
Properties Of Triangles When They Undergo The
Curve-Shortening Flow

Asha Ramanujam

under the direction of
Mr. Ao Sun

Department of Mathematics
Massachusetts Institute of Technology

Research Science Institute
August 2, 2016



Abstract

In this paper, we study the properties of triangles when they undergo the curve-shortening
flow. We first take the case of the isosceles triangle and prove that the legs of the triangle
always decrease and the vertex angle will decrease if it is lesser than π

3
. Our main result is

that there exists a time T such that α(T ) = 0 (where α(t) is the vertex angle at time t)
and x(T ) > 0 (where x(t) is the legs of isosceles triangle at time t) when 0 ≤ α(0) < π

3
,

showing that the triangle becomes a straight line rather than a single point. The equilaterel
triangle turns out to be a self-shrinker and hence converges to a single point. We also find
expressions for the change in side lengths and angles in any general triangle and prove that
the length of each side reduces during the flow.

Summary

Geometric flow refers to the movement of geometric objects in space. The curve-shortening
flow is an important type of flow in which all points of the curve move inwards. It is highly
applied in physics and recent research in this field addresses classical problems in topology,
differential equations and geometric analysis. Our aim in this paper, is to study triangles
when they undergo this flow. We find that the length of the legs of an isosceles triangle
decreases. We also find that the vertex angle of an isosceles triangle decreases if it is smaller
than π

3
and ultimately, the isosceles triangle becomes a line segment. We find that the equi-

laterel triangle undergoes the flow without having any change in its angles, and eventually
converges to a point. We also find that in any triangle, the length of each side decreases
during the flow, and we can roughly estimate what happens to the angles of the triangle .



1 Introduction

In this project we study the curve-shortening flow (CSF), a process that modifies a smooth

curve in the Euclidean plane by moving its points perpendicularly to the curve at a speed

proportional to the curvature at this point. This process is of fundamental interest in the

calculus of variations. Recent research on curve-shortening flow addresses classical problems

in topology , differential equations and geometric analysis. Furthermore it provides a setting

for formulating problems in physics. It covers concepts like the area form and total curvature.

The curve-shortening flow was originally studied as a model for the annealing of metal

sheets. Later, it was applied in image analysis to give a multi-scale representation of shapes.

It can also model reaction diffusion systems, and the behavior of cellular automata. The

curve-shortening flow can be used to find closed geodesics on Riemannian manifolds, and as

a model for the behavior of higher-dimensional flows [1].

The curve-shortening flow follows the equation

dxi(t)

dt
= −k(xi(t)) ~N(xi(t))

where xi(t) is a point on the curve on the curve moving at time t, ~N(xi(t)) is the normal

of the curve at the point xi(t) and k(xi(t)) is the curvature of the curve at the point xi(t).

The Gage-Hamilton-Grayson theorem states how smooth curves evolve under the curve-

shortening flow [2]. It states that, if a smooth simple closed curve undergoes the curve-

shortening flow, it remains smoothly embedded without self-intersections. It will eventually

becomes convex, and once it does so, it will remain convex. After this time, all points of the

curve will move inwards, and the shape of the curve will converge to a circle as the whole

curve shrinks to a single point (Figure 1).

This behavior is sometimes summarized by saying that every smooth simple closed curve

shrinks to a round point. Gage proved the convergence to a circle for convex curves that
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Figure 1: Evolution of triangle under CSF

contract to a point. Gage and Hamilton proved that all smooth convex curves eventually

contract to a point, and Grayson proved that every non-convex curve will eventually become

convex [1].

In this paper, we will study how the triangles evolve under the curve-shortening flow.

In Section 2 we will present some definitions and notations involved through out the paper.

We investigate the behaviour of the legs and the vertex angle of an isosceles triangle under

the curve-shortening flow in Section 3, and eventually what happens to it. In Section 4 we

will make some calculations for any triangle and formulate some observations based on some

graphical evidence.

We find that the length of the legs of an isosceles triangle always decreases. We also

find that the vertex angle decreases if it is lesser that π
3

and remains the same if it is π
3
.

