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Abstract

Understanding the positive Grassmannian has been a highly significant question in math-

ematics for several decades. We discuss arrangements of equal minors in the totally posi-

tive Grassmannian. It was previously shown that arrangements of equals minors of largest

value correspond to the simplices in Sturmfels triangulation. Here we discuss arrangements

of equals minors of second largest value, and show that they correspond to the facets of

Sturmfels triangulation. We then define the notion of cubical distance and obtain a general

conjecture that provides a correspondence between minors of m-largest value and maximal

simplices of certain cubical distance in Sturmfels triangulation. We prove this conjecture for

the case m = 3, and also for certain cases in Gr+(2, n).

Summary

We study relationships between minors, or determinants of square submatrices, of totally

positive matrices. Recent studies in this topic have found interesting properties and bounds

on maximal and minimal minors in matrices. In this paper, we expand these results to other

ranks of minors, such as second largest, third largest, etc. We find some interesting properties

and surprising relationships between minors in totally positive matrices, which could prove

to be highly applicable in future advances in computer science, mathematics, and physics.

In particular, understanding these relationships helps explain underlying processes in many

physical processes, such as scattering of light.



1 Introduction

We study the relations between minors of totally positive matrices and triangulations of

the hypersimplex. This study is strongly tied to various combinatorial objects such as the

positive Grassmannian [1], alcoved polytopes and Sturmfels’ triangulation [2].

Totally positive matrices have been extensively studied ever since the notion of total

positivity was first introduced by Schoenberg [3] and Gantmacher and Krein [4] in the 1930s,

and they have a variety of applications in computer science and mathematics [5, 6]. An m-by-

n matrix is called totally positive (TP), if every minor of it is positive. Similarly, a matrix is

called totally non-negative (TN) if every minor of it is non-negative. Therefore, studying the

structure of the minors is key for understanding the properties of TP matrices. For example,

it is well known that minors of TP matrices possess an intriguing combinatorial structure

that corresponds to boundary measurements in planar acyclic networks [1]. Recently, the

number and positioning of equal minors in TP matrices was studied. In [7], it was shown

that the number of equal entries in a TP n×n matrix is O(n4/3). The authors also discussed

positioning of equal entries in such a matrix and obtained relations to the Bruhat order of

permutations. In [8] it was shown, using incidences between points and hyperplanes, that

the maximal number of equal k × k minors in a k × n TP matrix is O(nk−
k

k+1 ).

Inequalities between products of two minors in TP matrices have been widely studied as

well [9, 10], and have close ties with Temperley-Lieb Immanants. Recently there has been

also a study of products of three minors in such matrices [11], that related such products

with dimers. Despite all of the above, not much is known about the inequalities between the

minors themselves. What is the full structure of all the possible inequalities between minors

in TP matrices? The only part of this problem that has been solved discusses the structure of

the minors with largest value and smallest value [12], while the rest of the problem remains

open. It was shown in [12] that arrangements of minors of largest value are in bijection with
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sorted sets, which appeared in the context of alcoved polytopes and Gröbner bases. Maximal

arrangements of such minors correspond to maximal simplices of the Sturmfels triangulation

of the hypersimplex, and their number equals the Eulerian number. It was also conjectured,

and proved in various cases, that arrangements of equal minors of smallest value are exactly

the weakly separated sets, which were originally introduced by Leclerc and Zelevinsky. They

are intimately related to the positive Grassmannian and the associated cluster algebra.

In this paper we delve into the structure of r-th largest minors (for some positive integer

r), and present a surprising relation between this structure and the Sturmfels triangulation

of the hypersimplex. As we mentioned, it was shown in [12] that the case r = 1 corresponds

to the maximal simplices in such a triangulation. In section 3 we show that the case r = 2

corresponds the common facets of such simplices, and in section 4 we show that the case

r = 3 corresponds to a certain distance between maximal simplices. Finally,in section 5 we

also form a conjecture for a general r, and prove some additional cases of this conjecture.

