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Abstract

The acyclic chromatic number of a directed graph D, denoted χA(D), is the minimum

positive integer k such that there exists a decomposition of the vertices of D into k disjoint

sets, each of which induces an acyclic subgraph. We show that for all digraphs D without

directed 2-cycles, we have χA(D) ≤ 4
5
· ∆̄(D) + o(∆̄(D)), where ∆̄(D) denotes the maximum

arithmetic mean of the out-degree and the in-degree of a vertex in D. This result significantly

improves a bound of Mohar and Harutyunyan. A related question to finding χA(D) is to find

the maximum size of an acyclic induced subgraph of D. We partially resolve a conjecture

of Harutyunyan that all planar digraphs on n vertices have an acyclic induced subgraph of

size 3n/5. We also improve several existing lower bounds on the size of an acyclic induced

subgraph for general digraphs.

Summary

We investigate directed graphs which are collections of nodes and arrow pointing from one

node to another. Specifically, we study the question of removing directed cycles, or collections

of nodes and arrows that eventually loop back around to themselves. This question has

applications in scheduling and deadlock resolution. In a computer, actions can be represented

by nodes in a directed graph, and a directed cycle in the directed graph corresponds to a

situation where each action is preventing the next from finishing. The result is deadlock, a

situation when no actions can finish. Therefore, studying how to remove cycles from directed

graphs can lead to more efficient deadlock resolution. We improve upon several bounds

relating to this question and partially answer several conjectures in this field.



1 Introduction

A proper vertex coloring of an undirected graph G partitions the vertices into independent

sets. It is natural to try to extend this notion to directed graphs (digraphs). An acyclic set in

a digraph is a set of vertices whose induced subgraph contains no directed cycle. The acyclic

chromatic number of a digraph D, denoted χA(D), is the minimal number of acyclic sets

into which the vertices of D can be partitioned. In this paper, we consider oriented graphs,

which are digraphs such that at most one edge connects any pair of vertices.

Studying the acyclic subgraphs of digraphs has applications in scheduling and deadlock

resolution. For instance, Jain et al. [1] studied acyclic subgraphs to develop efficient approx-

imation algorithms for deadlock resolution. Actions in a computer may be represented as

vertices in a digraph. A directed edge is drawn from action A to action B if A is waiting

for B to finish. This situation can happen for example if B is holding up a processor that A

needs to terminate. Therefore, a directed cycle in such a digraph represents a situation where

none of the events in the cycle can finish since each is waiting for the following event to be

complete. This situation is called deadlock, and one way to resolve the deadlock is to study

acyclic subgraphs of a digraph. Each acyclic subgraph contains no cycles, and therefore no

deadlock, so obtaining bounds on the size of acyclic subgraphs can lead to improvements in

efficient deadlock resolution.

1.1 Preliminary definitions

Given a directed graph D, we let V (D) denote the set of vertices of D, and E(D) denote

the set of edges of D. For any vertex v in a directed graph, the out-neighborhood N+(v) of v

is the set of all vertices u for which vu is an edge, and the in-neighborhood N−(v) of v is the

set of all vertices u for which uv is an edge. The out-degree of v is d+(v) = |N+(v)|, and the

in-degree of v is d−(v) = |N−(v)|. The digirth of a directed graph is the length of its shortest
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directed cycle. All logarithms in this paper are taken base 2.

In this paper we use several notions of maximal degree of a vertex in a digraph. Given a

digraph D, ∆+(D) denotes the maximum out-degree of D, and ∆−(D) denotes the maximum

in-degree of D. ∆̃(D) is the maximum geometric mean of the in-degree and the out-degree

of a vertex in D, and ∆̄(D) is the maximum arithmetic mean of the in-degree and the out-

degree of a vertex in D. Notice that if the out-degrees and in-degrees of all vertices in D are

equal, then ∆+(D) = ∆−(D) = ∆̃(D) = ∆̄(D).

1.2 Chromatic number from maximal degree

Although recent results [2, 3, 4, 5] suggest that the acyclic chromatic number in digraphs

behaves similarly to the chromatic number in undirected graphs, much still remains to be

learned. For instance, it is well that χA(D) ≤ ∆+(D) + 1; this is easily proved using the

greedy algorithm. However, this bound is not tight for most digraphs D; in fact, Harutyunyan

and Mohar [5] credit McDiarmid and Mohar with the following conjecture

Conjecture 1.1 ([5]). Every oriented graph D and with maximum total degree ∆(D) has

χA(D) = O
(

∆(D)
log ∆(D)

)
.

Conjecture 1.1 seems to be relatively difficult, so Harutyunyan and Mohar [6] conjectured

a relaxation of Conjecture 1.1. The following conjecture is paraphrased from [6].

Conjecture 1.2 ([6]). Let D be an oriented graph. Then

χA(D) ≤
⌊

∆̄(D)

2

⌋
.

Harutyunyan and Mohar proved that χA(D) ≤ (1 − e−13)∆̃(D). In Theorem 2.1, we

prove an upper bound on a generalization of the acyclic chromatic number. It follows from
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Figure 1: On the left is shown a directed graph which is not acyclic. As shown on the right,
by removing a vertex and all edges incident to it (dashed), we can delete all directed cycles.
The remaining vertices form an acyclic set of maximum size.

Theorem 2.1 that we can significantly improve Harutyunyan and Mohar’s bound, as shown

in Corollary 2.9, which we restate below:

Corollary. For an oriented graph D with ∆̄(D) ≥ 2,

χA(D) ≤
⌊

4

5
· ∆̄(D) +

2

5

⌋
+ 1.