Surprisingly, we show that unlike smooth curves, in particular for isosceles triangles, if the

vertex angle is lesser that π
3
, the triangle ultimately becomes a short line segment and not

a single point. We also find that in any triangle the length of each side reduces during

the curve-shortening flow. In the end we come up with some conjectures, based on some

computation and graphical evidence.

2 Notations and Definitions

Let there be a triangle ABC which will undergo the curve-shortening flow. (Figure 2)

We will use the following notations in the paper.
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Figure 2: an arbitary triangle at time t

At any time t, At, Bt and Ct denote the flowed vertices of A, B and C, respectively. The

lengths of the sides AtBt and BtCt are denoted by x (t) and p (t), respectively at any time t.

For convinience, we assume C0 to be the origin and B0C0 to be the x-axis of the Cartesian

coordinate system. The angles at the flowed vertices at any time t, are denoted by α(t), β(t)

and γ(t) respectively.

Definition 1. Curvature at any vertex is defined as π−(angle at that vertex).

Definition 2. The normal at any vertex is defined as its angle bisector.

Definition 3. Self–shrinker is a figure which undergoes the curve-shortening flow without

changing its angles. In other words α (t) = α (0), β (t) = β (0), γ (t) = γ (0), for any time t.

3 Isosceles triangle

Let us consider an isosceles triangle ABC with AB = AC .

According to our assumptions,
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A0 :
(
x (0) sin

(
α(0)

2

)
, x (0) cos

(
α(0)

2

))
,

B0 :
(

2x (0) sin
(
α(0)

2

)
, 0
)

.

When it undergoes the curve-shortening flow in an infinitesimally small time ∆t the

following transformation (Figure 3) takes place:

A∆t:
(
x (0) sin

(
α(0)

2

)
, x (0) cos

(
α(0)

2

)
− (π − α (0)) ∆t

)
,

C∆t:
((

π
2

+ α(0)
2

)
cos
(
π
4
− α(0)

4

)
∆t,

(
π
2

+ α(0)
2

)
sin
(
π
4
− α(0)

4

)
∆t
)
,

B∆t:
(

2x (0) sin
(
α(0)

2

)
−
(
π
2

+ α(0)
2

)
cos
(
π
4
− α(0)

4

)
∆t,

(
π
2

+ α(0)
2

)
sin
(
π
4
− α(0)

4

)
∆t
)
.

Figure 3: Isosceles triangle undergoing the curve-shortening flow

Next we prove 3 theorems about the behavior of the legs and the vertex angle during the

curve-shortening flow

Theorem 4. The length of the legs of an isosceles triangle, decreases during the curve-

shortening flow.

Proof. We find dx(t)
dt

to prove our theorem.
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We find it in the following way-

dx (t)2

dt
|t=0 = 2x (0)

dx (t)

dt
|t=0 = lim

∆t→ 0

x (∆t)2 − x (0)2

∆t

= −2x (0)

((
π

2
+
α (0)

2

)
sin

(
π

4
+
α (0)

4

)
+ (π − α (0)) cos

(
α (0)

2

))
.

Therefore,

dx (t)

dt
|t=0 = −

((
π

2
+
α (0)

2

)
sin

(
π

4
+
α (0)

4

)
+ (π − α (0)) cos

(
α (0)

2

))
.

By the same method,

dx (t)

dt
= −

((
π

2
+
α (t)

2

)
sin

(
π

4
+
α (t)

4

)
+ (π − α (t)) cos

(
α (t)

2

))
.

Since the expression −
((

π
2

+ α(t)
2

)
sin
(
π
4

+ α(t)
4

)
+ (π − α (t)) cos

(
α(t)

2

))
is negative for all

α (t), such that 0 < α (t) < π, dx(t)
dt

is negative implying that x (t) always decreases.

We find dα(t)
dt

for further calculations.