2 Definitions and known results

2.1 Preliminary definitions

For n ≥ k ≥ 0, let the Grassmannian Gr(k, n) (over R) be the manifold of k-dimensional

subspaces V ⊂ <n. It can be identified with the space of real k × n matrices of rank k

modulo row operations. (The rows of a matrix span a k-dimensional subspace in Rn.). Here

we assume that the subspace V associated with a k × n-matrix A is spanned by the row

vectors of A. For such a matrix A and a k-element subset I ⊂ [n] := {1, 2, 3 . . . , n}, we

denote by AI the k × k-submatrix of A in the column set I, and let ∆I(A) := det(AI).

The coordinates ∆I form projective coordinates on the Grassmannian, called the Plücker

coordinates.

In [1], the totally positive (totally nonnegative) Grassmannian Gr+(k, n) (Gr≥(k, n)) was
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defined to be the subset of Gr(k, n) whose elements can be represented by k× n matrices A

with strictly positive (nonnegative) Plücker coordinates: ∆I > 0 for all I.

For a k×m matrix B, and the subsets I = {i1, . . . , ir} ⊂ [k] and J = {j1, . . . , jr} ⊂ [m],

we denote by ∆I,J(B) the minor in the row set I and column set J . The space of totally

positive k ×m matrices A = (aij) can be embedded into the totally positive Grassmannian

Gr+(k, n) with n = m+ k via an embedding phi described in [1]. This construction provides

a bijection between totally positive matrices and the totally positive positive Grassmannian.

Moreover, under this map, all minors (of all sizes) of the k ×m-matrix A are equal to the

maximal k × k-minors of the k × n matrix φ(A). In particular, we have

∆I,J(A) = ∆([k]\{k+1−ir,...,k+1−i1})∪{j1+k,...,jr+k}(φ(A)).

Thus, from now on, instead of discussing inequalities between minors, we will discuss

inequalities between maximal minors (which are just the plücker coordinates) of the totally

positive Grassmannian. We see that this point of view reveals symmetries which are hidden

on the level of matrices. One such symmetry that is useful for us is the cyclic symmetry. Let

[v1, . . . , vn] denote a point in Gr(k, n) given by n column vectors v1, . . . , vn ∈ Rk. Then the

map

[v1, . . . , vn] 7→ [(−1)k−1 vn, v1, v2, . . . , vn−1]

preserves the totally positive Grassmannian Gr+(k, n). This defines the action of the cyclic

group Z/nZ on the totally positive Grassmannian Gr+(k, n).

One of the main purposes of the paper is to present a novel connection between inequali-

ties on minors of the totally positive Grassmannian and triangulations of the hypersimplex.

For fixed integers 0 < k < n, let us denote by
(
[n]
k

)
the collection of k-element subsets of [n].

With each I ∈
(
[n]
k

)
we associate the 0, 1-vector εI = (ε1, ε2, . . . , εn) such that εi = 1 iff i ∈ I,

and otherwise εi = 0. The hypersimplex ∆k,n ∈ <n is the convex polytope defined as the
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convex hull of the points {εI}I∈([n]
k ) (all those points are actually vertices of the hypersim-

plex). ∆k,n is an (n− 1)-dimensional polytope, which is clear from the following alternative

definition: ∆k,n = {(x1, . . . , xn)|0 ≤ x1, . . . , xn ≤ 1;x1 + x2 + . . . + xn = k}. It was shown

in [13, 14] that the normalized volume of ∆k,n equals the Eulerian number A(n− 1, k − 1),

that is, the number of permutations w of size n − 1 with exactly k − 1 descents. In [2]

four triangulations of the hypersimplex into A(n − 1, k − 1) unit simplices are presented:

Stanleys triangulation [13], Sturmfels triangulation [14], Alcove triangulation and Circuit

triangulation. It was shown in [2] that these four triangulations coincide. We describe here

the Sturmfels triangulation, which will be used in the next sections.