1.3 Large acyclic subgraphs

A quantity related to the acyclic chromatic number of a digraph D is the size of a largest

induced acyclic subgraph of D, which is denoted by αA(D). As shown in Figure 1, finding the

maximum value of αA(D) is equivalent to finding the minimum number of vertices such that

when these vertices are deleted, the subgraph induced by the remaining vertices is acyclic.

Given a digraph D with n vertices, the values χA(D) and αA(D) are related by the inequality

αA(D) ≥ n/χA(D), so finding an upper bound on χA(D) in turn gives a lower bound on

αA(D).

The values χA(D) and αA(D) have been studied much for planar digraphs, digraphs which

can be embedded, or drawn, in the plane so that no 2 edges cross each other. As shown in

Figure 2, the directed 4-cycle is planar because there exists an embedding in the plane with

no crossing edges. Notice that not all embeddings in the plane have no crossing edges.

Bokal et al. [3] credit Škrekovski with the conjecture that all oriented planar graphs have
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Figure 2: The directed 4-cycle is planar because there exists an embedding in the plane with
no crossing edges, as shown on the left. However, as shown on the right, not all embeddings
in the plane have no crossing edges.

acyclic chromatic number at most 2.

Conjecture 1.3 ([3]). If D is an oriented planar graph, χA(D) ≤ 2.

Bokal et al. [3] showed that all oriented planar graphs are acyclically 3-colorable. One

approach to Conjecture 1.3 has been to look for lower bounds on αA(D) for planar digraphs

D. Borodin [7] showed that in any planar oriented graph there exists an acyclic subset

containing at least 2/5 of the vertices. Harutyunyan and Mohar [8] ask whether, in any

planar oriented graph, there exists an acyclic subset of at least 1/2 of the vertices. Note that

this fact would follow immediately from Conjecture 1.3. Harutyunyan [9] recently conjectured

an even stronger bound on the maximum size of an acyclic set:

Conjecture 1.4 ([5]). If D is an oriented planar graph on n vertices, then αA(D) ≥ 3n
5

.

Recently, Harutyunyan and Mohar [8] proved that every oriented planar graph of digirth

5 is acyclically 2-colorable, using a complex vertex-discharging method. They posed the

problem of finding a simpler proof of the acyclic 2-colorability of planar digraphs of large

digirth, and we partially answer this question in Theorem 3.5 by giving a short proof that in

a planar digraph of digirth g, there exists an acyclic set of vertices of size at least n− 3n/g.

We restate Theorem 3.5 below:

Theorem. If D is a planar digraph with digirth g on n vertices, then αA(D) ≥ n − 3n/g.

Moreover, if g = 4, then αA(D) ≥ 5n/12, and if g = 5, then αA(D) ≥ 7n/15.
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It follows immediately from Theorem 3.5 that Conjecture 1.4 is true for digraphs of

digirth at least 8.

Lower bounds on αA(D) have also been studied for general digraphs D. Ben-Eliezer et

al. [10] showed that if D has n vertices, then αA(D) ≥ log n. Moreover, Aharoni et al. [2]

showed that for any digraph D with n vertices and m edges,

αA(D) ≥ n2

m+ n
. (1)

Notice that when m ≤ n2/ log n, the bound in (1) is tighter than αA(D) ≥ log n. In fact,

Aharoni et al. [2] conjectured that αA(D) is nearly bounded below by a product of these two

bounds.

Conjecture 1.5 ([2]). If D is a digraph with n vertices and m edges, then

αA(D) ≥ (1 + o(1))
n2

m
log

m

n
.

This conjecture remains open, even up to a constant factor, but Ben-Eliezer et al. [10]

recently proved that there is an absolute constant c such that

αA(D) ≥ c · n
2

m
· log n

log (n2/m)
. (2)

Ben-Eliezer et al. [10] then used the bound in (2) to find a lower bound on the size Ramsey

number of a directed path. A proof of Conjecture 1.5 would lead to improved lower bounds

on this size Ramsey number. In Theorem 4.1, we give an improvement on the bound for

αA(D) in inequality (2) for a certain class of digraphs which we call weakly regular digraphs.

We define a digraph to be weakly regular if the sums of the out-degree and in-degree of

each vertex are all equal. In Theorem 4.1, restated below, we improve the bound in (2) of

Ben-Eliezer et al. by a factor of nearly 10 for weakly regular graphs.
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Theorem. Suppose D is a weakly regular digraph with n vertices and at most εn2 edges, and

ε ≥ 1/n. Then D contains an acyclic set of size A logn
ε log 1/ε

, where A is any constant strictly less

than 1.

In Theorem 4.2, restated below, we also improve the bound in (1) by a constant factor

of 2 for all digraphs D:

Theorem. If D is a digraph on n vertices and with average out-degree d, then αA(D) ≥ 2n
d+4

.

The organization of this paper is as follows. In Section 2, we prove Theorem 2.1, giving an

upper bound on χA(D) for any digraph D in terms of ∆̄(D). In Section 3, we prove Theorem

3.5, showing that in planar oriented graphs of large digirth, there exists a large induced

acyclic subgraph. In Section 4, we improve the lower bounds for αA(D) in inequalities (1)

and (2) by constant factors in Theorems 4.1 and 4.2, respectively.