To find dα(t)
dt

, we proceed as follows.

d cos (α (t))

dt
|t=0 = − sin (α (t))

dα (t)

dt
|t=0 = lim

∆t→ 0

cos (α (∆t))− cos (α (0))

∆t

.
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=
4 sin (α (0))

x (0)

(π2 +
α (0)

2

)√√√√1− sin
(
α(0)

2

)
2

− (π − α (0)) sin

(
α (0)

2

) .

Therefore,

dα (t)

dt
|t=0 =

−4

x (0)

(π2 +
α (0)

2

)√√√√1− sin
(
α(0)

2

)
2

− (π − α (0)) sin

(
α (0)

2

) .

By the same method

dα (t)

dt
=
−4

x (t)

(π2 +
α (t)

2

)√√√√1− sin
(
α(t)

2

)
2

− (π − α (t)) sin

(
α (t)

2

) .

For convinience we set f(s) to be,

f (s) =
(π

2
+
s

2

)√1− sin
(
s
2

)
2

− (π − s) sin
(s

2

)
.

Therefore,

f(s) =
1

2
√

2

(
(π + s) cos

(s
4

)
− (π + s) sin

(s
4

)
− 2
√

2 (π − s) sin
(s

2

))
.

We use the following lemma for further calculations.

Lemma 1. The function f (s) is positive for 0 ≤ s < π
3
.

Proof. We show that df(s)
ds

< 0 to prove that f(s) is a monotonically decreasing function in

that interval.
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df (s)

ds
=

1

2
√

2

(
cos
(s

4

)(4− s− π
4

)
− sin

(s
4

)(4 + s+ π

4

)
−
√

2 (π − s) cos
(s

2

)
+ 2
√

2 sin
(s

2

))

Case 1. 0 ≤ s < π
4
.

In this interval cos
(
s
2

)
> sin

(
s
2

)
. So,

df (s)

ds
<

1

2
√

2

(
cos
(s

4

)(4− s− π
4

)
− sin

(s
4

)(4 + s+ π

4

)
−
√

2 (π − s− 2) cos
(s

2

))
.

Since cos
(
s
4

)
≤ 1, and cos

(
s
2

)
> cos

(
π
8

)
≈ 0.9,

df (s)

ds
<

1

2
√

2

(
4− s− π

4
−
√

2 (π − s− 2)× 0.9

)
< 0.

Case 2. s = π
4

df(s)
ds
≈ −0.836 < 0.

Case 3. π
4
< s ≤ π

3

In this interval, cos
(
s
2

)
> sin

(
s
2

)
. So,

df (s)

ds
<

1

2
√

2

(
cos
(s

4

)(4− s− π
4

)
− sin

(s
4

)(4 + s+ π

4

)
−
√

2 (π − s− 2) cos
(s

2

))
.

Since cos
(
s
4

)
< 1, sin

(
s
4

)
> sin

(
π
16

)
≈ (0.195) and cos

(
s
2

)
≤

√
3

2
,

df (s)

ds
<

1

2
√

2

(
4− s− π

4
− 4 + π + s

4
× 0.195−

√
2 (π − s− 2)

√
3

2

)
< 0.

Therefore df(s)
d(s)

< 0 for 0 ≤ s ≤ π
3

showing that f (s) is a monotonically decreasing

function in that interval.

Furthermore, f
(
π
3

)
= 0 and f (0) > 0, showing that f (s) > 0 for 0 ≤ s < π

3
.
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Based on the previous computations of Lemma 1, dα(t)
dt

< 0 for 0 ≤ α(t) < π
3
. Also

dα(t)
dt

= 0 at α(t) = π
3
, leading to our Theorem 5.

Theorem 5. The vertex angle (α(t)) of an isosceles triangle undergoing the curve-shortening

flow, decreases if (α(t)) < π
3

and remains same if α(t) = π
3
.

Now we will analyse what will happen to the triangle if α(0) < π
3
.

Theorem 6. The vertex angle vanishes in a shorter time than than the legs of an isosceles

triangle undergoing the curve-shortening flow, if α(0) < π
3
, i.e there exists a time T such

that α(T ) = 0 and x(T ) > 0.

