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Abstract

We investigate modular forms, which are 1-periodic functions on the complex upper half-
plane that are related to elliptic curves. Since modular forms are periodic, they have a Fourier
expansion. We consider the field Ef generated by adjoining the coefficients of this Fourier
expansion to Q. When this field has inner twists, a property of the automorphisms of Ef ,
we demonstrate an explicit connection between the probability of randomly generating the
group of these twists and randomly generating the coefficient field Ef . Previous work focused
on the probability that a single prime could generate the whole field; we extend these results
by investigating the probability that n primes generate this field. We first relate previous
results more directly to group theory by proving an explicit formula, then we show that this
formula can be extended to choosing n primes and describe the group theoretic analogue.



1 Introduction

1.1 Motivation

Carl Friedrich Gauss once said that number theory is the queen of mathematics. Like any

good sovereign, number theory hides many secrets. One of the most famous of these secrets

is the modularity theorem, which was finally proven when Andrew Wiles finished the proof

of Fermat’s Last Theorem in 1995 [18]. His work sparked new developments in mathematics

as well as greater public interest in meaningful mathematics [8]. The proof of this infamous

theorem relied heavily on the study of elliptic curves and their relation to so-called Galois

groups of number fields. The object that wraps up all these Galois groups into one is the

absolute Galois group, denoted Gal
(
Q/Q

)
. This group has been hailed by many as the

most mysterious object in mathematics ([16] p. 219). There are two broad approaches to

studying this object. One is to look at its subgroups, which is equivalent to studying number

fields. The other is to look at how Gal
(
Q/Q

)
acts on vector spaces, the so-called Galois

representations, which is where our work lies.

Wiles’ proof solved part of another important, though younger, conjecture called the

Langlands program. Proposed by Robert Langlands between 1967 and 1970, the Langlands

program unifies many areas of mathematics with an ambitious series of conjectures [11].

In particular, it proposes hypotheses on the relationship between Galois representations,

elliptic curves, and modular forms, a special class of complex functions. The n = 1 case of

the Langlands program is equivalent to class field theory and was mostly resolved in the

early half of the 20th century before Langlands connected those ideas to other areas. While

significant progress has been made in the n = 2 case, several problems remain unresolved.

Since the general case is still far out of reach, it would be fruitful to study the n = 2 case as

completely as possible. Modular forms are particularly useful because they yield interesting

yet tractable Galois representations.
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1.2 Applications of modular forms

The study of modular forms not only connects Galois representations, elliptic curves,

and algebraic geometry ([2], part 1), but it has also been applied to great effect in numerous

other areas, including sphere-packing and string theory. Modular forms have been used to

study the string theory realizations of elliptic curves [9]. More recently, Viazovska’s seminal

paper solving the sphere-packing problem for dimension 8 employed modular forms, and the

same ideas also later solved the case of dimension 24, as shown in [17].

Modular forms are also intertwined with other areas of mathematics. They connect elliptic

curves to other elliptic curves explicitly, and because of their numerous relations to Galois

theory, they have been used to great effect in a number of seemingly disparate areas of

mathematics, including class field theory, describing drums whose shape one cannot hear,

Fermat’s Last theorem, and cryptography (see [2] part 1).

Our work lies within the n = 2 case of the Langlands program. The resolution of the

aforementioned modularity theorem allows us to prove statements about modular forms,

where we have more control, and then use this connection to get corresponding statements

about elliptic curves. We study newforms with inner twists and give an explicit formula

that connects the generation of the coefficient field to the generation of certain subgroups.

See Section 2.3 for definitions. These results build on the work of Koo, Stein, and Wiese

[10] who proved results tying inner twists to the density of primes that generate the field of

coefficients by itself. Their work shows that the set of such primes has density 1. However, in

the case that the modular form f has inner twists, this density changes. We investigate the

case when f has inner twist and extend their result by giving a formula for the probability

that n coefficients generate this field.