Sturmfels’ triangulation. This triangulation naturally appears in the context of Gröbner

bases. For a multiset S of elements from [n], we define Sort(S) the non-decreasing se-

quence obtained by ordering the elements of S. Let I, J ⊂
(
[n]
k

)
and let Sort(I ∪ J) =

(a1, a2, . . . , a2k). Then we denote by sort1(I, J), sort2(I, J) the following subsets in
(
[n]
k

)
:

sort1(I, J) := {a1, a3, . . . , a2k−1} and sort2(I, J) := {a2, a4, . . . , a2k}. A pair {I, J} is called

sorted if sort1(I, J) = I and sort2(I, J) = J , or sort1(I, J) = J and sort2(I, J) = I. A

collection W = {I1, I2, . . . , Ir} of elements in
(
[n]
k

)
is called sorted if Ii, Ij are sorted, for any

pair 1 ≤ i < j ≤ n. For such a collection W , we denote by 5W the (r − 1)-dimensional

simplex with the vertices εI1 , . . . , εIr .

Theorem 2.1. [14] The collection of simplices 5W where W varies over all sorted collec-

tions of k-element subsets in [n] , is a simplicial complex that forms a triangulation of the

hypersimplex ∆k,n.

From Theorem 2.1, it follows that the maximal by inclusion sorted collections correspond

to the maximal simplices in the triangulation are all of size n. We define the dual graph Γ(k,n)

of the Sturmfels triangulation to be the graph whose vertices are the maximal simplices, and

two maximal simplices are adjacent by an edge if they share a common facet. The maximal
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degree of a vertex in Γ(k,n) is n ([2]). An example of Γ(k,n) is shown in Figure 9 in the Appendix.

Another triangulation mentioned above is the Circuit triangulation. We describe a cor-

respondence between maximal sorted collections and circuits of certain kind of graphs, that

appears as part of the triangulation. For a full description of the triangulation, see [2].

We define Gk,n to be the directed graph whose vertices are {εI}I∈([n]
k ), and two vertices

ε = (ε1, ε2, . . . , εn) and ε′ are connected by an edge oriented from ε to ε′ if there exists some

i ∈ [n] such that (εi, εi+1) = (1, 0) and the vector ε′ is obtained from ε by switching εi, εi+1

(and leaving all the other coordinates unchanged, so the 1 is “shifted” one place to the right).

When considering i ∈ [n] we refer to i as i mod n, and thus if i = n, we have i + 1 = 1. A

circuit in Gk,n of minimal possible length must be of length n, and it is given by a sequence

of shifts of 1’s so that the first 1 in ε moves to the position of the second 1, the second 1

moves to the position of the third 1, and so on. Finally, the last 1 cyclically moves to the

position of the first 1. Figure 1 presents an example of a minimal circuit in G3,6. Let {εJi}ni=1

be the set of vertices in a minimal circuit (that is, circuit of length n). Then by [2], the

collection W = {J1, . . . , Jn} is a maximal sorted collection. The other direction also holds -

every maximal sorted collection can be realized via a minimal circuit in the graph Gk,n.

Figure 1: Example of a minimal circuit in G3,6.

The following definition and problem were presented in [12].
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Definition 2.2. Let U = (U0, U1, . . . , Ul) be an ordered set-partition of the set
(
[n]
k

)
of all

k-element subsets in [n]. Let us subdivide the nonnegative Grassmannian Gr≥(k, n) into the

strata SU labelled by such ordered set partitions U and given by the conditions:

1. ∆I = 0 for I ∈ U0,

2. ∆I = ∆J if I, J ∈ Ui,

3. ∆I < ∆J if I ∈ Ui and J ∈ Uj with i < j.

An arrangement of minors is an ordered set-partition U such that the stratum SU is not

empty.

Problem 2.3. Describe combinatorially all possible arrangements of minors in Gr≥(k, n).

Investigate the geometric and combinatorial structure of the above stratification.