2 Acyclic colorings

Recall that ∆̃(D) is the maximum geometric mean of the in-degree and the out-degree of a

vertex in D. Harutyunyan and Mohar [6] proved that given a digraph D, if ∆̃(D) is large

enough, then χA(D) ≤ (1− e−13)∆̃(D). They used a non-constructive method to do so, and

posed the problem of improving this bound, remarking that a different technique may be

necessary. We constructively find a significantly stronger upper bound on χA(D) in Theorem

2.1, thus making progress towards Conjecture 1.2. The outline of our proof is somewhat

similar to that of an undirected analogue proved by Borodin [11].

We begin by introducing some notation and definitions that will be useful in this section.

Given a digraph D and u ∈ V (D), we denote the subgraph induced on V (D)\{u} by D−u.

A strongly connected component of a digraph D is an induced subgraph H such that for any

u, v ∈ H, there are directed paths from u to v and from v to u.
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A digraph D is said to be weakly m-degenerate if for every induced subgraph of D, there

is a vertex of out-degree or in-degree strictly less than m. Therefore, a digraph is weakly

1-degenerate if and only if it is acyclic. A (k,m)-degenerate coloring of D is a partition of

V (D) into k sets, each of which is weakly m-degenerate. We denote the smallest k such that

D has a (k,m)-degenerate coloring by ψm(D). Given D, a critical vertex is a vertex v ∈ V (D)

such that ψm(D − v) < ψm(D). If every vertex of D is critical and ψm(D) = k, then we

define D to be a (k,m)-critical digraph. We can now state Theorem 2.1:

Theorem 2.1. Let m be a positive integer and t = 2m. Suppose we are given a digraph D

with ∆̄(D) ≥ t. Then

ψm(D) ≤

∆̄(D)−
(

1
2

) ⌊ ∆̄(D)+1/2
t+1/2

⌋
m

+ 1.

The following Lemmas 2.2 through 2.5, generalize a directed graph analogue of Brook’s

theorem [12] due to Mohar [13]. Our proofs follow similar outlines to those of Mohar.

Lemma 2.2 shows that critical vertices in a digraph must have large in-degree and out-

degree.

Lemma 2.2. Suppose v is a critical vertex in a digraph D, and ψm(D) = k. Then d+(v) ≥

(k − 1)m and d−(v) ≥ (k − 1)m.

Proof. Suppose for the purpose of contradiction that d+(v) < (k−1)m. We will show that we

can find a (k − 1,m)-degenerate coloring of D, a contradiction to the fact that ψm(D) = k.

Since v is (k,m)-critical, we can find a (k− 1,m)-degenerate coloring of D− v. At least one

color class c must be represented in less than m out-neighbors of v because otherwise v would

have at least (k−1)m out-neighbors. Now we color v color c, and claim that the subgraph H

induced by all vertices of color c is m-degenerate. To see this, let H ′ be an induced subgraph

of H. If v ∈ V (H ′), then notice that v has at most m − 1 out-neighbors in H ′. Otherwise,
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note that H ′ is a subset of a color class in a (k−1,m)-degenerate coloring of D−v, meaning

that there is some vertex in H ′ of in-degree or out-degree less than m.

A similar proof shows that d−(v) ≥ (k − 1)m.

Proposition 2.3 is the bulk of the proof of Lemma 2.5. It states that the in-degree and

out-degree of every vertex cannot be too small in a (k,m)-critical oriented graph. Moreover,

it generalizes a theorem of Mohar [13], who proved the case m = 1.

Proposition 2.3. Suppose that D is a (k,m)-critical oriented graph in which each vertex v

satisfies d+(v) = d−(v) = (k − 1)m. Then k ≤ 2.

To prove Proposition 2.3, we assume that k ≥ 3 for the purpose of contradiction and

create a linear ordering of the vertices of D, as follows. Pick any vertex un, and let two

of its out-neighbors or two of its in-neighbors be u1, u2. Let D′ = D − un. Now, since un

has at least 2 in-neighbors, there is some un−1 ∈ D′ apart from u1, u2 such that un is an

out-neighbor of un−1. Thus, un−1 has at most (k − 1)m − 1 out-neighbors in D′. Now let

D′′ = D′ − un−1 and continue in a similar manner, counting down from un. In the ith step

(3 ≤ i ≤ n− 1), find a vertex ui 6= u1, u2 such that ui has some in-neighbor or out-neighbor

among {ui+1, . . . , un}. Thus, ui must have in-degree or out-degree less than m(k − 1) in the

digraph D−{ui+1, . . . , un}. Finding ui, however, is possible if and only if there is some edge

between {ui+1, . . . , un} and {u3, . . . , ui}. We therefore establish that this fact is true for some

appropriate choice of u1, u2 and for all i (3 ≤ i ≤ n− 1) in the following Lemma 2.4 before

we prove Proposition 2.3.

Given a digraph D, we call two vertex-disjoint subgraphs D1 and D2 non-adjacent if there

is no edge of D with one endpoint in D1 and the other endpoint in D2. A weakly connected

component of a digraph is an induced subgraph H such that for any u, v ∈ V (H), there is a

path (not necessarily directed) from u to v.
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Lemma 2.4. Suppose D is a (k,m)-critical digraph. Assume that for any choice of vertices

u1, u2 ∈ D such that u1 and u2 are both out-neighbors or both in-neighbors of another vertex

of D, there is some i, 3 ≤ i ≤ n, such that the subgraphs induced by the sets {ui+1, . . . , un}

and {u3, . . . , ui}, as formed in the process above, are non-adjacent. Then k ≤ 2.