In Section 2, we define fundamental ideas and the relevant background. In Section 3 we

elaborate on the work of Koo, Stein, and Wiese in order to state our problem precisely,

and in Section 4 we prove our main theorem. Our theorem shows that the probability of

2



generating a newform with inner twists is the same as the probability of generating the full

group of its inner twists.

Finally, we offer some suggestions for future work in Section 5.

2 Background and Definitions

We first define important concepts and notation, starting with modular forms, the Hecke

operators that act on them, their level structure, newforms, and inner twists. We omit some

proofs that can be found in [15] or [6].

Definition 1. A modular form of weight 2k and nebentypus χ is a holomorphic function f

on the complex upper half-plane H such that

• it is analytic on the upper half-plane

• it satisfies

f(z) = χ(d)(cz + d)−2kf

(
az + b

cz + d

)
for any ( a bc d ) ∈ SL2(Z).

The matrices S = ( 0 −1
1 0 ) and T = ( 1 1

0 1 ) generate SL2(Z) (see [15], Chapter VII Theorem

2). Therefore, it suffices to check the modularity conditions for f(Sz) and f(Tz) in order to

prove that f is modular.

Figure 3 shows a fundamental domain for the modular group SL2(Z).

A careful reader will question why the exponent in Definition 1 cannot be odd. Indeed,

if we had an exponent of the form 2k + 1, then f must satisfy

f(z) = f

(−z + 0

0− 1

)
= (0 · z − 1)2k+1f(z) = −f(z).

So f ≡ 0 and it is not a very interesting modular form.

As we saw above, modular forms are periodic with period 1. So they may be represented

by a Fourier series, also called a q-expansion:

f(z) =
∞∑
n=0

an(f)qn,
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where q = e2πiz and an(f) denotes the n’th Fourier coefficient. We say a modular form is

cuspidal if a0 = 0.

2.1 Hecke operators

Now if we consider the space of modular forms, a natural question is that of what oper-

ators can act on the space. A canonical example is the Hecke operators.

Definition 2. The mth Hecke operator is a linear operator Tm that acts on the vector space

modular forms of weight k. We have

Tmf(z) = mk−1
∑

( a bc d )∈Γ1\Mm

(cz + d)−kf

(
az + b

cz + d

)
, (1)

where Mm is the set of 2× 2 integral matrices of determinant m and Γ1 is SL2(Z).

The Hecke operators are only well-defined when f is modular ([2], Part 1 Section 4).

When the modular form is cuspidal, we have a0 = 0, so we find that the nth coefficient

of Tmf =
∑∞

n=1 bnq
n is

bn =
∑

r|(m,n),
r>0

rk−1amn/r2 , (2)

where the ai are the coefficients of f and (m,n) denotes gcd(m,n) (see [2], Part 1 Chapter

1 for details). Furthermore, Eq. (2) also shows that the Hecke operators are commutative,

i.e. TmTnf = TnTmf. It is for this reason that we are able to simultaneously diagonalize the

operators to get a basis, which is explained further in Section 2.3.

Definition 3. A modular form f of weight k is called an eigenform for a Hecke operator

Tm if it satisfies Tmf = λmf for some eigenvalue of λm.

The modular form f is called a simultaneous eigenform for multiple Hecke operators if

it is an eigenform for each of them.

Next we show that, when studying the field generated by the Fourier coefficients of

cuspidal eigenforms, we need only look at the prime-indexed coefficients. In other words,

Q
(
ap(f) | p prime

)
= Q

(
an(f) ∀ n

)
.
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First, we normalize the modular form by dividing all coefficients by a1, so that the

coefficient of q becomes 1. Then the q-expansion of f starts with q+ . . . and the q-expansion

of Tmf starts with b1 = 1k−1a1·m = amq by Eq. (2). Thus the eigenvalue λm must be am for

such modular forms. Applying the equation Tmf = amf and looking at the coefficient an of

f , we find

aman =
∑
r|(m,n)

rk−1amn/r2 ,

so in particular, if (m,n) = 1, we see that amn = aman. Furthermore, apb is directly related

to apc for c < b as well, so when considering adjoining the coefficients to Q, it suffices to

consider only the prime-indexed coefficients.

