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Abstract

The first quermassintegral of a set C ⊂ Rd is a characteristic of C closely related to its sur-
face area. Quermassintegrals have traditionally been viewed in the context of convex geometry,
and their definition relies on a classic theorem in the field, Steiner’s Formula for Parallel Bod-
ies. Nonetheless, the concept can apply to any set, and in this paper we look at how the proper-
ties of quermassintegrals of non-convex sets differ from those of convex sets. Specifically, the
first quermassintegral, denoted by W1, satisfies the so-called valuation property, W1(C ∪D) =
W1(C)+W1(D)−W1(C∩D), when C, D, and their union are convex. Here we determine how
far non-convex sets deviate from the valuation property of quermassintegrals by placing bounds
on the value η(C,D) = W1(C) +W1(D)−W1(C ∪D)−W1(C ∩D), for C ∪D non-convex. Us-
ing both set-theoretic approaches and fundamental results of integral geometry, we show that in
R2, 0 ≤ η(C,D) ≤W1(conv(C∪D) \ (C∪D)), provided C and D are convex and their union is
connected. Furthermore, we prove that the lower bound holds for all C,D⊂ Rd .

Summary

Convex geometry is the study of the properties of convex bodies – figures with surfaces that
curve outwards, such as circles, cubes or spheres. Beyond the familiar characteristics of these sets
of points in space, like volume and surface area, convex geometry also studies other characteristics,
including the so-called quermassintegral of a set. The quermassintegral, which is related to the
surface area, has traditionally been studied only in the context of convex sets, but can equally be
applied to non-convex ones (crescents, stars, or tubes). In this paper we study an equation which
is known to be satisfied by the quermassintegrals of convex sets but not all non-convex sets. We
place upper and lower limits on how far the quermassintegrals of non-convex sets can deviate from
satisfying this equation. We employ two different methods to establish these limits, one taking
advantage of the connection between the quermassintegral and the surface area and the other using
an existing formula for the quermassintegral of a set. We prove that sets in any dimension comply
with these limits.



1 Introduction

Convex geometry is a branch of Euclidean geometry that developed as a distinct field of study

only in the early 20th century. Modern convex geometry has its origins in the work of Hermann

Minkowski and Hermann Brunn, whose research into the properties of convex sets was motivated

by applications in number theory. More recently the field of convex geometry has found extensive

use in optimization, maximizing or minimizing values on convex sets in parameter space, but it has

also been applied to other problems in geometry, in particular isoperimetric problems [1]. Brunn

and Minkowski, building on the work of Jakob Steiner, were responsible for some of the most

fundamental results in the field, including Minkowski’s theorem on mixed volumes. This theorem

generalized Steiner’s classic formula for parallel bodies. While Brunn and Minkowski’s work

focused on sets in R2 and R3, later research by Fenchel, Aleksandrov, and Bonnesen extended the

area of study to d dimensions [2].

Fundamental to all of these results is the concept of the Minkowski sum, which defines a notion

of addition for sets in Rd . The Minkowski sum of n sets of vectors is the set of vectors produced

by summing one element from each set. One of the simplest, and most studied, Minkowski sums

is the sum of an arbitrary two-dimensional set A with a two-dimensional disc B. To visualize the

resulting set, imagine dipping the disc B in paint and dragging its center along the boundary and

through the interior of the set A. The painted area, A surrounded by a strip of width equal to the

radius of B, constitutes A+B (Figure 1), where the Minkowski sum is denoted by the conventional

plus sign.

The concept of Minkowski addition has wide-ranging practical applications, from engineering

to computer science, including facilitating the calculation of the routes of drones through crowded

spaces [3]. In mathematics, however, one of the most studied properties of Minkowski sums of

sets is their volume.

Consider a convex body (compact convex set) C in Rd and a d-dimensional ball of radius t,
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Figure 1: The Minkowski sum of a rectangle and a disc

denoted by tBd . Steiner’s formula, a classic result of convex geometry, states that the volume of

the sum of these two sets is a polynomial in t, as follows [4]:

Vol(C+ tBd) =W0(C)+

(
d
1

)
W1(C)t + · · ·+

(
d
d

)
Wd(C)td,

where Wi(C) is the so-called ith quermassintegral of C. These quermassintegrals have a number of

properties, one of which, the valuation property, is the focus of this paper. The valuation property

of the first quermassintegral [4] states that, provided C, D, and C∪D are convex bodies,

W1(C∪D) =W1(C)+W1(D)−W1(C∩D).