Proof. Assume for the purpose of contradiction that k ≥ 3. Pick any two vertices u1, u2

which are both in-neighbors or out-neighbors of another vertex. Let D1 denote the digraph

induced by {u1, u2, . . . , ui} and D2 denote the digraph induced by {u1, u2, ui+1, ui+2, . . . , un}.

We claim that both D1 and D2 are weakly connected. Suppose first that D1 is not weakly

connected for the purpose of contradiction. There are 2 cases to consider:

Case 1. u1 and u2 are in the same weakly connected component of D1.

Let w be a vertex in D1 which is not in the same weakly connected component as u1 and

u2. Any path (not necessarily directed) from w to u1 or u2 must contain some vertex in D2

before going through u1 or u2 because otherwise there would be a path from w to u1 or u2.

But this contradicts the fact that D1 and D2 are non-adjacent.

Case 2. u1 and u2 are in different weakly connected components of D1.

Notice that Case 2 cannot hold for D2 also, or else D would not be connected. Let F1

be the weakly connected component of D1 that contains u1 and F2 be the weakly connected

component of D1 that contains u2. By the (k,m)-criticality of D, we can find a (k − 1,m)-

degenerate coloring of each of F1 and F2. Moreover, we can rearrange the colors on F1 so

that u1 and u2 are the same color and the coloring remains (k − 1,m)-degenerate.

We now extend this coloring to {ui+1, . . . , un} so that it remains (k−1,m)-degenerate. No-

tice that for i+1 ≤ j ≤ n−1, uj has fewer than (k−1)m in-neighbors or out-neighbors among

{u1, . . . , uj−1} because it has at least one out-neighbor or in-neighbor among {uj+1, . . . , un}.

Hence, for any (k − 1,m)-degenerate coloring of {u1, . . . , uj−1}, we can color uj so that it

has fewer than m in-neighbors or out-neighbors of the same color among {u1, . . . , uj−1}.

Thus, we can color the vertices of D2 in the order {ui+1, ui+2, . . . , un−1} so that the color-
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ing remains (k − 1,m)-degenerate with each additional vertex we color. When we reach un,

since two of its out-neighbors or in-neighbors are of the same color, we can also color un so

that it has fewer than m in-neighbors or out-neighbors of the same color. This completes a

(k − 1,m)-degenerate coloring of D, contradicting the fact that ψm(D) = k. Therefore, D1

is weakly connected.

To show that D2 is weakly connected, notice that by construction, for all j where i+ 1 ≤

j ≤ n, there is some k > j such that there is an edge connecting uj and uk. Therefore, there

is a path (not necessarily directed) connecting uj to un.

We have that for any initial choice of {u1, u2} and for any D1, D2 chosen according to the

process above, D1 and D2 are both weakly connected. In the rest of the proof below, we will

only use the weakly connectedness of D1 and D2 and will therefore treat them identically.

Suppose without loss of generality that |V (D1)| ≤ |V (D2)|. If there exists a vertex u ∈

V (D1) with two out-neighbors or two in-neighbors u′1 and u′2 which are in D1−u1−u2, then

we consider the set {u′1, u′2}, and repeat the process of ordering the vertices. By assumption,

there is some i′ so that the subgraph D′1 induced by {u′1, u′2, . . . , u′i′} and the subgraph

D′2 induced by {u′1, u′2, u′i′+1, u
′
i′+2 . . . , u

′
n} are non-adjacent. Notice that either |V (D′1)| or

|V (D′2)| is larger than |V (D2)| since D1 is weakly connected. We now repeat the above

process with D′1 and D′2; at the jth step of the iteration, either D
(j)
1 or D

(j)
2 is not weakly

connected, contradicting the (k,m)-criticality of D, or the positive difference between the

|V (D
(j+1)
1 )| and |V (D

(j+1))
2 )| increases from the positive difference between |V (D

(j)
1 )| and

|V (D
(j)
2 )|, so the process must eventually end at the tth iteration, for some positive integer

t. That is, there must be some u
(t)
1 , u

(t)
2 and a corresponding D

(t)
1 and D

(t)
2 with, without loss

of generality, |V (D
(t)
1 )| ≤ |V (D

(t)
2 )|, such that there is no vertex u ∈ V (D

(t)
1 ) such that u has

2 out-neighbors or 2 in-neighbors in D
(t)
1 . However, this implies that k = 3,m = 1, and each

vertex in D
(t)
1 has u1 as an in-neighbor and u2 as an out-neighbor, or vise versa. Thus, D

(t)
1

has at most 2 vertices. However, we can now clearly find a 2-coloring of D
(t)
1 + u1 + u2 to
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ensure that there are no monochromatic cycles in D.

We now prove Proposition 2.3, using the fact established in Lemma 2.4 that there is

an ordering of the vertices of D, {u1, u2, . . . , un}, such that for 1 ≤ i ≤ n − 1, ui has an

out-neighbor or in-neighbor among ui+1, . . . , un.

Proof. Pick some ordering {u1, u2, . . . , un}, chosen according to the process described above.

We color the vertices of D as follows: we give u1, u2 the same color. Then for 3 ≤ i ≤ n− 1,

we note that in the subgraph of D induced by {u1, . . . , ui}, ui has in-degree or out-degree

less than (k− 1)m. Therefore, in the (k− 1,m)-degenerate coloring of {u1, . . . , ui−1}, one of

the color classes contains no in-neighbors or out-neighbors of ui. We now color ui this color.

Finally, since un has two out-neighbors or two in-neighbors of the same color, we can find a

color represented among less than m out-neighbors or in-neighbors of un, and color un this

color.

