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Abstract

Internet search technology is a pervasively used utility that relies on techniques from the

field of spectral graph theory. We present a novel spectral approach to investigate an existing

problem: the critical group of the line graph has been characterized for regular nonbipartite

graphs, but the general regular bipartite case remains open. Our approach aims to obtain

the relationship between the spectra of the Laplacians of the graph G and its line graph

Ĝ. We obtain a theorem for the spectra of all regular bipartite graphs and demonstrate

its effectiveness by completely characterizing the previously unknown critical group for a

particular class of regular bipartite graphs, the incidence graphs of finite projective planes

with square order. This critical group is found to be Z2⊕ (Zq+1)
q3−1⊕ (Zq2+q+1)

q2+q−1, where

q is the order of the finite projective plane.

Summary

Many processes and relations in physical, biological, social, and information systems can

be modeled by a network of objects with some pairs of objects connected by links. This

project studies a structure that describes neighboring links in the network. We focus on

the algebraic representations of the network in a branch of mathematics that is essential

to internet search technology. So far, methods have proved unsuccessful in dealing with a

particular class of networks. This project draws ideas from widely distinct areas of math,

from number theory, to combinatorics of graphs, to algebra of matrices, to geometry of the

projective plane. With an innovative approach to the problem, we obtain the desired results

for a previously unstudied class of networks.



1 Introduction

Algebraic graph theory is a branch of mathematics with a long history. It is concerned with

studying the structure of graphs using the algebraic properties of associated matrices. In

particular, the graph Laplacian and the incidence matrix are two of the most fundamental

matrices associated with a graph that encapsulate important information about the graph.

Spectral graph theory is the branch of algebraic graph theory that studies the spectrum, or set

of eigenvalues, of the graph Laplacian. The field has significant applications. Google’s search

technology, an innovation that made Google’s founders billionaires, is based on computing

the Perron–Frobenius eigenvector of the web graph. Historically, algebraic approaches have

proven especially effective in dealing with regular graphs.

The critical group of a graph is a finite abelian group whose order is the number of

spanning trees in the graph. It is an invariant of the graph and is closely related to the chip-

firing game played on the vertices of a graph. Other names for the critical group include the

abelian sandpile model in physics, the Jacobian group, and the Picard group. In this paper,

we investigate the relationship between the structure of a graph and the critical group of

the graph’s line graph, which describes adjacencies between the edges of the graph. We

assume that no graph has self-loops, but multiple edges between two vertices are permitted.

The critical group of the line graph has been studied in detail and completely classified

for regular nonbipartite graphs by Berget, Manion, Maxwell, Potechin, and Reiner [1], but

results for the general regular bipartite case are still missing. This desired relationship was

further investigated by Machacek [2] using the same approach, but the critical group of the

line graph was only obtained for some classes of regular bipartite graphs.

Hence, we investigate the overarching relationship between the regular bipartite graph

and its associated line graph. To accomplish this, we introduce a novel approach that directly

examines their Laplacians. We present results on the respective spectra and ultimately estab-

1



lish that excluding a set of eigenvalues all equal to twice the vertex degree, the eigenvalues

of the graph Laplacian are precisely equal to those of the line graph Laplacian. Finally, we

demonstrate the effectiveness of the theorem by completely characterizing the critical groups

of incidence graphs of projective planes over finite fields of square order, a class of regular

bipartite graphs.

2 Preliminaries

We proceed by introducing the concepts and definitions fundamental to the project. We also

describe the existing results upon which our work is built.

2.1 The graph Laplacian and incidence matrix

Suppose we have a graph G = (V,E) where V is the set of vertices and E is the set of

edges. Let A(G) be its adjacency matrix, a zero-one symmetric matrix with A(G)x,y = 1 if

and only if vertices x and y are connected. Let di be the degree of vertex vi, and define the

graph’s degree matrix as the diagonal matrix D(G) := diag(d1, d2, ..., dn). The corresponding

graph Laplacian L(G) of the graph is a |V | × |V | matrix defined by the difference between

the degree matrix and adjacency matrix, L(G) = D(G)−A(G). The graph Laplacian and its

spectrum characterize many important aspects of the graph, such as the number of spanning

trees or forests. Alternatively, let mx,y denote the multiplicity of the edges between vertices

x and y. Then the graph Laplacian can also be defined by its individual entries:

L(G)x,y =


deg(x) if x = y

−mx,y otherwise.