This is directly analogous to the more intuitive valuation property of volumes,

Vol(C∪D) = Vol(C)+Vol(D)−Vol(C∩D).
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We see by the valuation property that for convex bodies C, D, and C∪D, the value

η(C,D) :=W1(C)+W1(D)−W1(C∪D)−W1(C∩D)

is equal to 0. In this paper we analyze η(C,D) in the general case where C∪D need not be convex.

Section 2 gives further background on quermassintegrals and presents a definition of them that

can be applied to non-convex sets. Section 3 then lays out an integral-geometric proof of upper

and lower bounds on η(C,D) based on the connection between the first quermassintegral and the

surface area of a set. Because of the use of the Cauchy-Crofton formula in these proofs, they only

show that the bounds apply for convex bodies with a connected union in R2, so in Section 4 we

present an alternative proof of the bounds that extends them to any compact sets in Rd . Finally,

we calculate η(C,D) for some simple examples and compare it to our bounds, to illustrate the

concepts discussed in the previous sections.

2 Defining Quermassintegrals

Quermassintegrals are members of a broader family of operators known as mixed volumes. Tradi-

tionally, the mixed volume of a collection of convex bodies is defined using their Minkowski sum.

The Minkowski sum of two sets A and B scaled by constants t1 and t2 is the set of all sums of

vectors in A scaled by t1 and vectors in B scaled by t2, or

t1A+ t2B = {t1x+ t2y : x ∈ A,y ∈ B}.

Minkowski’s theorem describes the volume of this sum. Let A1, . . . ,An be convex bodies in Rd and

t1, . . . , tn ∈ R.

Theorem (Minkowski’s theorem on mixed volumes [4]). The volume Vol(∑n
k=1 tkAk) is a polyno-
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mial of degree d in t1, . . . , tn.

When every Ak is convex, the mixed volume V (Ax1 , . . . ,Axd), for indices x1, . . . ,xd ∈ {1, . . . ,n},

is defined as the coefficient of tx1tx2 · · · txd in the polynomial expression of Vol(∑n
k=1 tnAn). From

this definition and from Steiner’s formula for parallel bodies, a special case of Minkowski’s theo-

rem, comes the notion of the quermassintegrals of a set. Steiner’s formula addresses the specific

case of only two convex bodies, where one is the d-dimensional ball of radius 1, Bd , stating that

Vol(C+ tBd) =W0(C)+

(
d
1

)
W1(C)t + · · ·+

(
d
d

)
Wd(C)td,

where Wi(C) is called the ith quermassintegral of C. The quermassintegrals are mixed volumes,

defined as

Wi(C) =V (C, . . . ,C︸ ︷︷ ︸
d− i

,Bd, . . . ,Bd︸ ︷︷ ︸
i

), i = 0, . . . ,d.

Hence V (C,Bd, . . . ,Bd) is the first quermassintegral of C, and can be alternatively written as W1(C).

It is this first quermassintegral with which we concern ourselves for the remainder of the paper.

However, the definitions of quermassintegrals and mixed volumes presented above apply only

to convex bodies. Minkowski’s theorem and Steiner’s formula do not require that the volume of the

Minkowski sum of non-convex sets be a polynomial, so definitions that depend on the coefficients

of such a polynomial cannot be extended to non-convex sets. To define the quermassintegrals of

non-convex sets we turn instead to Kubota’s formula for quermassintegrals.

Let C be a set in Rd , κd−1 the (d−1)-dimensional volume of Bd−1, and wi for i = 0, . . . ,d−1

the ith (d− 1)-dimensional quermassintegral. Additionally let u ∈ Sd−1, dσ(u) the surface area

element of Sd−1, and C|u⊥ the orthogonal projection of C onto the space u⊥ = {x : u · x = 0}

(Figure 2).
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Figure 2: The setup for Kubota’s formula in R2

Theorem (Kubota’s formula for quermassintegrals [4]). The ith quermassintegral is given by

Wi(C) =
1

dκd−1

∫
Sd−1

wi−1(C|u⊥)dσ(u)

for i = 1, . . . ,d.

The base case, W0(C) = Vol(C) for any d, can be found by letting t = 0 in Steiner’s formula

above.

Throughout the rest of this paper, we will use Kubota’s formula as the fundamental definition

of the quermassintegral.

3 An Integral-Geometric Approach

We first present a proof of the bounds on η(C,D) that depends on the close link between the first

quermassintegral and the surface area of a set. We begin by proving a lemma that establishes this

relation, based on a formula for the surface area of convex bodies.

Let C be a convex body in Rd and v denote (d− 1)-dimensional volume, with u, C|u⊥, and
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dσ(u) defined as above.