It is important to note that since the eigenvalues must be algebraic [14], the am must

also be algebraic. Thus the field generated by the Fourier coefficients is a number field.

2.2 Level Structure

Here we set up the notion of newforms by considering the level structure of modular

forms. For N ∈ N, we first define Γ0(N), a congruence subgroup of SL2(Z):

Γ0(N) = {( a bc d ) | c ≡ 0 (mod N), ad− bc = 1} .
We consider functions f that satisfy the conditions of Definition 1 but with ( a bc d ) from the

subgroup Γ0(N) of SL2(Z). We say that these modular forms have level N . The space of

modular forms of level N is larger than the space of modular forms associated to SL2(Z),

and the the space for level MN is larger than the space for level N . The theory of Hecke

operators can be extended to this level structure by replacing the Γ1 in Eq. (1) with Γ0(N).

2.3 Newforms

LetMk(Γ0(N)) be the space of modular forms of weight k and level N , and let Sk(Γ0(N))

be the corresponding space of cuspidal forms. To focus on set of eigenforms that form a basis

forMk, we use the Petersson inner product to get an inner product space of modular forms.
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We then split the space of eigenforms of level N into those that are produced from levels

N ′ | N and newforms that first appear at level N . Note that newforms of level N continue

to appear at higher levels, just not at lower ones. More concretely, we have the inclusion

diagram Figure 1.

Mk(Γ0(N)) Sk(Γ0(N)) Sk(Γ0(N))new

Sk(Γ0(N))old

⊇ ⊇

⊆

Figure 1: Breaking up Sk(Γ0(N)) into the set of newforms Sk(Γ0(N))new and the set of
oldforms Sk(Γ0(N))old

When we diagonalize the Hecke operators, we find that the oldforms are the orthogonal

complement of the newforms under the Petersson inner product on this space of cusp forms

(more details in [6], Section 5.6).

Definition 4. A newform of levelN and weight k is a cuspidal modular form f ∈ Sk(Γ0(N))new

that is normalized so that a1(f) = 1.

For the remainder of this paper, we focus on newforms.

2.4 Twists and Inner Twists

We define the coefficient fields we will be studying:

Ef = Q
(
an(f) | (n,N) = 1

)
, (3)

Ff = Q
(
an(f)2

χ(n)
| (n,N) = 1

)
(4)

for each modular form f with nebentypus χ.

Key to our investigation is an operator on modular forms called twisting. A Dirichlet

character ε called a twist can act on f as described below.

Definition 5. A Dirichlet character ε is a map from Z to C such that
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• There is some N such that ε(a+N) = ε(a) for all integers a,

• ε(n) = 0 if and only if gcd(n,N) 6= 1, and

• ε(m)χ(n) = ε(mn) for all m,n ∈ Z.

To make sure N is minimal, we have the following notion.

Definition 6. The conductor of a Dirichlet character ε is the smallest positive integer N

such that ε(a+N) = ε(a) for all a ∈ Z.

Definition 7. The twist of a modular form f =
∑
anq

n by ε is

fε(z) =
∑

anε(n)qn. (5)

A twist of a modular form is still modular. This follows from the fact proven in [13]

that if f has nebentypus χ, then the nebentypus of its twist by ε is χ · ε2. Thus, with a few

exceptions, when f has level N and ε has conductor M , the function fε will have level NM2

(again, see [6] for details).

Following the definition in [10], we have the following.

Definition 8. A twist ε is inner if there exists a field automorphism σε : Ef → Ef such

that

ap(f)ε(p) = σε(ap(f)). (6)

To illustrate the notion of inner twists, we analyze the following example, which is briefly

considered in [10].