Figure 1 shows an example of a graph G and its corresponding Laplacian L(G).
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L(G) =


2 0 0 −1 −1
0 2 −1 0 −1
0 −1 1 0 0
−1 0 0 2 −1
−1 −1 0 −1 3



Figure 1: G (left) and L(G) (above)

We can view the graph Laplacian as an abelian group homomorphism L(G) : Z|V | → Z|V |.

Consequently, from the cokernel, we define the unique finite abelian group called the critical

group, Φ(G):

Z|V |/im L(G) ∼= Zc ⊕ Φ(G),

where c is the number of connected components of the graph and im L(G) denotes the image

of the mapping. We note that the rank of L(G) is |V | − c.

Moreover, we observe that the critical group of a graph is the product of the critical

groups of its connected components, so it suffices to study only connected graphs. When G

is connected, we have c = 1, so im L(G) is completely determined by any (|V |−1)×(|V |−1)

submatrix of L(G). Thus, assuming G is connected, we can write the critical group as

Φ(G) ∼= Z|V |−1/im L(G)
x,y
,

where L(G)
x,y

is the reduced graph Laplacian obtained by deleting any row x and any column

y from L(G).

We now present Kirchhoff’s Matrix Tree Theorem for the number of spanning trees, κ(G),

in a graph. It follows from the theorem that the order of Φ(G) is precisely κ(G).

Theorem 2.1. (Kirchhoff’s Matrix Tree Theorem [3]). Let G = (V,E) be a connected graph
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with |V | = n and let λ1 ≥ λ2 ≥ · · · ≥ λn−1 > λn = 0 be the eigenvalues of L(G). Then,

κ(G) =
1

n

n−1∏
i=1

λi.

That is, κ(G) is equal to any 1,1-cofactor of L(G).

Another structure closely related to the graph and its graph Laplacian is the incidence matrix.

The incidence matrix, B(G), is a |V | × |E| matrix that results from assigning an orientation

to the edges of G. Its components are defined by

B(G)x,y =


1 if ey enters vx

−1 if ey leaves vx

0 otherwise.

The unoriented or unsigned incidence matrix, which we denote by C(G), is also of interest

in this paper. Its terms are the absolute values of those in B(G). It is well known that the

incidence matrix is related to the Laplacian by the equation L(G) = B(G)B(G)T .

2.2 The line graph and edge subdivision graph

In addition to the bipartite graph, we investigate its associated line graph and the critical

group of the line graph. In doing so, we also consider the edge subdivision graph and

its critical group. The line graph and edge subdivision graph are denoted by Ĝ and sd G

respectively. Given a graph G = (V,E), define sd G to be the graph obtained by placing

a vertex at the midpoint of every edge in G. The line graph Ĝ = (VĜ, EĜ) is slightly more

difficult to define. We set VĜ = E so that each edge of G corresponds to a vertex in Ĝ.

Two vertices of the line graph are connected by an edge if the corresponding edges in G are

incident on the same vertex. Figure 2 depicts a graph and its corresponding line graph.
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Figure 2: A graph G and its line graph Ĝ with G underlayed [1]

We provide a few more definitions as follows. Let the abelian group Z/dZ be denoted

by Zd. Assuming G is connected, let β(G) be the number of independent cycles of G. It is

well-known that β(G) = |E| − |V | + 1. In fact, it has been shown that β(G) is an upper

bound on the number of generators required for Φ(G). Thus, we can formulate the following

simple relationship between Φ(G) and Φ(sd G).

Theorem 2.2. (Lorenzini [4]). Given a connected graph G, we can write

Φ(G) =

β(G)⊕
i=1

Zki ,

where the ki are all positive integers. Furthermore,

Φ(sd G) =

β(G)⊕
i=1

Z2ki .

In addition, the relationship between the number of spanning trees of G and of Ĝ has

been characterized for regular graphs.
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Theorem 2.3. (Cvetković, Dobb, Sax [5]). If graph G is d-regular, then

κ(Ĝ) = (2d)β(G)−2κ(G)

= dβ(G)−2κ(sd G).