Theorem (Cauchy’s surface area formula [4]). The surface area of C is given by

S(C) =
1

κd−1

∫
Sd−1

v(C|u⊥)dσ(u).

Comparing this expression with Kubota’s formula above, we see that for a convex body C,

W1(C) =
1
d
·S(C).

The following lemma extends this property to non-convex sets.

Lemma 1. For all compact, connected C ⊂ R2,

W1(C) =
1
2
·S(conv(C)),

where conv(C) denotes the convex hull of C.

Proof. It is well-known that for some C ⊂ Rd and some (d − 1)-dimensional hyperplane u⊥,

conv(C)|u⊥ = conv(C|u⊥). In R2, conv(C|u⊥) =C|u⊥ if C is connected. Hence

W1(C) =
1

2κ1

∫
S1

w0(C|u⊥)dσ(u)

=
1
4

∫
S1

w0(conv(C)|u⊥)dσ(u)

=
1
2
·S(conv(C)).

Before applying this property and our extended definition of quermassintegrals to sets in R2, it

is helpful to introduce another theorem relating to surface area, specifically in two dimensions.
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Let α be a rectifiable curve in the plane, and ` a line in the plane. Parameterizing lines by the

angle θ of their slope and their closest distance to the origin, p, we denote the number of times α

and ` intersect by nα(`) = nα(θ , p).

Theorem (The Cauchy-Crofton formula [5]). The length of α is given by

L(α) =
1
4

∫∫
R2

nα(θ , p)dθ d p.

When applied to a closed curve, the Cauchy-Crofton formula provides an alternative method

of calculating the perimeter of a set in R2.

Theorem 1. Let C and D be convex bodies in R2 and C∪D be connected. Then

0≤ η(C,D)≤W1(conv(C∪D)\ (C∪D)).

Proof. By Lemma 1 above, we see that

η(C,D) =
1
2
·S(conv(C))+

1
2
·S(conv(D))− 1

2
·S(conv(C∪D))− 1

2
·S(conv(C∩D)),

or

η(C,D) =
1
2
[S(C)+S(D)−S(conv(C∪D))−S(C∩D)] ,

since C and D are convex. The surface area, unlike the first quermassintegral, is a valuation for all

compact, connected sets, so

S(C)+S(D) = S(C∪D)+S(C∩D).

Hence we must compare S(C∪D) with S(conv(C∪D)).

Let E := conv(C∪D)\ (C∪D), and ` be the line given by an arbitrary (θ , p). Only three cases
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for ` are possible (Figure 3):

1. ` does not intersect ∂ conv(C∪D)

2. ` intersects ∂ conv(C∪D) but not E

3. ` intersects ∂ conv(C∪D) and E

Figure 3: The three cases

We disregard cases that occur only a finite number of times for a given θ , since they have

measure 0 and therefore will not factor into Kubota’s formula. Thus if ` intersects the convex hull

of C∪D, then n∂ conv(C∪D) = 2, otherwise n∂ conv(C∪D) = 0.

Lemma 2. A line ` intersects the boundary of a compact, connected set C if and only if it intersects

the boundary of conv(C).

Proof. If ` does not pass through conv(C), it cannot pass through C, since C ⊂ conv(C). Hence if

` intersects ∂C it must also intersect ∂ conv(C).
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Now suppose ` does not intersect ∂C, so ` does not pass through C. Then either there are points

in C on both sides of ` in the plane, in which case C cannot be connected, or there are points in

C on only on side of `, in which case there must be a convex set containing C but not intersecting

`, so the line cannot intersect ∂ conv(C). In each case there is a contradiction, so ` must intersect

∂C.

By Lemma 2, we have that in case 1, n∂ (C∪D) = n∂ conv(C∪D) = 0. No line can intersect the

boundary of a convex set more than twice, so in case 2, n∂ conv(C∪D) = 2. Since ` does not intersect

E, it must intersect ∂ conv(C∪D) and ∂ (C∪D) at the same points, so n∂ (C∪D) = 2. In case 3,

the intersections with the boundary and the boundary of the convex hull do not coincide, and the

greatest possible n∂ (C∪D) in this case is 4, since ` may intersect at most twice with ∂C and twice

with ∂D. The least possible n∂ (C∪D) is 2, since by Lemma 2, ` must intersect ∂ (C∪D). In the

three cases, therefore, we have

1. n∂ (C∪D)−n∂ conv(C∪D) = 0

2. n∂ (C∪D)−n∂ conv(C∪D) = 0

3. 0≤ n∂ (C∪D)−n∂ conv(C∪D) ≤ 2

For a given θ , let `⊥ be the line through the origin perpendicular to all lines with angle θ . Then

n∂ (C∪D)−n∂ conv(C∪D) = 0 for all p not in E|`⊥, and 0≤ n∂ (C∪D)−n∂ conv(C∪D) ≤ 2 for p in E|`⊥.