At the end of the process, we claim that each color class c is m-degenerate. To show this,

for any color class c and subset S of the vertices colored c, pick ui ∈ S so that i is as large

as possible. Then by the construction of the coloring, ui has at most m− 1 in-neighbors or

out-neighbors in S, completing the proof.

Lemma 2.5 uses Lemma 2.2 to extend Proposition 2.3 to digraphs that are not k-critical.

This is possible because intuitively, k-critical digraphs are the worst case for finding an

acyclic coloring with few colors.

Lemma 2.5. Suppose that ψm(D) = k+1 ≥ 3, for some integer k, and that D is an oriented

graph. Then ∆̄(D) > km.

Proof. Suppose for the purpose of contradiction that for some k ≥ 2, there is an oriented

graph D with as few vertices as possible, such that ∆̄(D) ≤ km. Notice that if D′ is any

induced subgraph of D, then ∆̄(D) ≥ ∆̄(D′). Notice that if D were not (k + 1,m)-critical,
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we could remove some vertex v to form D′ = D− v, and we would have ψm(D′) = k+ 1 and

∆̄(D′) ≤ ∆̄(D) ≤ km. This contradicts the fact that D has as few vertices as possible such

that ∆̄(D) ≤ km holds. Hence D is (k + 1,m)-critical.

By Lemma 2.2, for each v ∈ V (D), we have that d+(v) ≥ km and d−(v) ≥ km. In order

to have ∆̄(D) ≤ km, we must have d+(v) = d−(v) = km for all v ∈ V (D). But, then by

Proposition 2.3, we have that k + 1 ≤ 2, contradicting the fact that k + 1 ≥ 3.

The following corollary follows immediately from Proposition 2.5.

Corollary 2.6. If D is an oriented graph such that ∆̄(D) > km, and if ∆̄(D) ≥ 2m, then

ψm(D) ≤
⌈

∆̄(D)
m

⌉
.

To prove Theorem 2.1, we also use a theorem of Lovász [14], which states that the vertices

of a graph can be decomposed into sets so that the sum of the maximal degrees of all the

sets is less than the maximal degree of the graph.

Theorem 2.7 (Lovász [14]). For an undirected graph G, suppose that ∆(G)+1 =
∑s

i=1(∆i+

1), with ∆i being nonnegative integers, and s ≥ 1. Then there is a covering of V (G) with s

subgraphs Gi (1 ≤ i ≤ s), so that ∆(Gi) ≤ ∆i for 1 ≤ i ≤ s.

We now deduce as a corollary of Theorem 2.7 a version for directed graphs. To do so, we

need an analogue of maximal degree in undirected graphs. Recall that ∆̄(D) is the maximum,

over all vertices v of D, of the average of the out-degree and the in-degree of v.

Corollary 2.8. For a digraph D and positive integer s, suppose ∆̄(D) =
∑s

i=1 ∆̄i + s−1
2

.

Then there is a covering of V (D) with s subgraphs Di (1 ≤ i ≤ s) such that ∆̄(Di) ≤ ∆̄i.

Proof. Given a digraph D, consider the underlying undirected graph G. Notice that ∆(G) =

2∆̄(D). By Theorem 2.7, we can partition G into sets of vertices G1, . . . , Gs, so that the

maximum total degree in each set is at most 2∆̄i. For 1 ≤ i ≤ s, we let Di be the directed

subgraph of D induced by V (Gi). Thus, for 1 ≤ i ≤ s, ∆̄(Di) ≤ ∆̄i.
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We now prove Theorem 2.1, which uses Lemma 2.5 and Corollary 2.8 to find an upper

bound on ψm(D).

Proof of Theorem 2.1. Set

s =

⌊
∆̄ + 1/2

t+ 1/2

⌋
,

and r = ∆̄(D) + 1/2 − s(t + 1/2). Then ∆̄(D) =
∑s

i=1 t + (r − 1
2
) + s

2
, meaning that, by

Corollary 2.8, the vertices of D can be covered with s + 1 subgraphs D1, . . . , Ds+1, which

satisfy:

∆̄(Di) ≤ t : 1 ≤ i ≤ s

∆̄(Di) ≤ r − 1

2
: i = s+ 1.

Therefore, by Corollary 2.6,

ψm(Di) ≤ dt/me : 1 ≤ i ≤ s

ψm(Di) ≤ 1 + b(r − 1/2) /mc : i = s+ 1.

We thus have

ψm(D) ≤
s+1∑
i=1

ψm(Di)

≤ dt/me · s+ b(r − 1/2)/mc+ 1

≤ dt/me ·
⌊

∆̄ + 1/2

t+ 1/2

⌋
+

∆̄(D)− (t+ 1/2) ·
⌊

∆̄+1/2
t+1/2

⌋
m

+ 1

≤
⌊

∆̄(D)

m
−
(
t+ 1/2

m
−
⌈
t

m

⌉)⌊
∆̄ + 1/2

t+ 1/2

⌋⌋
+ 1.
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Because t/m is an integer,

ψm(D) ≤

∆̄(D)−
(

1
2

) ⌊ ∆̄(D)+1/2
t+1/2

⌋
m

+ 1.