Example 1. Consider the modular form f of weight 2 and level 63 with the twist ε : p 7→
(
p
3

)
,

the Legendre symbol modulo 3, which sends squares (mod 3) to 1 and non-squares (mod 3)

to −1.

From a brief calculation with SAGE, we find that the first few terms of the Fourier

expansion for f are

f = q +
√

3 · q2 + q4 − 2
√

3 · q5 + q7 −
√

3 · q8 − 6q10 + 2
√

3 · q11 + 2q13 + . . . .
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We see that the occurrences of
√

3 have two interesting properties. First, whenever it shows

up as a coefficient it is always of the form 0 + c
√

3 for c ∈ Z. Second, it only shows up as a

coefficient for qa when a ≡ 2 (mod 3).

The automorphism σε associated to ε must satisfy Eq. (6), so for primes congruent to

2 (mod 3), we need ap(f)(−1) = σε(ap(f)). From our observations above, ε affects the signs

of the
√

3’s, so it is natural to have σε send
√

3 to −
√

3 and vice versa.

For the following result, we define Γ, the group of all the automorphisms σε associated

to the inner twists ε of f .

Lemma 2.1. The field extension Ef of Ff is Galois.

Proof. First we show that Ff is indeed a subfield of Ef . According to [10], the field Ef is

either a field with complex multiplication or totally real. If it is totally real, the extension

is necessarily Galois. Otherwise, the properties of the Petersson inner product on Hecke

operators show that

ap(f) = χ(p)−1ap(f),

and since every subfield of a field with complex multiplication is preserved by complex

conjugation, we see that χ(p)−1ap(f) must be in Ff . Then Q(ap(f)) ⊆ Ef must contain

ap(f), and so it contains χ−1
p ap(f)2 as well and Ff ⊆ Ef .

Now we see that Ff is the field fixed by the action of Γ on Ef because

σε

(
ap(f)2

χ(p)

)
= σε

(
ap(f)

)
σε

(
ap(f)

)
= ap(f)ε(p)ap(f)ε(p)

= ap(f)ap(f),

as desired.

Note that Lemma 2.1 implies that there is a one-to-one correspondence between sub-

groups of Γ and intermediate fields L with Ff ↪→ L ↪→ Ef .

Finally, there is a group isomorphism between this Γ under composition and the group
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of the associated characters under multiplication, so from now on, we can consider Γ to be

this group of associated characters.

3 From One to Many Coefficients

In this section we consider the structure of multiple coefficients ap(f). Our work builds

on the following construction and result from [10].

Definition 9 (Koo, Stein, Wiese [10]). For a subgroup H of Γ consisting of the twists

ε1, . . . εr, we define KH to be the minimal number field on which all the εi are trivial, i.e.,

the field such that its absolute Galois group is the kernel of the map

Gal
(
Q/Q

) ε1,...,εr−−−−→ C× × · · · × C×.

Theorem 3.1 (Koo, Stein, Wiese [10]). Define f , Ef , and Ff as in Eq. (3) and Eq. (4). Let

L be any subfield of Ef and let ML be the set defined by

{p prime | ap(f) ∈ L}.
Then if Ff ⊆ L, we have L = EH

f , i.e. it is the subfield of Ef fixed by some subgroup H ⊆ Γ,

and ML has density

1/[KH : Q].

For convenience, we define kH = [KH : Q].

Note that when H = Γ and f does not have any twists, then Γ is trivial, and the density

of primes p such that ap(f) generates Ef is 1.

Theorem 3.1 gives a formula for the density of those primes p for which ap(f) generates

Ef , but it is in terms of KH , which a priori is not well-understood. We would like to make

Definition 9 more explicit and find a formula for kH . The following lemma (proof in Section 4)

does so.