Proof. As we found in the previous part,

dx (t)

dt
= −

((
π

2
+
α(t)

2

)
sin

(
π

4
+
α (t)

4

)
+ (π − α (t)) cos

(
α (t)

2

))

and

dα (t)

dt
= − 4

x (t)

(π2 +
α (t)

2

)√√√√1− sin
(
α(t)

2

)
2

− (π − α (t)) sin

(
α (t)

2

) .

Let the function g(α(t)) be defined as follows:

g (α (t)) =

(
π

2
+
α (t)

2

)
sin

(
π

4
+
α (t)

4

)
+ (π − α (t)) cos

(
α (t)

2

)
.

The function g (α (t)) satisfies g (α (t)) < 2π for all t, since α(t) ≤ π
3
.

This was found by substituting α(t) = 0, with g(0) = π
2
√

2
+ π < 2π.

Therefore, there exists a positive integer C2 such that, g (α (t)) < C2 and C2 ≥ 2π.

Also, by the proof of Lemma 1, f (α (t)) ≥ f (α (0)) = C1, where C1 is a positive integer

. For any time t in the time interval [0, T ), x (t) > 0.
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By Lemma 1, f (α (t)) > 0 and g (α (t)) > 0 as it is bounded between positive real

numbers.

The functions α (t) and x(t) are decreasing in this interval.

Let t0 = 0 and ti+1 = ti + x(ti)
2C2

. Then for any positve integer n, by Lagrange Mean Value

Theorem, there exists time t in the interval (tn, tn+1) such that

x (tn+1)− x (tn) = (tn+1 − tn)
dx (t)

dt
.

Therefore,

x (tn+1) = x (tn)− (tn+1 − tn) g (α (t)) .

Since g (α (t)) < C2, we have

x (tn+1) > x (tn)− (tn+1 − tn)C2.

Hence, x (tn+1) > x(tn)
2

By induction from 0 to n, x (tn) > x(t0)
2n
. Thus, x (t) is positive for all t in the interval

[0, tn], for all positive integers n.

By applying Lagrange Mean Value Theorem again, for any positive integer n, there exists

a time s in the interval (tn, tn+1) such that

α (tn+1) = α (tn) + (tn+1 − tn)
dα (s)

dt
.

Therefore,

α (tn+1) = α (tn)− (tn+1 − tn)
4f (α (s))

x (s)
.
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Since f (α (s)) > C1, we have

α (tn+1) < α (tn)− 2C1x (tn)

C2x (s)
.

Since x (t) is a decreasing function, x (tn) > x (s) .

Therefore, x (tn+1) < x (tn)− 2C1

C2

By induction, α (tn) < α (t0)− n2C1

C2
.

Suppose there is a positive integer N such that N 2C1

C2
> α (t0). Then we know that α (t)

vanishes in the interval [0, tn] because α(t) ≥ 0, but x (t) is positive in this interval.

The theorem implies that the triangle will become a straight line segment and not a

single point after some time(Figure 4).

Figure 4: the end of the CSF

4 General Triangle

Let us consider the triangle ABC. (Recall that p(t) denotes the side BtCt.)
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According to our assumption,

A0 :

(
p sin (β (0)) cos (γ (0))

sin (β (0) + γ (0))
,
p sin (β (0)) sin (γ (0))

sin (β (0) + γ (0))

)
B0 : (p (0) , 0) .

When the triangle undergoes the curve-shortening flow in an infinitesimally small time

∆t, the following transformation (Figure 5) takes place.

The coordinates of the new vertices are -

A∆t = (p(0) sin(β(0)) cos(γ(0))
sin(β(0)+γ(0))

− (β(0) + γ(0)) sin(β(0)
2
− γ(0)

2
)∆t, p(0) sin(β(0)) sin(γ(0))

sin(β(0)+γ(0))
− (β(0) +

γ(0)) cos(β(0)
2
− γ(0)

2
)∆t)

B∆t =
(
p (0)− (π − β (0)) cos

(
β(0)

2

)
∆t, (π − β (0)) sin

(
β(0)

2

)
∆t
)

C∆t =
(

(π − γ (0)) cos
(
γ(0)

2

)
∆t, (π − γ (0)) sin

(
γ(0)

2

)
∆t
)

Figure 5: A general triangle undergoing the CSF

Next we prove 1 theorem and verify 2 conjectures.