We discuss the case of the totally positive Grassmannian Gr+(k, n), that is, we assume

that U0 = ∅. The combinatorial description of the sets U1 and Ul (assuming U0 = ∅) was

given in [12], and is summarized in the following theorem and conjecture:

Theorem 2.4. [12] A subset of
(
[n]
k

)
is an arrangement of largest minors in Gr+(k, n) if

and only if it is a sorted subset. Maximal arrangements of largest minors contain exactly

n minors. The number of maximal arrangements of largest minors in Gr+(k, n) equals the

Eulerian number A(n− 1, k − 1).

Conjecture 2.5. [12] A subset of
(
[n]
k

)
is an arrangement of smallest minors in Gr+(k, n)

if and only if it is a weakly separated subset.

The forward direction of Conjecture 2.5 was proven, and the other direction was proven

for the cases k = 1, 2, 3, n− 1, n− 2, n− 3 ([12]).

Our purpose is to give a partial combinatorial description for Uj for j /∈ {1, l}. We focus

on the case in which Ul is of maximal size (that is, n) and present a description of the sets
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Ul−1, Ul−2. For particular values of k we obtain a description for additional values of j. We

then present a conjecture that generalizes our claims for any j. Finally, we discuss the case

in which Ul is not maximal.

3 The second largest minors

In this section, we concentrate on the structure of Ul−1, and show that it corresponds to the

edges of the graph Γ(k,n).

Claim 3.1. Let I and J be adjacent in Γ(k,n). Then the circuits CI and CJ are different in

exactly one vertex. Furthermore, CJ can be obtained from CI by removing a vertex and the

two edges next to it and adding a new vertex and a pair of edges, as shown by the example

in Figure 2.

Definition 3.2. Let CI be a circuit. We say that CJ is obtained from CI by a detour if I

and J are adjacent in Γ(k,n). The detour P is the path formed by the two new edges together

with the new vertex. The vertex that appears in CJ but not in CI is called vp. An example

of a detour is provided in Figure 2.

Figure 2: An example of a new path formed by a detour from the original.

We use the following theorem due to Skandera [9] extensively to prove our result:
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Theorem 3.3. Let I, J ∈
(
[n]
k

)
be a pair which is not sorted, and let sort1(I, J), sort2(I, J) be

the sorting of the pair I, J . Then we have the strict inequality ∆sort1(I,J) ∆sort2(I,J) > ∆I∆J

for points of the positive Grassmannian Gr+(k, n).

Lemma 3.4. If a ∈
(
[n]
k

)
is sorted with c ∈

(
[n]
k

)
, while b ∈

(
[n]
k

)
is not sorted with a, and b

is not sorted with c, then the set {a, c, sort1(b, c), sort2(b, c), sort1(a, b), sort2(a, b)} can not

be sorted.

Lemma 3.5. If a ∈
(
[n]
k

)
is sorted with c ∈

(
[n]
k

)
, while b ∈

(
[n]
k

)
is not sorted with a, and b

is not sorted with c, then the set {a, c, sort1(b, c), sort2(b, c), sort1(a, b), sort2(a, b)} can not

be sorted.

Proof. We consider the vectors εa, εb, εc. Let aij =
∑j

t=i(εa)t, let bij =
∑j

t=i(εb)t, and let

cij =
∑j

t=i(εc)t. For example, if a = {1, 3, 5, 7, 8}, then εa = 1010101100, and a37 = 3. Define

αij = aij − bij, βij = cij − bij for all 1 ≤ i ≤ j ≤ n. Therefore without loss of generality,

sort1(b, c)i,j = dbi,j +
βi,j
2
e, sort2(b, c)i,j = bbi,j +

βi,j
2
c, sort1(b, a)i,j = dbi,j +

αi,j

2
e, and

sort2(b, a)i,j = bbi,j +
αi,j

2
c (there are four cases in total, all of which are handled in the

same way. Therefore, we indeed can assume that this is without loss of generality). Note

that sort1(b, c)i,j and sort2(b, c)i,j, and sort1(b, a)i,j and sort2(b, a)i,j, can not differ by more

than 1. In addition, since a and c are sorted, aij and cij can not differ by more than 1 ([2]).

Thus the following properties hold:

1. αi,j ≤ 2.

2. βi,j ≤ 2.