Lemma 3.2. The density kH equals |H|.
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Then we have enough information to ask about the probability that n random primes

p1, . . . pn generate the field Ef . This question is important for fields Ef that cannot be

generated by a single ap(f). We will show this occurs precisely when Γ is not cyclic. Indeed,

consider the example below.

Example 2. Consider the newform f of level 512 and weight 2. Its group of inner twists, say

{e, ε1, ε2, ε3}, is isomorphic to Z/2Z× Z/2Z.

This example is considered in [10], where Koo, Stein, and Wiese show that the density

of the set of p such that ap(f) generates E
〈ε1〉
f , or the subfield of Ef fixed by ε1, is 1

4
. The

probability that one coefficient ap(f) generates Ef is 0, but if we consider choosing two

coefficients, the probability is

1− 3 · 1

4
+ 2 · 1

4
· 1

4
=

3

8
.

This example motivates us to ask the following.

Question 1. When is Q
(
ap1(f), ap2(f), . . . , apn(f)

)
equal to Ef? With what probability does

this occur?

In order to answer this question, we use Lemma 3.2 to prove the following.

Theorem 3.3. The probability P
(
Q(ap(f)) = EH

f

)
is equal to the probability that a randomly

chosen g ∈ Γ∨ has ker(g) = H, where Γ∨ is the Pontryagin dual Hom(Γ,Q/Z).

For convenience, we write P(= H) for the probability P
(
Q(ap(f)) = EH

f

)
.

Note that Γ ∼= Γ∨ because Γ is a finite Abelian group (see Section 3 of [4]).

As an immediate corollary, since all finite subgroups of Q/Z are cyclic, we have:

Corollary 3.3.1. P(= H) is positive if and only if its dual, H∨, is cyclic.
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3.1 Concrete Illustrations

We consider inner twists ε : (Z/NZ)× → C× of conductor N . We can extend the map ε

to get

Gal
(
Q/Q

)
→ Gal(Q(ζN)/Q) ∼= (Z/NZ)×

ε−→ C×,

where Gal(Q(ζN)/Q) denotes the Galois group of the cyclotomic extension of Q with the

primitive Nth roots of unity.

Essentially, instead of looking at the whole group Gal
(
Q/Q

)
we restrict to adjoining the

primitive Nth roots of unity ζN . That means that, since ε has period N , we can view the

automorphisms as coming from Hom
(
Gal(Q(ζN)/Q),C×

)
. To illustrate this notion, we refer

the reader to Appendix C. We provide an example about calculating probabilities from a

subgroup structure.

Example 3. We consider the group Γ = Z/2Z×Z/9Z. We find the probability of generating

a specific subgroup from the probabilities kH of generating a group G ⊇ H. Figure 2 depicts

Γ pictorially with e as the trivial subgroup.

A C Γ

e B D

Figure 2: The subgroup lattice of Z/2Z× Z/9Z

Here the arrows represent inclusion of subgroups and the letters represent names of

subgroups. We see that applying Theorem 3.1 only gives us the probabilities of being at

a specific subgroup H or any of the groups that include it since a group that includes a

specific H necessarily fixes the points that H fixes when acting on Ef . In fact, we have a

poset structure on these subgroups, so writing inclusion as < and the probability that the

field generated by a coefficient is fixed by H as P(= H), etc., we find

• P(≥ e) = 1,
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• P(> e) = P(≥ a) + P(≥ b)− P(≥ c),

• The probability of being ≥ H for any of the subgroups H is 1/kH

Therefore, P(= e) = 1 − 1/ka − 1/kb + 1/kc. To connect back to the coefficient field,

P(= e) is the probability that a single coefficient generates the subfield of Ef fixed by the

identity, which is just Ef . So, in this particular case, we have an explicit formula for the

probability that a single coefficient generates the entire coefficient field.

4 Connection to Statistics of Subgroups

Now we prove our general results on the density kH . Given a group Γ of twists, let L be

the least common multiple of their conductors.