Theorem 2.3 motivates the search for a nice relationship between Φ(G) and Φ(Ĝ). Several

important theorems proven by Berget, Manion, Maxwell, Potechin, and Reiner [1] relate

Φ(G) and Φ(Ĝ). In particular, these authors are able to entirely characterize the desired

relationship for simple, connected, d-regular graphs that are nonbipartite. A central idea is

that because the critical group is a finite abelian group, it is completely determined if the

p-Sylow subgroups are know for each prime p. Furthermore, we also have the exact sequence

relating Φ(G) and Φ(Ĝ) through the edge subdivision graph for any d-regular graph.

Theorem 2.4. (Berget, et al. [1]) For any connected d-regular simple graph G with d ≥ 3,

there is a natural group homomorphism f : Φ(Ĝ) → Φ(sd G) whose kernel-cokernel exact

sequence takes the form

0→ Zβ(G)−2
d ⊕ C → Φ(Ĝ)→ Φ(sd G)→ C → 0,

where C is the cokernel and is described by the following cyclic d-torsion group:

C =


0 if G non-bipartite and d ≡ 1 (mod 2)

Z2 if G non-bipartite and d ≡ 0 (mod 2)

Zd if G bipartite.

When G is nonbipartite, the aforementioned results (Theorems 2.2 and 2.4) use Φ(G) to

completely determine Φ(Ĝ). The relationship is expressed in Corollary 2.5. Note, however,
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that the same approach has not been successfully utilized to address and generalize the case

where G is bipartite.

Corollary 2.5. (Berget, et al. [1]). For a simple, connected d-regular graph G with d ≥ 3

which is nonbipartite,

Φ(Ĝ) ∼=
β(G)−2⊕
i=1

Z2ddi ⊕


Z2dβ(G)−1

⊕ Z2dβ(G)
if |V | is even

Z4dβ(G)−1
⊕ Zdβ(G)

if |V | is odd.

2.3 Smith normal form and Laplacian eigenvalues

The Smith normal form of an integer matrix is a diagonal matrix obtained by multiplying

the original matrix on the left and right by invertible square matrices. Interestingly, given a

graph G = (V,E), the Smith normal form of the graph Laplacian also determines the critical

group Φ(G). When computing the Smith normal form, acceptable operations are those that

can be performed by left/right multiplication by an integer matrix in the general linear group

of order n, or GLn(Z). Equivalently, the following operations on the original Laplacian are

allowed:

• permute rows or columns

• scale rows or columns by ±1

• add an integer multiple of one row/column to another row/column.

The Smith normal form is the primary tool was use to examine the structure of the critical

group. There exist several relevant results on the general form of the Smith normal matrix,

and thus the critical group, from the eigenvalues of the Laplacian. To start, we present a

result for a symmetric n × n integer matrix M with rank n − 1. Denote this matrix by M.

Let R be the n × 1 column vector that generates the kernel of M and let r = R · R. For

n ∈ Z, let ordp(n) be the largest power of p that divides n, where p is a prime. Then, Φ(M)

contains subgroups characterized by the eigenvalues of M.
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Lemma 2.6. (Lorenzini [6]) Let M be any n× n integer matrix of rank n− 1. Let λ 6= ±1

be an integer eigenvalue of M and let m(λ) be its multiplicity. Then

1. If there exists a prime p such that p|λ but p - r, then Φ(M) contains a subgroup

isomorphic to (Z/pordp(λ)Z)m(λ).

2. If the vector R has one entry equal to ±1, then Φ(M) contains a subgroup isomorphic

to (Z/λZ)m(λ)−1.

Proof. See [6], Proposition 2.3.

Furthermore, let f(x) ∈ Z[x] be the minimal polynomial of λ in M. Define L(λ) as the

least common multiple of the roots of f(x) when computed in the ring of algebraic integers.

Lemma 2.7. Let M be an n× n integer matrix of rank n− 1. Let λ be an eigenvalue of M.

Then Φ(M) contains an element of order

L(λ)

gcd(L(λ), r)
.

Proof. See [6], Proposition 2.1.

Note that in our case where M is a graph Laplacian, we have R = (1, 1, ..., 1)T and r = n,

where n is the number of vertices in the graph.

2.4 Projective planes over finite fields

A projective plane is a geometric structure that extends the concept of a plane as a 2-

dimensional projective space. It consists of a set of points, a set of lines, and a relation

between points and lines called incidence. Every projective plane has the following three

properties. First, given any two distinct points, there is exactly one line incident with both

of them. Second, given any two distinct lines, there is exactly one point incident with both
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of them. Finally, there are four points such that no line is incident with more than two

of them. Our focus lies with projective planes over finite fields, also known as field planes.