3. If |αi,j| = 2, then αi,j = βi,j.

4. If |βi,j| = 2, then αi,j = βi,j.

5. If |αi,j| = 1, then αi,j = βi,j or βi,j = 0.
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6. If |βi,j| = 1, then αi,j = βi,j or αi,j = 0.

We consider some pair {i, j} for which ai,j = bi,j + 2. In addition, we impose two extra rules.

Namely, that i = 1, which can be achieved by the action of the cyclic group Z/nZ on the

totally positive Grassmannian, and that j is maximal, that is, there is no k > j, in which

ai,k = bi,k + 2.

We consider three cases:

1. k = m: Consider the next element u. It must be in at least one of a, b, or c, but not

all 3 (if it is in all 3, we do not consider it because it does not in any way affect the

sortedness of the sets). If u is in b, we contradict rule 2 for the pair [j + 1, u]. If u is

in a and not in c, or vice-versa, we contradict rules 3 and 4 in the interval [j + 1, u].

Therefore, u must be in both a and c.

2. k = m − 1: Consider the next element u. If u is in b, then we violate rule 2 in the

interval [j+ 1, u]. If u is in a and not in c, then we violate rules 5 and 6 for the interval

[j + 4,m]. Thus, u must be in both a and c.

3. k = m+ 1: If the next element u is in b, then we violate rule 2. If it is in a but not in

c, we violate rules 5 and 6 for the interval [j + 4,m]. Thus, u must be in both a and c.

We can do an analogous argument considering the sequence between i and j, from which it

follows that the set {a, c, sort1(b, c), sort2(b, c), sort1(a, b), sort2(a, b)} is sorted only if a = c,

and we reach a contradiction.

Thus we obtain the following theorem:

Theorem 3.6. Let A ∈ Gr+(k, n) for which UL is of maximal size, that is, |UL| = n. Let

I ∈
(
[n]
k

)
such that, for any maximal sorted collection I that contains I, I is not adjacent to

UL in Γ(k,n). Then I /∈ UL−1 (that is, ∆I cannot be the second largest minor).
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Since the maximal degree of a vertex in Γ(k,n) is at most n ([2]), we get that if |UL| = n,

then |UL−1| ≤ n, therefore the number of second largest minors can not exceed n. For the

case in which UL is not maximal, we obtain the following:

Theorem 3.7. Let A ∈ Gr+(k, n), and let I ∈
(
[n]
k

)
. If there exist J1, J2 ∈ UL such that I

is not sorted with J1 and I is not sorted with J2, then I /∈ UL−1.

Claim 3.8. Let W = {I1, I2, I3, I4} be four distinct maximal sorted collections. We say

that W forms a square in Γ(k,n) if both I2, I3 are adjacent to I1 and to I4. In general, a

d-dimensional cube in Γ(k,n) is formed by starting from a certain circuit CI1, identifying a

collection of d detours {Pi} such that for any pair
{
vpi , vpj

}
, the distance between vpi and

vpj is at least two, and then constructing the additional 2d−1 circuits {Ij}2
d

j=2 formed by all

possible combinations of the detours. Then the set {Ij}2
d

j=1 forms a d-dimensional cube in

Γ(k,n).

Figure 3: An example of a square in Γ(k,n): From left to right, CI1 , CI2 , CI3 , and CI4 .
We have: I1 = {145, 146, 156, 256, 356, 456}, I2 = {145, 146, 156, 256, 356, 135}, I3 =
{145, 146, 246, 256, 356, 456}, and I4 = {145, 146, 246, 256, 356, 135}.

Definition 3.9. Two vertices u, v ∈ Γ(k,n) are of cubical distance, denoted cube d, a if one

can arrive from u to v by moving along a cubes in Γ(k,n), and a is minimal with respect to

this property.

An example of cubical distance is given in Figure 11.
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In the context of this new definition and claim, we can rephrase the theorem that follows

from Lemma 3.5 as follows:

Theorem 3.10. Let I and J be of cubical distance one, and let I ∈ J such that I /∈ I. Then

there exists I1 that is adjacent to I in Γ(k,n) such that I ∈ I1.