Of particular interest is the case where m = 1, where we have ψm(D) = χA(D), and par-

titioning D into m-degenerate sets is equivalent to partitioning D into acyclic sets. Theorem

2.1 immediately implies the following Corollary 2.9:

Corollary 2.9. For an oriented graph D with ∆̄(D) ≥ 2,

χA(D) ≤
⌊

4

5
· ∆̄(D) +

2

5

⌋
+ 1. (3)

The bound in (3) approaches 4
5
·∆̄(D) as ∆̄(D) approaches∞. This bound is a significant

improvement over the bound of χA(D) ≤ (1−e−13)·∆̃(D) proved by Harutyunyan and Mohar.

3 Large acyclic subgraphs of planar digraphs

In this section, we use a corollary of the Lucchesi-Younger theorem to prove Theorem 3.5,

which gives a new lower bound on the size of the minimal acyclic subgraph of a planar

oriented graph.

We begin with some definitions. Given a directed graph D and a subset X of its vertices

V (D), we define X̄ = V (D)\X. If every edge between X and X̄ points from X to X̄, then

the set of such edges is called a directed cut. A dijoin is a set of edges that has a non-empty

intersection with every directed cut.

The Lucchesi-Younger theorem [15] gives the minimum size of a dijoin of a digraph:

14



Theorem 3.1 (Lucchesi-Younger [15]). The minimum cardinality of a dijoin in a directed

graph D is equal to the maximum number of pairwise disjoint directed cuts of D.

In the case that D is planar, the Lucchesi-Younger theorem has a useful corollary for

the dual of D. Given an oriented planar graph D, the dual of D, denoted D?, is defined as

follows. For a given planar embedding of D, construct a vertex of D? within each face of D.

For each edge uv of D separating faces f and g of D, a corresponding edge f ?g? ∈ E(D?) is

drawn between vertices f ? and g?. The direction of edge f ?g? is defined so that as it crosses

uv, v is on the left. It is simple to verify that the graph D? does not depend on the planar

embedding of D.

Given any directed graph, a feedback arc set is a set of edges of minimum cardinality, so

that when removed, the resulting directed graph is acyclic. The following well-known result

establishes a bijection between the directed cycles of a planar oriented graph and the directed

cuts in its dual:

Proposition 3.2. If D is a planar oriented graph, then the directed cycles of D are in

one-to-one correspondence with the directed cuts in D?.

Proof. Pick a planar embedding of D and embed D? in the plane as defined above. Given

a directed cycle C in D, notice that all edges of D? crossing an edge of C must travel in

the same direction: specifically, if C is oriented clockwise, then all edges of D? crossing C

point inwards, and if C is oriented counterclockwise, then the edges of D? crossing C point

outwards. Thus, let X ⊂ V (D?) consist of the vertices of D? corresponding to all faces of D

inside C, and therefore the edges of D? connecting X and V (D?)\X form a directed cut.

Conversely, given a directed cut of V (D?), we reverse the method above to obtain a

directed cycle of D.

Proposition 3.2 establishes the following corollary of the Lucchesi-Younger theorem:
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Corollary 3.3 ([15]). For a planar oriented graph, the minimum size of a feedback arc set

is equal to the maximum number of arc-disjoint directed cycles.

Proof. Given a planar oriented graph D, by the Lucchesi-Younger theorem, the minimum

cardinality of a dijoin of D? is equal to the maximum number of disjoint directed cuts of D?.

Now, by Proposition 3.2, any dijoin of D? corresponds to a feedback arc set of D, and any

set of disjoint directed cuts of D? corresponds to a set of arc-disjoint directed cycles of D.

This completes the proof.

We also need one well-known lemma, which follows easily from Euler’s formula for planar

graphs.

Lemma 3.4. Any planar graph G with n vertices and m edges satisfies m ≤ 3n− 6.

We now state and prove Theorem 3.5, which gives a lower bound on the minimum size

of an acyclic set in a planar graph.

Theorem 3.5. If D is a planar digraph with digirth g on n vertices, then αA(D) ≥ n−3n/g.

Moreover, if g = 4, then αA(D) ≥ 5n/12, and if g = 5, then αA(D) ≥ 7n/15.

Proof. Given a planar oriented graph D of digirth g, let H be a collection of arc-disjoint

directed cycles, each of which must have length at least g. Thus, by Lemma 3.4, if we denote

the number of edges of D as e(D), then the number of cycles in H is at most e(D)/g ≤ 3n/g.

Because a feedback arc set must contain at least one arc from each cycle in H, there is a

collection of edges in D such that each edge belongs to one cycle from H and which is a

feedback arc set. Now, for each such edge, we randomly delete one endpoint from D, and

the resulting digraph, which has at least n− 3n/g vertices, is acyclic.

For the cases g = 4, 5, we now obtain a slightly better bound using the greedy algorithm.

Suppose that there are initially f feedback arcs, where f ≤ 3n/g.
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Let d equal the number of feedback arcs minus half the number of vertices. Thus, initially

d = f − n/2. At each step, we remove the vertex v that is incident to the most feedback

arcs, together with all feedback arcs incident to v. As long as d > 0, each step removes one

vertex and at least two feedback arcs. Such a step decreases d by at least 3/2. Let m be the

number of steps taken before d ≤ 0, and let d′ ≤ 0 be the final value of d. We conclude that

m ≤ f − n/2− d′

3/2
=

2f − n− 2d′

3
.

After m steps, the number of vertices remaining is n−m, so the number of feedback arcs

remaining is d′+(n−m)/2. We remove one vertex from each of these feedback arcs to create

an acyclic set. The total number of vertices removed is

m+ d′ +
n−m

2
=
n

2
+ d′ +

m

2

≤ n

2
+ d′ +

1

2
· 2f − n− 2d′

3

=
n+ f + 2d′

3

≤ n+ f

3

≤ n

3
+
n

g
.