Consider Zq, the finite field of order q, where q is a perfect power of a prime. We denote

the corresponding field plane by P 2(Zq). We also say its order is q. This field plane has an

associated regular bipartite graph, known as the incidence graph, that has two disjoint sets

of vertices, one corresponding to the points in the field plane and one corresponding to the

lines. Edges of the incidence graph are drawn between the two sets if the respective point and

line of the field plane are incident. Each vertex of the incidence graph has degree q + 1. To

determine the total number of vertices, 2v, we count the number of pairs of adjacent edges

in the incidence graph. There are q+ 1 edges meeting at each vertex, so the desired number

is 2v
(
q+1
2

)
. From the properties of the projective plane, there is a path of length 2 between

any two vertices in the same set, so the desired number is also equal to 2
(
v
2

)
. Consequently,

we have

v(q)(q + 1)

2
=
v(v − 1)

2
.

Solving for v yields v = q2 + q + 1. Therefore, each set of the incidence graph has q2 + q + 1

vertices for a total of 2q2+2q+2. The spectra of these incidence graphs have been completely

characterized.

Lemma 2.8. (Shirrell [7]) The eigenvalues of the Laplacian of the incidence graph of a

finite projective plane of order q are 0, 2(q + 1), q + 1 +
√
q, q + 1−√q with multiplicities

1, 1, q2 + q, q2 + q, respectively.

Proof. See [7], Proposition 1.
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3 Results on Spectra

We present our results on the spectra of L(G) and L(Ĝ) that ultimately lead to a strong

relationship between the two spectra. We start with a lemma that utilizes a new insight of

assigning a particular orientation to bipartite graphs to give a result for regular bipartite

graphs.

Lemma 3.1. Let λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn−1 > λn = 0 be the eigenvalues of L(G). Then

the eigenvalues of L(Ĝ) are

2d− λ1, 2d− λ2, 2d− λ3, ..., 2d− λn−1, 2d, 2d, 2d, ..., 2d︸ ︷︷ ︸
|E|−|V |

.

Proof. Recall that L(G) = BBT . Another useful observation is that A(Ĝ) = CTC − 2In,

where In is the identity matrix with dimensions n = |V |. Moreover, since we are considering

d-regular graphs, each edge is incident to 2d−2 other edges, so each vertex of Ĝ has a degree

of 2d− 2. Hence, the degree matrix is given by D(Ĝ) = (2d− 2)In. It follows that the graph

Laplacian of Ĝ can be expressed in terms of C := C(G), the unsigned incidence matrix of

G :

L(Ĝ) = D(Ĝ)− A(Ĝ)

= (2d)In − CTC.

Since G is bipartite, we can partition its vertices into two disjoint sets where edges only

connect vertices in different sets. Assign a canonical orientation to G in which the edges

are all directed from one set to the other. The result of this is seen in the signed incidence

matrix B, where all the nonzero terms in a row now have the same sign. Consequently, there

exists a diagonal matrix I ′ that consists of only 1’s and −1’s along its diagonal such that
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B = I ′C. Equivalently, C = I ′B, because I ′ is clearly its self-inverse. We now have a explicit

relationship between B and C. Substituting,

L(Ĝ) = (2d)In − (I ′B)T I ′B

= (2d)In −BT I ′I ′B

= (2d)In −BTB.

It is well-known that BTB and BBT , which are |E|×|E| and |V |×|V | matrices respectively,

have the same nonzero eigenvalues. Thus, if λ1 ≥ λ2 ≥ · · · ≥ λn−1 > λn = 0 are the

eigenvalues of L(G) = BBT , then the eigenvalues of BTB are λ1, λ2, ..., λn−1, 0, 0, ..., 0.

Let matrix M = BTB and let vi be the eigenvector corresponding to eigenvalue λi. That

is, Mvi = λivi. Hence, we have ((2d)In −M)vi = (2d − λi)vi, implying that 2d − λi is an

eigenvalue of L(Ĝ). So by linearity of matrices, the eigenvalues of L(Ĝ) are then 2d−λ1, 2d−

λ2, 2d− λ3, ..., 2d− λn−1, 2d, 2d, 2d, ..., 2d︸ ︷︷ ︸
|E|−|V |

.