4 The third largest minors

In this section, we concentrate on the structure of Ul−2, and show that it corresponds to

distances along the graph Γ(k,n).

Theorem 4.1. Let A ∈ Gr+(k, n) for which UL is of maximal size, that is, |UL| = n. Let

I ∈
(
[n]
k

)
such that, for any maximal sorted collection I that contains I, I is of cubical

distance at least 3. Then I /∈ UL−1, UL−2 (that is, ∆I cannot be the second or third largest

minor).

Proof. There are six cases for us to consider, all shown in Figure 4. We consider all of the

following six cases:

1. From the Skandera inequality we have ∆a6 ×∆a4 < ∆a5 ×∆a7 , from which it follows

that ∆a6 < ∆a7 . Similarly, we get that ∆a7 < ∆a8 and ∆a8 < ∆a1 . Therefore, ∆a6 can

not be the third largest minor.

2. The same way as in case 1, we get that ∆a9 < ∆a8 and ∆a8 < ∆a7 . From the Skandera

inequality we obtain ∆a10 ×∆a4 < ∆a9 ×∆a11 since we know that ∆a4 > ∆a11 , we get

∆a10 < ∆a9 < ∆a8 < ∆a7 , and thus ∆a10 can not be the third largest minor.

3. Similarly to case 2, we have ∆a8 < ∆a9 < ∆a10 < ∆a1 and thus ∆a8 can not be third

largest.
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Figure 4: From left to right, and then top to bottom, case 1 to case 6. Fine dotted line = 1st

detour, dashed line = 2nd detour, two dots two dashes = 3rd detour.

4. Here we must consider sorting of sets. In fact, there are six cases to consider but here

we only show one of them as the others are very similar. As shown in Figure 5 we have

assigned the minors indices. We have chosen to examine the case in which a < b < c. By

sorting, we obtain that ∆a,b,c+1 ×∆a+1,b,c < ∆a,b,c ×∆a+1,b,c+1. Since ∆a+1,b,c = ∆a,b,c,

we have ∆a,b,c+1 < ∆a+1,b,c+1. By sorting, we also obtain ∆a+1,b+1,c × ∆a+1,b,c+1 <

∆a+1,b,c ×∆a+1,b+1,c+1, and therefore ∆a,b,c+1 < ∆a+1,b,c+1 < ∆a+1,b+1,c+1 < 1.

5. It is not possible using Skandera inequalities to show that ∆a7 can not be the third

largest minor. Instead we show that there is a shorter path to get to a7, such that it is

only two detours away from the original path. As shown in Figure 6, we have assigned

indices to the vertices. This is without loss of generality, as we do not indicate the

order in which a, b, and c appear. We first assign a, b, c as the indices for one of the

vertices and then move up to the right. Without loss of generality, we can assign it to
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Figure 5: Case 4 with indices assigned.

be a+ 1, b, c. Moving to the next vertex, we assign it to be a+ 1, b+ 1, c since an index

other than a must be moved. If a is moved, then no detour can exist. Similarly, all of

the other vertices can be assigned indices uniquely and without loss of generality. In

Figure 7, however, we have shown a shorter path to get to the minor δa,b,c+1, and thus

it is not actually three, but only two detours away and we no longer must consider it.

Figure 6: Case 5 with indices assigned.

6. We have ∆a9×∆a8 < ∆a7×∆a10 , giving us that ∆a9 < ∆a7 . Similarly, ∆a7 < ∆a6 < ∆a4

and thus ∆a9 can not be third largest.

Therefore, we have examined all cases in which a certain minor is three detours away

from the original maximal sorted collection, and in each of those cases we have proved that
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Figure 7: Case 5: shorter path to minor.

such a minor can not possibly be a third largest minor.

5 The general case

Here we present a conjecture for the general r.