The number of vertices remaining in our acyclic set is thus at least

2n

3
− n

g
.

This is equal to 5n/12 for g = 4 and 7n/15 for g = 5.
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4 Large acyclic subgraphs of general digraphs

In this section, we improve lower bounds on αA(D), the size of the maximal acyclic set of a

digraph D, by constant factors and analyze when our new bounds are stronger than existing

ones.

4.1 Weakly regular digraphs

Recall that a digraph is weakly regular if the sums of the out-degree and in-degree of each

vertex are all equal. In Theorem 4.1 below, we improve the bound in (2) of Ben-Eliezer et

al. by a factor of nearly 10 for weakly regular graphs.

Theorem 4.1. Suppose D is a weakly regular digraph with n vertices and at most εn2 edges,

and ε ≥ 1/n. Then D contains an acyclic set of size A logn
ε log 1/ε

, where A is any constant strictly

less than 1.

The proof of Theorem 4.1 is a refinement of that of Ben-Eliezer et al. [10] and is provided

in Appendix A.

4.2 Bounds for general digraphs

In Theorem 4.2 below, we give a lower bound on the maximal acyclic set of vertices of any

digraph. This theorem asymptotically improves upon the bound in (1) by a factor of 2.

Theorem 4.2. If D is a digraph on n vertices and with average out-degree d, then αA(D) ≥
2n
d+4

.

The proof of Theorem 4.2 is provided in Appendix B.

We now compare the lower bound for αA(D) in Theorem 4.2 to bounds already found,

for instance the inequalities (1) and (2). To do so, given a digraph D, we let n denote the
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αA(D) ≥ (1 + o(1))n · log d
d

Conjecture (Aharoni et al., 2008, [2])

αA(D) ≥ 1
10
· n
d
· logn

logn−log d
Ben-Eliezer et al., 2012, [10]

αA(D) ≥ n/d Aharoni et al., 2008, [2]

Table 1: Previous results on the size of the largest acyclic set

number of vertices of D and d denote the average out-degree of D. Using this notation, we

summarize previous results in Table 1.

Notice that the bound of Aharoni et al. [2] in Table 1 is stronger than that of Ben-Eliezer

et al. [10] when d < n9/10. Our bound of αA(D) ≥ 2n
d+4

is clearly stronger than that of Aharoni

et al. for d ≥ 4 and is stronger than that of Ben-Eliezer et al. when d < n19/20, assuming d is

asymptotically large. Therefore, except for very dense digraphs, our bound is stronger than

all previous bounds.

5 Concluding Remarks

In this paper, we found improved upper bounds on χA(D) and lower bounds on αA(D) for

general digraphs D. However, the bounds in both Theorems 2.1 and 4.2 differ from the

conjectured bounds in Conjectures 1.1 and 1.5, respectively, by a factor of log d, where d

is linearly related to the average degree of the digraph. It seems that a new technique is

necessary to obtain the additional factor of log d. However, it may be possible to improve

the bound in Theorem 2.1 by a constant factor simply by refining the methods used in this

paper. In particular, Conjecture 1.2 may be within reach using the techniques we used.
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A Proof of Theorem 4.1

Below we give the proof of Theorem 4.1. We first cite the following Lemma A.1, which was

proved by Ben-Eliezer et al. [10].

Lemma A.1. If D is an oriented graph on n vertices, then αA(D) ≥ log n.

The proof of Theorem 4.1 is modeled off a proof of Ben-Eliezer et al. [10]. In the proof

below, given a digraph D, and two subsets of the vertices of D, denoted U and S, we let

N+
U (S) denote the set of all vertices of U which are out-neighbors of at least one vertex of S.

Proof of Theorem 4.1. Let U be a maximum acyclic set in D, and let T = V \U and |T | = t.

We assume for the purpose of contradiction that

t ≤ n− A log n

ε log 1/ε
,

for some constant A, to be chosen later. Without loss of generality, we may assume that∑
v∈U d

−(v) ≤
∑

v∈U d
+(v). Since D is weakly regular, we have that

∑
v∈U

d−(v) ≤
∑
v∈U

d+(v) + d−(v)

2
< εn|U |.

Now we pick a set of vertices of T such that each vertex in T has a small out-neighborhood

into U . Specifically, for each vertex w of T , the out-neighborhood of w in U has size at most

cε|U |, for some constant c to be chosen later. The greatest possible number N of vertices in

T which can have an out-neighborhood in U of size greater than εc|U | is given by N ≤ n/c.

So, the set of vertices of T with an out-degree in U of size at most cε|U |, which we denote

by T ′, has size at least t−N ≥ t−n/c. For each vertex w ∈ V (T ), we define a set of vertices

in U , denoted Uw, of size exactly cε|U | that contains the out-neighborhood of w in U .
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The number of subsets of U of size exactly εc|U | is

(
|U |
εc|U |

)
≤

(
e|U |
εc|U |

)εc|U |
= n

log e
εc cA

log 1/ε .

Thus, by the pigeonhole principle, there exists a set S ∈ T ′ with out-neighborhood in U of

size at most εc|U | and such that

|S| ≥ t− n/c

n
log e

εc cA

log 1/ε

.