Lemma 4.1. Let H be the group of automorphisms σε1 , . . . , σεr corresponding to inner twists

ε1, . . . εr. Then kH is equal to the size of the image of the map Ψ : Z/LZ → C× × · · · × C×

defined as the composite map of all the εi.

Proof. Observe that KH is the field of fixed points under ker(Ψ) of Q(ζN), so it is necessarily

a Galois extension. By the Fundamental Theorem of Galois theory, we have

[Q(ζN) : KH ] · [KH : Q] = [Q(ζN) : Q]. (7)

In particular, because KH is the fixed field, we see that

[Q(ζN) : KH ] = | ker(Ψ)|.
But |(Z/NZ)×| = ϕ(N) = | ker(Ψ)| · |im(Ψ)|, where ϕ denotes the Euler phi function.

Combining Eq. (7) and the previous relation gives

kH = [KH : Q] =
[Q(ζN) : Q]

[Q(ζN) : KH ]
=

ϕ(N)

| ker(Ψ)| = |im(Ψ)|.

Now we prove that this image actually has size equal to |H| by using homological algebra.

We need the fact that C× is an injective Z-module, which is fully explained and proven in

Appendix B. The statement of the lemma follows.
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Lemma 4.2. C× is an injective Z-module.

As promised by Lemma 3.2, we can say more about kH = |im(Ψ)|.

Proof of Lemma 3.2. We first observe that Ψ maps into C×× · · · ×C×, which is isomorphic

to Functions(H,C×), the space of functions from H to C×. Within that set, we have the

homomorphism group Hom(H,C×), so we know that the image of Ψ is bounded by the size

of that group, which is |H|. In symbols, |im(Ψ)| ≤ |H|. We will show that the map into

Hom(H,C×) is surjective, which will prove the other direction.

From Lemma 4.1 we know that kH is equal to the size of the image of Ψ. As before, let

L be the least common multiple of the conductors of the twists in H. The map Ψ is the

composite map of generating characters in H.

For convenience let A = (Z/LZ)×. Then from the universal property of tensor products,

we know the map A→ Hom(H,C×) bijects to A⊗H → C×, i.e. their homomorphism groups

are isomorphic. We observe that if two elements x and y of H map to the same element of

the group Hom(A,C×), then they must both act the same way on all coefficients of f and so

x = y since the twists themselves form a group. Thus, the map H ↪→ Hom(A,C×) is injective.

We will construct a short exact sequence to show that A→ Hom(H,C×) is surjective.

Define G such that 0→ H → Hom(A,C×)→ G→ 0 is a short exact sequence. Then we

have the short exact sequence

0→ Hom(G,C×)→ Hom
(
Hom(A,C×),C×

)
→ Hom(H,C×)→ 0.

It is injective on the left because of the properties of the homomorphism group. We have

surjectivity on the right by the injectivity of C, in particular, condition (2) of Definition 10.

But Hom
(
Hom(A,C×),C×

) ∼= A where the isomorphism is the evaluation map that sends

a ∈ A to the function f 7→ f(a). Thus we have the surjectivity of A � Hom(H,C×). Then

everything in Hom(H,C×) has a preimage in A, which means that all possible outputs are

mapped to, and in particular, |im(Ψ)| = |H|.

So far, we have shown that the probability of a single prime generating a field containing
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some EH
f is 1/|H| by combining Theorem 3.1, Lemma 4.1, and Lemma 3.2. To extend this

idea to n primes, we must show that generating a field with some ap(f)’s has the same

statistics as a random element of Γ∨ generating a subgroup H∨. We illustrate this idea with

the example below.

Example 4. Take Γ = C9 × C3. The poset of its subgroups is shown in Figure 4.

We have two different types of C3 subgroups in Γ. The first, which we call C3(a), is

the intersection of all the subgroups of order 9. So if we represent elements of Γ as ordered

pairs (a, b) for a ∈ Z/9Z and b ∈ Z/3Z, then C3(a) = {(0, 0), (3, 0), (6, 0)}. The other three

subgroups of order 3 are generated by (3, 1), (3, 2), and (0, 1).