Hence

0≤
∫
R

n∂ (C∪D)d p−
∫
R

n∂ conv(C∪D)d p≤
∫

E|`⊥
2d p.

Integrating over all angles θ and scaling by 1
4 , we have

0≤ 1
4

∫∫
R2

n∂ (C∪D)d pdθ − 1
4

∫∫
R2

n∂ conv(C∪D)d pdθ ≤ 1
2

∫ 2π

0
w0(E|`⊥)dθ .
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Applying the Cauchy-Crofton formula and Kubota’s formula, we get that

0≤ S(C∪D)−S(conv(C∪D))≤ 2W1(E).

Since for any C and D,

S(C)+S(D)−S(C∪D)−S(C∩D) = 0,

we obtain

0≤ 1
2
[S(C)+S(D)−S(conv(C∪D))−S(C∩D)]≤W1(E),

or

0≤ η(C,D)≤W1(conv(C∪D)\ (C∪D)).

4 A Set-Theoretic Approach

The proof in the preceding section provides a visual intuition for working with quermassintegrals,

but it applies only to convex bodies with a connected union, and only in R2. This section presents

a pair of set-theoretic proofs showing that the same bounds apply more generally to all compact

sets in Rd .

4.1 The Lower Bound

Theorem 2. Let C and D be compact sets in Rd . Then η(C,D)≥ 0.

Proof. Let u ∈ Sd−1 be an arbitrary unit vector and u⊥ the hyperplane {x : u · x = 0}. Let x be a
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point in the projection (C∪D)|u⊥. Then

x ∈ (C∪D)|u⊥ ⇐⇒ ∃y ∈C or D such that y|u⊥ = x

⇐⇒ x ∈C|u⊥ or D|u⊥

⇐⇒ x ∈ (C|u⊥∪D|u⊥),

which implies that

(C|u⊥)∪ (D|u⊥) = (C∪D)|u⊥.

Similarly,

x ∈ (C∩D)|u⊥⇒∃y ∈C and D such that y|u⊥ = x

⇒ x ∈C|u⊥ and D|u⊥

⇒ x ∈ (C|u⊥∩D|u⊥),

so

(C|u⊥)∩ (D|u⊥)⊇ (C∩D)|u⊥.

Letting v denote (d−1)-dimensional volume, we have that

v((C|u⊥)∪ (D|u⊥)) = v((C∪D)|u⊥)

and

v((C|u⊥)∩ (D|u⊥))≥ v((C∩D)|u⊥).

Since volume is a valuation for all sets C and D, we also have that

v((C|u⊥)∪ (D|u⊥))+ v((C|u⊥)∩ (D|u⊥)) = v(C|u⊥)+ v(D|u⊥).
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Substituting, we get

v((C∪D)|u⊥)+ v((C∩D)|u⊥)≤ v(C|u⊥)+ v(D|u⊥).

Integrating over all u and noting that v is equal to w0,

∫
Sd−1

w0((C∪D)|u⊥)dσ(u)+
∫

Sd−1
w0((C∩D)|u⊥)dσ(u)

≤
∫

Sd−1
w0(C|u⊥)dσ(u)+

∫
Sd−1

w0(D|u⊥)dσ(u),

so

W1(C∪D)+W1(C∩D)≤W1(C)+W1(D).

Therefore η(C,D)≥ 0.

4.2 The Upper Bound

Theorem 3. For compact sets C and D in Rd ,

η(C,D)≤W1(conv(C∪D)\ (C∪D)).

Proof. As above, let u ∈ Sd−1 be an arbitrary unit vector and u⊥ the hyperplane {x : u ·x = 0}. We

have shown in the previous section that

(C|u⊥)∪ (D|u⊥) = (C∪D)|u⊥

and

(C|u⊥)∩ (D|u⊥)⊇ (C∩D)|u⊥.