Moreover, by Lemma A.1, there exists an acyclic set in S, which we denote by S ′, of size at

least log |S|. We now claim that |S ′∪ (U\N+
U (S))|−|U | > 0, which would complete the proof

of Theorem 4.1 since U was maximal. To show this, we note that we want to show that

|S ′ ∪ (U\N+
U (S))| − |U | ≥ log

(
n(1− 1/c)− A logn

ε log 1/ε

n
log e

εc cA

log 1/ε

)
− cε A log n

ε log 1/ε
> 0. (4)

Inequality (4) simplifies to

log

(
n(1− 1/c)− A log n

ε log 1/ε

)
>
cA log n

log 1/ε
· log

(
2e

εc

)
. (5)

Notice that for the logarithms in (5) to be defined, we need c > 1. For n large enough, it

suffices to show that

log n >
cA log n

log 1/ε
· log

(
2e

εc

)
. (6)

Inequality (6) reduces to

1/ε >

(
2e

εc

)cA
,

or

ε >

(
2e

c

) cA
cA−1

. (7)
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At this point, we choose c very slightly larger than 1, and A very slightly less than 1, so that

cA < 1, and so that (7) holds. Notice that for any ε, we can choose A arbitrarily close to

1.

B Proof of Theorem 4.2

Below we provide the proof of Theorem 4.2. Given a digraph D on n vertices and m edges,

we define the density of D to be m/n2.

Proof. Let D be a digraph on n1 vertices and with average out-degree d1. We will use a

recursive process to build up an acyclic set of vertices: at the ith step, for i ≥ 1, we will

begin with an induced subgraph Di of D, and an acyclic set Hi. Notice that D1 = D and

H1 = ∅. We then add to Hi the vertex vi ∈ V (Di) with smallest in-degree or out-degree in

Di and let Di+1 be the subgraph of Di induced by the vertex set V (Di)\(vi ∪ N−(vi)) or

V (Di)\(vi ∪N+(vi)), whichever is smaller. We then repeat the process, until the number of

vertices in Di is near 0.

As we begin the ith step, let ni = |V (Di)| and the average out-degree of Di be di. We

pick the vertex vi ∈ V (Di) with smallest in-degree or out-degree in Di, whichever is smaller.

Suppose without loss of generality that d−(vi) ≤ d+(vi), and let d−(vi) = δ. Clearly, δ ≤ di.

Notice that all in-neighbors of vi must have both in-degree and out-degree greater than or

equal to di. Since the subgraph induced by N−(vi) has at most δ2/2 edges, the number of

edges of Di incident to V (Di)\N−(vi) is at least

2δdi − δ2/2 = δ(2di − δ/2).

Thus, since the number of vertices in V (G)\N−(vi) is ni− δ−1, the density of the subgraph
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Di+1 induced by V (G)\N−(vi), is at most

dini − δ(2di − δ/2)

(ni − δ − 1)2
≤

di(ni − 3di
2

)

(ni − di − 1)2
,

so its average out-degree is at most

di(ni − 3di
2

)

ni − di − 1
.

Given any positive integers n, d, we define f(n, d) = 2n
d+4

; we want to show that given a

digraph on n vertices and average out-degree d, there exists an acyclic set of size f(n, d). To

show that this is true, at each step of the process described above, given vi, notice that the

subgraph Di+1 of Di induced by V (Di)\N−(vi) has at least ni − di − 1 vertices and average

out-degree at most
di(ni−

3di
2

)

ni−di−1
. Thus, by induction, Di+1 has an acyclic set of size at least

f

(
ni − di − 1,

di(ni−
3di
2

)

ni−di−1

)
. So, if f satisfies

1 + f

(
n− d− 1,

d(n− 3d
2

)

n− d− 1

)
≥ f(n, d), (8)

for all n, d, then we can find an acyclic set of size f(ni, di) at the ith step of the process for

all i, which would complete the proof of Theorem 4.2. We now prove the validity of (8). To

simplify calculations, we make the substitution A = 2d
d+4

and therefore f(n, d) = nA
d

. Notice

that we must have

1 +
A(n− d− 1)2

d
(
n− 3d

2

) ≥ nA

d
,

which reduces to

d

(
n− 3d

2

)
≥ A

(
n

(
n− 3d

2

)
− (n− d− 1)2

)
. (9)
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Inequality (9) above is equivalent to

A

(
dn

2
− d2 + 2n− 2d+ 1

)
≤ nd− 3d2

2
,

or

A ≤
nd− 3d2

2
(d+4)n

2
− d2 − 2d+ 1

. (10)

We now substitute A = 2d
d+4

, so (10) becomes

nd− 3d2

2
(d+4)n

2
− d2 − 2d+ 1

≥ 2 · d

d+ 4
. (11)

Inequality (11) above reduces to

− 3d2

2
+

2d3

d+ 4
+

4d2

d+ 4
+

2d

d+ 4
=
d2

2
− 4d2

d+ 4
+

2d

d+ 4
≥ 0,

which is true as long as d ≥ 0. Notice that with each step of the process, as long as d ≥ 2, d

decreases but stays positive at each step, completing the proof of the vailidity of (9).

At the end of the process, it simply remains to verify the base case. Since d decreases

but stays positive as long as n > 4 and d ≥ 2, the base case occurs when n ≤ 4 or d < 2. If

the base case occurs when n ≤ 4, it is clearly possible to find an acyclic set of size 2 ≥ 2n
d+4

.

Otherwise, the base case occurs when n > 4 and d < 2, and we want to find an acyclic set

of size 2n
d+4

. Now, note that by the bound in (1) by Aharoni et al. [2], we can find an acyclic

set of size n
d+1

. We have that n
d+1
≥ 2n

d+4
if d ≤ 2, thus completing the proof.
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