Applying Lemma 3.2 and the ideas of Example 3, we obtain Table 1.

Now, how does the duality come into play? We observe that both (3, 0) and (6, 0) generate

the subgroup we named C3(a). The cokernel of the dual of C3(a) is (C9 × C3)/C3(a), which

is isomorphic to C3 × C3. So there is a 2
27

chance that picking a random element of C3 × C9

has a cokernel with its dual equal to C3 × C3. The probability that choosing some ap(f)

generates the field of Ef fixed by C3 × C3 is also 2
27
. We now formalize these observations.

Proof of Theorem 3.3. From Lemma 3.2, we know that the density of primes p for which

ap(f) generates a field that extends some EH
f is exactly 1/|H|. To generalize the reasoning

of Example 3, we apply the principle of inclusion-exclusion:

P(= H) = P(≥ H)−
∑

G, G⊇H

P(= G).

Furthermore, the probability that some element g generates H∨, the dual of H, is

P (〈g〉 = H∨) = P (〈g〉 ≤ H∨)−
∑

K,K⊆H∨

P (〈g〉 = K∨) .

By Theorem 3.11 of [4], the lattice of the poset of subgroups is preserved under the Pontryagin

duality, so for each G ⊇ H in the formula for P(= H), its dual G∨ is included in H∨. So

it suffices to check that the probability that 〈g〉 = G for some G ⊇ H∨ is the same as the

probability that ap(f) generates EH
f .
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But P(〈g〉 = G), G ⊇ H∨ is exactly the probability that g is an element of H∨, which is

exactly 1/|H|. Thus, P(= H) = P(〈g〉 = H∨).

If we decompose Γ into its p-components as in the proof of Lemma 3.2, we can bound

the number of coefficients needed to generate all of Ef . Suppose that each Γpi is a product

of ri cyclic summands. Then we have the following corollary.

Corollary 4.2.1. We need at most maxi(ri) coefficients to generate all of Ef .

Sketch of proof. To generate Γ we need a set of elements of the form (g1, g2, . . . , gn). We can

use the Chinese Remainder Theorem to create elements that generate as many of the Hpi as

possible at once. The maximum number of such elements we need is equal to the maximum

number of summands, each of which has its own generator, that some Hpi has.

5 Conclusion and Future Work

We reduced the problem of generating the coefficient field of a modular form to the

statistics of subgroups, which is a well-studied, though not completely-solved problem [3].

We were able to generalize the results of Koo, Stein, and Wiese by making them more

explicit, thus allowing us to investigate generating a coefficient field with n prime-indexed

coefficients. In particular, we have the theorem below. The method of proof is essentially

to check that the lattice structure is preserved, i.e. that intersection and union for fields

translate correctly to the group theory side. We are still working on the details.

Theorem 5.1. The probability P
(
Q(ap1(f), . . . , apn(f)) = EH

f

)
is equal to the probability

that a n randomly chosen elements g1, g2, . . . gn ∈ Γ∨ has ker(×igi) = H, where Γ∨ is the

Pontryagin dual Hom(Γ,Q/Z).

One interesting question that arose when experimenting with examples is the following.

Question 2. Given a finite Abelian group Γ, is always possible to construct a newform f

such that its group of inner twists is isomorphic to Γ?
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In the future, we hope to consider the implications of this result for elliptic curves and

for the Galois representations of modular forms with inner twists. Perhaps future work

can continue to investigate the role inner twists play in Galois theory and in the various

applications of modular forms or for modular forms with complex multiplication.
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A Figures and Exposition

Figure 3: The fundamental domain of a modular form [5]

Essentially, the action of SL2(Z) on H maps the shaded region, the fundamental domain,

to the entirety of H, and the values of f must be consistent under this action. The proof

and more details about this region are left to [15], Chapter VII.