Corollary 3.2. The spectrum of L(G) contains 2d.

Proof. Since the rows and columns of any Laplacian sum to 0, the rows are not linearly

independent. Hence, 0 is an eigenvalue of all Laplacians. By the spectrum of L(Ĝ) determined

in Lemma 3.1, 2d is an eigenvalue of L(G), as desired.

Now we proceed with a result on the eigenvalues of L(G) and their relationship with each

other. Again, we have an approach that is well-suited for the case of bipartite graphs that

we are investigating.

Lemma 3.3. The n eigenvalues of L(G) can be paired up into n/2 pairs such that each pair

sums to 2d.

Proof. We want to show that {2d − λ1, 2d − λ2, ..., 2d − λn} is exactly the set of values as

{λ1, λ2, ..., λn}. This is true if and only if the two corresponding characteristic polynomials
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are identical, that is, L(G)−λIn and L(G)− (2d−λ)In have the same determinant. Because

G is regular bipartite, the matrix L(G)− λIn takes the form:



d− λ 0 0

0
. . . 0 X

0 0 d− λ

d− λ 0 0

XT 0
. . . 0

0 0 d− λ


. (1)

Submatrix X consists entirely of elements equal to 0 and −1, with d elements equal to −1

in each row and column. Similarly, L(G)− (2d− λ)In takes the form:



λ− d 0 0

0
. . . 0 X

0 0 λ− d

λ− d 0 0

XT 0
. . . 0

0 0 λ− d


. (2)

Note that the matrices are identical except that the respective diagonals have opposite

signs. The key idea lies in the two (n/2) × (n/2) submatrices in the top left and bottom

right corners, separated by the vertical and horizontal axes. Upon expansion of each of the

determinants of Matrices (1) and (2), we obtain a sum of terms such that each term consists

of a product of n elements, no two of which lie in the same row or column. Suppose that for

one of the terms, m of the n elements lie in the top left submatrix. Then n/2 − m of the
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top n/2 rows have yet to be selected, so there must be n/2 −m elements chosen from the

top right submatrix. We have an identical result for the bottom left submatrix. It follows

that m of the elements lie in the bottom right submatrix. Now, if any of the elements in

the top left and bottom right submatrices are 0, the product of the n elements is 0, which

makes the term containing these elements irrelevant in the expansion of the determinant.

Because the submatrices in top left and bottom right are diagonal matrices, all nonzero

terms of the determinant contain an equal number of elements along the diagonals of each

submatrix. Thus, each term in the determinant has an even number of elements along the

diagonal of the overall matrix. Consequently, L(G) − λIn and L(G) − (2d − λ)In have the

same determinant.

Finally, Lemmas 3.1 and 3.3 can be combined to give a strong result on the spectra of

the regular bipartite graph and its associated line graph.

Theorem 3.4. Excluding |E| − |V | additional eigenvalues equal to 2d, the eigenvalues of

L(Ĝ) are precisely the same as the eigenvalues of L(G), including multiplicity.

Proof. By Lemma 3.3, consider the n/2 pairs of eigenvalues of L(G). By Lemma 3.1, there

exists a bijective mapping between each pair of eigenvalues in the spectrum of L(G) and

an identical pair of eigenvalues in the spectrum of L(Ĝ). Lemma 3.1 also accounts for the

|E| − |V | additional eigenvalues in the spectrum of L(Ĝ) equal to 2d, so we are done.

4 Critical Group of Projective Planes

Theorem 3.4 allows for a new perspective in relating Φ(Ĝ) to Φ(G) for regular bipartite

graphs G. We have obtained an exact relationship between the spectra of the Laplacian

that can aid us in characterizing their respective critical groups. Now, we utilize the result

to completely determine the critical group of the line graph of a particular class of regular

bipartite graphs, incidence graphs of projective planes with square order.
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Theorem 4.1. Let G = (V,E) be the incidence graph of a nondegenerate projective plane

with order q = p2y, where y is an integer and p is prime. Then the critical group of the line

graph of G is isomorphic to Z2 ⊕ (Zq+1)
q3−1 ⊕ (Zq2+q+1)

q2+q−1.

