Hm

≤K(R,∆t)γ∆t+ ρ.

Because ρ < R, this expression shows that ‖Φk,k+1
A+B uk‖Hm < R for ∆t sufficiently small.

Because the inductive hypothesis has ‖Φk,k+1
A+B uk‖ ≤ R, we have

‖un − u(tn)‖Hm ≤
n−1∑
k=0

K(R, T )‖Ψk,k+1uk − Φk,k+1
A+B uk‖Hm .

For each k, we define ak(t) = a(t+k∆t) and bk(x, t) = b(x, t+k∆t). Then, Ψk,k+1uk−Φk,k+1
A+B uk

is equal to the local error produced by applying one Strang splitting to the equation ut =

akuxx + bkuux with uk as initial data. Thus, by Lemma 5.1, we still have second-order

consistency for each k, which gives us

‖un − u(tn)‖Hm ≤
n−1∑
k=0

K(R, T )c1(C0, T )∆t2

≤K(R, T )c1(C0, T )T∆t.
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Beccause γ = K(R, T )c1(C0, T )T , the third inductive hypothesis is now extended to k = n.

Using the triangle inequality, we have

‖un‖Hm ≤‖un − u(tn)‖Hm + ‖u(tn)‖Hm

≤γ∆t+ ρ.

Hence, we have ‖un‖Hm ≤ R when ∆t is sufficiently small and the second inductive hypoth-

esis is finished. For θ ∈ [0, 1], by Lemma 4.2 we have

‖(Φk,k+θ
B Φ

k,k+ 1
2

A un−1)x‖L∞ ≤2‖Φk,k+ 1
2

A un−1‖Hm ≤ 2R. (20)

Using the result in Equation (20) and Lemma 4.1, we have

‖un‖Hm+2 ≤ e2cR∆t‖un−1‖Hm+2 ≤ e2cRn∆t‖u0‖Hm+2 .

The induction is finished and the first order convergence of Strang splitting is proven.

7 Future Work

The results in this paper suggest several directions for future research. One can try to

prove second-order convergence for Strang splitting. This would require proving the third-

order consistency, which can be difficult. A natural extension of our result is trying to relax

the conditions described in Section 3. However, this results in the inability to use many

inequalities and one needs to make modifications to the proof. Another possible direction

is looking at variable-coefficient PDEs with similar structure such as ut = auxx + bf(u)ux

where f is a function of u or ut = ap(∂x)u + buux where p(∂x) is a polynomial differential

operator.
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