Now consider a point p in ((C|u⊥)∩ (D|u⊥))\ ((C∩D)|u⊥). This point is the projection onto
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u⊥ of a point c in C and a point d in D but not of any point in C∩D, so the line ` perpendicular to

u⊥ that passes through p intersects C and D but not C∩D. Now suppose every point on ` between

c and d is either in C or in D. Then, since C is closed, C must have a boundary point b in this line

segment. Because it is a boundary point, every 1
n -neighborhood of b contains a point bn not in C,

which by assumption is in D. The sequence {bn} converges to b, so b∈C is the limit of a sequence

in D. This is a contradiction since D is closed, so there must exist a point on ` between c and d

which is not in C∪D. By the definition of convexity, the point is in the convex hull of C∪D, so p

is the projection of a point in E. Therefore we have

p ∈ ((C|u⊥)∩ (D|u⊥))\ ((C∩D)|u⊥)⇒ p ∈ E|u⊥,

so

((C|u⊥)∩ (D|u⊥))\ ((C∩D)|u⊥)⊆ E|u⊥,

which implies that

v((C|u⊥)∩ (D|u⊥))− v((C∩D)|u⊥)≤ v(E|u⊥).

As in the proof of the lower bound, the valuation property of volumes gives

v((C|u⊥)∪ (D|u⊥))+ v((C|u⊥)∩ (D|u⊥)) = v(C|u⊥)+ v(D|u⊥).

Substituting, we get

v((C∪D)|u⊥)+ v((C∩D)|u⊥)+ v(E|u⊥)≥ v(C|u⊥)+ v(D|u⊥).
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Integrating over all u and substituting v with w0,

∫
Sd−1

w0((C∪D)|u⊥)dσ(u)+
∫

Sd−1
w0((C∩D)|u⊥)dσ(u)+

∫
Sd−1

w0((E)|u⊥)dσ(u)

≥
∫

Sd−1
w0(C|u⊥)dσ(u)+

∫
Sd−1

w0(D|u⊥)dσ(u),

so

W1(C∪D)+W1(C∩D)+W1(E)≥W1(C)+W1(D).

Therefore η(C,D)≤W1(conv(C∪D)\ (C∪D)).

5 Visualizing the Bounds

To aid the reader in visualizing the quermassintegrals and the bounds on η(C,D), we conclude by

providing two simple examples of the calculation of η(C,D) and comparing the values obtained

to the bounds.

We consider one example in which C and D are line segments of length 1, and one in which C

and D are right triangles with side lengths 1, 1, and
√

2 (Figure 4).

(a) (b)

Figure 4: Simple Connected Examples in R2

In Figure 4a, the intersection of the two lines C and D is a point, so

W1(C∩D) =
1
2
·S(conv(C∩D)) =

1
2
·S(C∩D) = 0.

W1(C) = W1(D) = 1, since the perimeter of a line of length 1 is counted as 2 (it is easy to see
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why by imagining the line as the limit of a rectangle with sidelengths 1 and x as x approaches 0).

The remaining term in η(C,D) is W1(C∪D) = 1
2 · S(conv(C∪D)), which can be calculated with

simple geometry (the convex hull of C∪D is marked with a dotted line in Figure 4). Following

the analogous procedure for the second example, we get the following values for η(C,D) in each

case:

Example 4a: η(C,D) = 1+1−
√

2−0 = 2−
√

2

Example 4b: η(C,D) = 2+
√

2− (
√

2
2 + 1

2)−2 = −1
2 +

√
2

2

Both of these values are positive, as predicted by our lower bound. We can now check the upper

bound for each of these examples: In Figure 4a, we see that conv(C∪D) \ (C∪D) has a convex

hull equal to conv(C∪D), namely the entire square shown in the diagram. Hence for Example 4a

W1(conv(C∪D)\ (C∪D)) =
√

2≥ 2−
√

2 = η(C,D).

Again, we repeat the procedure for Figure 4b, and we obtain

W1(conv(C∪D)\ (C∪D)) =
1
2
+

√
2

2
≥ −1

2
+

√
2

2
= η(C,D).

6 Future Work

The natural line of further investigation for any problem involving bounding a value is to refine

the bounds. The lower bound on the deviation η(C,D) in this problem is optimal, since convex

sets have η(C,D) = 0, but the upper bound could be refined by means of the integral-geometric

approach presented in Section 3. Another interesting question to study would be the following: as-

suming that a non-convex body is expressible as the union of two convex bodies, decompose it into

two bodies, such that the bounds on the deviation of the quermassintegrals from the valuation prop-

erty are as tight as possible. This process of “optimally” decomposing a set has the potential, along
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with the results in S. Alesker’s “Theory of valuations on manifolds” [6], to non-trivially estimate

the Lipschitz-Killing measure of some Riemannian manifolds with corners. Since this measure is

an intrinsic property of a manifold, while the bounds depend on convexity properties of its isomet-

ric embeddings, this estimate could provide a link between intrinsic Riemannian geometry and the

extrinsic geometry of isometric embeddings.
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