Proof. Recall from Lemma 2.8 that the eigenvalues of L(G) are exactly known to be 0, 2q+

2, q + 1 +
√
q, q + 1 − √q with multiplicities 1, 1, q2 + q, q2 + q, respectively. Note

that there are 2(q2 + q + 1) total vertices and (q + 1)(q2 + q + 1) total edges in G, so

|E| − |V | = (q − 1)(q2 + q + 1) = q3 − 1.

By Theorem 3.4, the eigenvalues of L(Ĝ) are 0, 2q + 2, q + 1 +
√
q, q + 1 − √q with

multiplicities 1, q3, q2 + q, q2 + q, respectively. First, we consider λ = 2q+ 2. Applying part

2 of Lemma 2.6, we have that Φ(Ĝ) contains a subgroup isomorphic to (Z2q+2)
q3−1.

Since q is a square, all the eigenvalues are integers. We now consider g = gcd(q + 1 +

√
q, q+1−√q). Rewriting q+1+

√
q as
√
q(
√
q+1)+1, we see that this expression must be

odd, so g is odd as well. Moreover, g|2√q, so g|q. Since q and q2+q+1 are relatively prime, it

follows that g = 1, so the two eigenvalues q+1+
√
q and q+1−√q are also relatively prime.

Again applying part 2 of Lemma 2.6, we have that Φ(Ĝ) contains subgroups isomorphic

to (Zq+1+
√
q)
q2+q−1 and (Zq+1−√q)

q2+q−1. Thus, Φ(Ĝ) contains a subgroup isomorphic to

(Zq2+q+1)
q2+q−1.

Now, we consider the eigenvalue λ = 2q + 2 again. Because it is an integer, its minimal

polynomial is f(x) = x − (2q + 2). In Ĝ, the number of vertices is (q + 1)(q2 + q + 1), so

we also have r = (q + 1)(q2 + q + 1). Then, by Lemma 2.7, we have that Φ(Ĝ) contains an

element of order

2q + 2

gcd(2q + 2, (q + 1)(q2 + q + 1))
=

2q + 2

q + 1
= 2.

We now know several components of the desired critical group Φ(Ĝ).

Recall from Kirchhoff’s Matrix Tree Theorem that the order of Φ(Ĝ) is the number of

spanning trees in Ĝ and can be calculated by the product of the nonzero eigenvalues divided
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by the number of vertices in Ĝ. That is,

κ(Ĝ) =
(2q + 2)q

3
(q + 1 +

√
q)q

2+q(q + 1−√q)q2+q

(q + 1)(q2 + q + 1)
= 2(2q + 2)q

3−1(q2 + q + 1)q
2+q−1.

With the subgroups we have already determined, the order of the determined portion of

Φ(Ĝ) is precisely

2(2q + 2)q
3−1(q2 + q + 1)q

2+q−1.

Hence, the critical group is Φ(Ĝ) ∼= Z2 ⊕ (Zq+1)
q3−1 ⊕ (Zq2+q+1)

q2+q−1.

5 Conclusion

The project primarily consisted of two aspects. The first was the development of an innovative

approach to characterize the critical groups of the line graphs of regular bipartite graphs.

This was done by determining the respective spectra of the Laplacians of the graph and its

line graph. This approach took advantage of the bipartite nature of the graph and ultimately

established a strong explicit relationship between between the two spectra. The second aspect

of the project was the application of the spectral results to entirely classify previous unknown

critical groups of line graphs. We demonstrated our approach’s effectiveness by characterizing

the line graphs of incidence graphs of finite projective planes of square order, a specific class

of regular bipartite graphs. However, despite the progress in this project, we found that the

eigenvalues alone may not be enough for us to expand our result to more general graphs. In

particular, the next step in this research is to completely determine the critical group of the

line graph for incidence graphs of finite planes with order equal to the odd power of a prime.

This will generalize the result for all finite projective planes. We have a conjecture for this

open problem.

Conjecture 5.1. Let G be the incidence graph of a nondegenerate projective plane with
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order q = p2y+1, where y is an integer and p is prime. Then the critical group of the line

graph of G is isomorphic to Z2 ⊕ (Zq+1)
q3−1 ⊕ (Zq2+q+1)

q2+q−1.

That is, we conjecture that the critical group takes the same form regardless of the order

of the finite plane. With more work on the relationship between a graph’s spectrum and its

critical group, we hope our method will be extended to characterize the critical group of the

line graph for all regular bipartite graphs.
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