Conjecture 5.1. Let A ∈ Gr+(k, n) for which UL is of maximal size. Let I ∈
(
[n]
k

)
such

that for any I ∈ V (Γ(k,n)), cube d(I, UL) ≥ b and there exists J ∈ V (Γ(k,n)), I ∈ J such

that cube d(J, UL) = b. Then I /∈ Ui for all i ∈ {L− 1, L− 2, . . . , L− b+ 1} (that is, I is at

most the b+ 1th largest).

We prove one case of the conjecture: the one in which k = 2 and no cubes are present.

Theorem 5.2. Let A ∈ Gr+(2, n) for which UL is of maximal size. Let I ∈
(
[n]
2

)
such that for

any I ∈ v(Γ(2,n))cube d(I, UL) ≥ b and there exists J ∈ v(Γ(2,n)) such that cube d(J, UL) = b.

If the graph theoretical distance of J and UL equals b as well, then I /∈ Ui for all i ∈

{L− 1, L− 2, . . . , L− b+ 1} (that is, I is at most the b+ 1th largest).
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Proof. In the 2×n case, we only have two indices a and b which we can move. We can assign

one of the vertices without loss of generality, the index a, b. Then, moving to the right, we

can call the vertex next to it a+ 1, b. The next vertex to the right can either be a+ 1, b+ 1

or a + 2, b. However, since we have elected for there to be another path coming from a, b,

the option a+ 2, b is impossible. Thus we have now established four of the indices shown in

Figure 8: a, b, a+ 1, b, a+ 1, b+ 1, and a, b+ 1. Now, we add a second path on to the first.

This one must be either directly to the left or to the right of the first minor. Without loss

of generality we choose to go to the right. The new minor formed which must connect to

a, b + 1 must either shift a forward or b + 1. Since the vertex, a + 1, b + 1 has already been

assigned, though, we know that only b + 1 can be shifted, thus obtaining two new vertices:

a, b + 2 and a + 1, b + 2. To add on a third detour on top of the first two, we must either

go to the right or to the left. We first consider going to the left. We must form a new path

from a, b + 2 to a, b. But such a path, other than the one involving a, b + 1, does not exist.

Thus we must go to the right again. From a, b + 2 we must move to a, b + 3 as a + 1, b + 2

has already been assigned.

In general, we can see that a new path formed from the old ones can only move to

the right, and new vertices are of the form a, b + k, where a, b is the first vertex from

which the path started. The entire path consists of squares which lead up from a, b to

a, b + k, as shown in Figure 8. From this construction, we can use the inequalities of the

form: ∆a,b+k ×∆a+1,b+k−1 < ∆a+1,b+k ×∆a,b+k−1 to obtain ∆a,b+k < ∆a,b+k−1 < ∆a,b+k−2 <

. . . < ∆a,b+1 < ∆a,b.
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Figure 8: Without Loss of generality, the assignment of indices to the vertices in a 2 × n
matrix.

6 Concluding remarks

In this paper, we have found and proved important properties and relationships between ar-

rangements of minors in TP matrices and other important combinatorial objects. We formed

a conjecture for the general case, and showed that the conjecture is true in several subcases.

It seems that the rest of the conjecture may be within reach using methods similar to those

used in this paper. The surprising relationships we found between totally positive matrices

and Sturmfels’ triangulation could pave the way for future advances in physics, computer

science, and mathematics. The results found in this paper have undoubtedly advanced us

much closer to gaining a complete understanding of the positive Grassmannian.
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[14] B. Sturmfels. Gröbner bases and convex polytopes. University Lecture Series, 8. Amer-
ican Mathematical Society, Providence, RI, 1996.

18



A Sample Diagrams

Figures 9, 10, and 11 are all sample diagrams intended to clarify concepts discussed in this

paper which are difficult to visualize.

Figure 9: The graph Γ(k,n) of the Sturmfels’ Triangulation

In Figure 11, we can see that cube d(1, 4) = 3, going by the path from 1 to 2 to 3 to 4.
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Figure 10: key for Figure 9

20



Figure 11: The graph Γ(k,n) of the Sturmfels’ Triangulation with diagonals representing cu-
bical distance.
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