Theorem 7. In any triangle, the length of each side of the triangle, decreases during the
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curve-shortening flow.

Proof. We find dp(t)
dt

to prove our theorem.

We find it in the following way.

dp (t)2

dt
|t=0 = 2p (0)

dp (t)

dt
|t=0 = lim

∆t→ 0

(
p (∆t)2 − p (0)2)

∆t

= −2p(0)

(
(π − β (0)) cos

(
β (0)

2

)
+ (π − γ (0)) cos

(
γ (0)

2

))
.

Therefore,

dp (t)

dt
|t=0 = −

(
(π − β (0)) cos

(
β (0)

2

)
+ (π − γ (0)) cos

(
γ (0)

2

))
.

By the same method,

dp (t)

dt
= −

(
(π − β (t)) cos

(
β (t)

2

)
+ (π − γ (t)) cos

(
γ (t)

2

))
.

Since the expression (π − β (t)) cos
(
β(t)

2

)
+ (π − γ (t)) cos

(
γ(t)

2

)
is positve for all 0 <

β (t) < π and 0 < γ (t) < π, dp(t)
dt

is negative proving that the length of side BC decreases.

The same computation can be done for all sides and a similar result will be obtained

which is based on the adjacent angles, and the derivative of the length of the side with

respect to time being negative.

4.1 Other Results and Conjectures

We find that:

dβ(t)
dt

= − csc(γ(t))
2p(t)

((β(t)−π) cos(β(t)
2
−γ(t))−β(t) cos(3β(t)

2
+γ(t))+π(cos(γ(t)

2
)−cos(3γ(t)

2
)+

cos(3β(t)
2

+ γ(t)))− 2γ(t) sin(γ(t)
2

) sin(γ(t)) + (β(t) + γ(t))(sin(β(t)
2

+ γ(t)
2

) + sin(3(β(t)+γ(t))
2

))).
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dγ(t)
dt

= − csc(β(t))
2p(t)

((π−β(t)) cos(β(t))+(β(t))−π) cos(3β(t)
2

)+2γ(t) sin(β(t)+γ(t)
2

) sin(γ(t))−

2π sin(β(t) + γ(t)
2

) sin(γ(t)) + (β(t) + γ(t))(sin(β(t)
2

+ γ(t)
2

) + sin(3(β(t)+γ(t))
2

))).

Conjecture 8. In any triangle which is not equilateral, the smallest angle decreases during

the curve-shortening flow.

If we assume in the triangle that γ (0) ≥ α (0) ≥ β (0), then the following 3D graph

(Figure 6) depicts dβ(t)
dt

2p (t) .

Figure 6: graph of dβ(t)
dt

2p (t)

The graph shows that dβ(t)
dt

2p (t) is always negative, implying that dβ(t)
dt

is negative, show-

ing that β decreases and verifying our Conjeucture 8.

Conjecture 9. The equilateral triangle is the only triangle which is a self–shrinker.

If we apply α (0) = γ (0) = β (0) = π
3
, then we get dβ(t)

dt
= dγ(t)

dt
= dα(t)

dt
= 0, proving

that the equilateral triangle is a self–shrinker. Based on extensive computations, we can

conjecture that it is the only self–shrinker.

5 Conclusion

In this paper we examined some of properties triangles undergoing the curve-shortening flow.

In the case of the isosceles triangle, we found that the length of its legs decreases and its
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vertex angle decreases if it is smaller than π
3

and remains the same at π
3
. Furthermore, the

vertex angle in an isosceles triangle vanishes in a shorter time than the length, if the angle

is smaller than π
3

and the triangle eventually becomes a line segment and not a point. In

any triangle, the length of each side decreass during the flow. Our future work is to study

the behaviour of isosceles triangles when the vertex angle is greater than π
3

and complete

the observations by closely studying the behavior of any random triangle under the curve-

shortening flow.
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