We note that visually, the fundamental domain of the group Γ0(N) can be envisioned as

taking N copies of the shaded region in Figure 3, rolling each one up, and “gluing” them

together about a central point while working in projective space.
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C9 × C3

C9C9C9 C3 × C3

C3(b) C3(b) C3(b)C3(a)

e

Figure 4: Poset diagram for subgroups of C9 × C3.

The lattice structure of Figure 4 gives rise to Table 1.

Subgroup H P(≥ H) P(= H)

C9 × C3
1
27

1
27

C9
1
9

1
9
− 1

27
= 2

27

C3 × C3
1
9

1
9
− 1

27
= 2

27

C3(a) 1
3

1
3
− 4

(
2
27

)
− 1

27
= 0

C3(b) 1
3

1
3
− 1

9
= 2

9

e 1 1− 3
(

2
9

)
− 4

(
2
27

)
− 1

27
= 0

Table 1: Statistics for subgroups of C9 × C3
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B Proof of Lemma 4.2

First we state the definitions of an injective module and a divisible module.

Definition 10. A left R-module Q is injective if any of the following equivalent properties

holds.

1. If Q is a submodule of some other left R-module M , then there exists another sub-

module K of M such that M is the internal direct sum of Q and K, i.e. Q + K = M

and Q ∩K = {0}.

2. If X and Y are left R-modules, f : X → Y is an injective module homomorphism

and g : X → Q is an arbitrary module homomorphism, then there exists a module

homomorphism h : Y → Q such that hf = g, i.e. the following diagram commutes.

0 X Y

Q

f

g
h

3. If M ↪→ N , the natural map Hom(N,Q)→ Hom(M,Q) is surjective.

4. Any short exact sequence 0→ Q→M → K → 0 of left R-modules splits.

Definition 11. An R-module Q is divisible if for each y ∈ Q and r ∈ R, r 6= 0, there exists

some z ∈ Q such that rz = y, i.e. each element of Q can be divided by each element of R.

Lemma B.1 (Lemma 4.2). C× is an injective Z-module.

Proof. We note that C× is clearly a divisible Z-module, and so it just remains to show that

a divisible module over Z is also injective. It is well-known that to check injectivity over a

principal ideal domain such as Z, it suffices to check condition (1) of Definition 10 for X a

sub-module of Z and Y = Z (see [12] p. 113). We use the terminology from condition (1) of

Definition 10.
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If X is an ideal of Z, then X = nZ for some n ∈ Z. If n = 0, we may choose h = g, so

assume n 6= 0. Since C× is divisible, we know there exists some z ∈ C× such that zn = g(n).

Then we define h : Y → C× by 1 7→ z. Indeed, for any tn ∈ X = nZ,

h(f(tn)) = h(tn) = ztn = tg(n) = g(tn),

so h is the homomorphism that extends g, and C× is an injective Z-module.

C An Example Computation of kH

Example 5. Consider the non-trivial inner twist ε that is defined by p 7→
(
p
7

)
, the Legendre

symbol modulo 7.

This twist maps from (Z/7Z)× to {−1, 1}, which is the cyclic group of order 2 inside C×.

We view the characters ε as acting on Gal(Q(ζ7)/Q) by associating each n ∈ (Z/7Z)× =

{1, 2, . . . 6} to the automorphism ζ7 7→ ζn7 .

Then to find K{1,ε} = KH , we want to find the field fixed under the elements of (Z/7Z)×

that map to 1, the identity, under ε. These are those p ∈ (Z/7Z)× for which
(
p
7

)
= 1. The

quadratic residues (mod 7) are 1, 2, and 4, and some computation shows that the field they

fix is Q(ζ7 + ζ2
7 + ζ4

7 ). This extension is of degree 2, so kH = 2.

Note that the group H = {1, ε} above is isomorphic to Z/2Z, which has size 2 = kH .

This observation checks out with Theorem 3.3.
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