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Abstract

This paper examines the behavior of the successive quotients Ni(A) of the lower central series

ideals Mi(A) of a �nitely generated associative algebra A over Z. We de�ne the lower central series

Li(A) by L1(A) = A, Li+1(A) = [A,Li(A)], Mi(A) = A · Li(A) · A, and Ni(A) = Mi(A)/Mi+1(A).

We decompose the Ni into its free and torsion components using the structure theorem of �nitely

generated abelian groups, and we examine patterns in the ranks and torsion of Ni for algebras with

various homogeneous relations, including x2 in multiple variables, q-polynomial relation yx − qxy,

and xm + ym. In order to do this, we create data tables with the ranks and torsion of various Ni,

previously uncalculated, based on calculations done in the program Magma. This paper includes

a complete description of Ni for the q-polynomial algebra, Z〈x, y〉
/

(yx − qxy) and a proof for the

ranks of N2 for A〈x, y〉/(xm+ym), which provides insight into how changing the coe�cient or degree

of a relation a�ects rank and torsion, as well as general patterns for which primes appear in torsion.
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1 Introduction

For the past several years, algebraists have been studying the lower central series Li(A), which

are successive subspaces of an associative algebra A formed from the commutators of A. Thus, the

lower central series and its related objects can be used to measure the noncommutativity of algebras.

We consider the successive quotients of the two-sided ideals Mi generated by Li, and we call these

quotients Ni. We study the structure and properties of Ni to better understand the structure of

associative algebras.

Lower central series quotients of free associative algebras were �rst studied by Feigin and

Shoikhet [4]. They looked at the successive quotients Bi = Li/Li+1, and concluded that there

was an isomorphism between the space A/M3(A) and the space of even di�erential forms. This

isomorphism is essential in proving the pattern of N2(A2/(x
m + ym)) found in this paper. The

study of quotients continued with Etingof, Kim, and Ma [3], who completely described the quotient

A/Mi(A) for i = 4.

The study of Bi was continued in the work of Balagovi¢ and Balasubramanian [1], who looked

at B2 in the quotient of a free algebra. In particular, they provided a complete description of

B2(A2/(x
d + yd)), which is similar to the results found in this paper for N2(A2/(x

m + ym)).

While the structure of Bi has been studied in multiple papers, the quotients Ni have been less

studied. Kerchev [5] studied Ni for free algebras and computed Ni(An) for several values of i and n.

However, there is still much work to be done in studying the structure of Ni. In particular, torsion

has never been calculated for Ni even for free algebras, and Ni have not been studied for algebras

with relations.

In this paper, we study the behavior of Ni for an associative algebra Z〈x, y〉 with various re-

lations. We also compute the ranks and torsion of various Ni using a computer program called

Magma. The process of collecting data is explained in Section 3. Several patterns suggested by the

data are contained in Section 4. In Section 5 we provide a complete description of Ni for algebras

with the relation yx − qxy = 0, also known as q-polynomial algebras. The results concerning the

structure of N2 with the relation xm + ym is proven in Section 6.

We begin with preliminary background to better understand the algebraic objects of study.
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2 Preliminary Background

2.1 Associative Algebras and Their Lower Central Series

De�nition 2.1. Let A be a vector space over a �eld k with a bilinear associative multiplication

operation (a, b) 7→ a · b, which is also written as ab. If A also has a multiplicative identity, denoted

by 1, then A is a unital associative algebra.

A free algebra is a unital associative algebra that is generated by a set of generators with no

relation. In this paper, we are interested in associative algebras that are not necessarily free, more

precisely, algebras with homogeneous relations. An algebra A/〈P 〉 will denote the quotient algebra

of A by the ideal generated by the relation P . We de�ne a bracket operation on A by [a, b] = a·b−b·a.

This bracket operation satis�es [a, a] = 0 and the Jacobi identity:

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

A vector space with a bilinear bracket operation [a, b] such that the Jacobi identity and [a, a] = 0

are satis�ed is called a Lie algebra, so any associative algebra is also a Lie algebra with [a, b] =

a · b− b · a.

De�nition 2.2. Let A be a Lie algebra. De�ne a series of Lie ideals inductively such that L1(A) = A

and Li+1(A) = [A,Li(A)], where the bracket of two subspaces C and D is de�ned as [C,D] =

span([c, d]) such that c ∈ C, d ∈ D. This series of Lie ideals is the lower central series of A. We

abbreviate Li(A) as Li.

We may make this de�nition over Z by using Z-modules (i.e. Abelian groups) instead of vector

spaces. Similarly, we can use this de�nition over any commutative ring R.

De�nition 2.3. Denote the two-sided ideals generated by each Li by Mi, i.e. Mi = A · Li ·A.

It is easy to see that Mi = A · Li . Using this de�nition, we can de�ne the quotients Ni.

De�nition 2.4. De�ne the Ni to be the successive quotients Mi/Mi+1.

Now we introduce the idea of grading, which is crucial to representing data e�ectively.

De�nition 2.5. Let A be a module over a commutative ring k. The module A is graded if A has

a direct sum decomposition into submodules
⊕
i≥0

Ai. If A is an algebra such that Ai · Aj ⊂ Ai+j ,

then A is a graded algebra.
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Example 1. The simplest example of a graded algebra is a polynomial ring k[x1, . . . , xn], where

the grading is by the degree of the polynomial. We observe that Ni is graded, as it inherits its

grading from A. Our study is simpli�ed if we look at Ni by its �degree,� which is denoted by d. The

part of Ni at degree d will be denoted as Ni[d], which is a �nitely generated k-module.

2.2 Torsion and Class�cation of Finitely Generated Abelian Groups

De�nition 2.6. An element a of an Abelian group G is a torsion element if n · a = 0 for some

positive integer n. Conventionally, 0 is also considered a torsion element. In this case, we say that

a is an n-torsion element. All of the torsion elements in G form a subgroup of G.

To clarify the concept of torsion, we o�er a simple example.

Example 2. Consider the group G = Z6 = Z2 ⊕ Z3. This group has 2-torsion, 3-torsion, and 6-

torsion. 0, 2, and 4 are 3-torsion elements, 0, 3 are 2-torsion elements, and all elements are 6-torsion

elements. All 2 and 3-torsion elements are also 6-torsion elements.

The idea of torsion becomes especially important due to the Structure Theorem of Finitely

Generated Abelian groups, which states that groups can be separated into their free and torsion

components.

Theorem 2.1 (Structure Theorem of Finitely Generated Abelian Groups). Every �nitely generated

Abelian group G is isomorphic to a �nite direct sum of in�nite cyclic groups and cyclic groups of

order pn, for various primes p. This decomposition is unique up to order of summands.

The theorem can be restated as

G ∼= F ⊕ T,
where F is the free component, which is isomorphic to Zr for some r ∈ Z, and T is the torsion

component, consisting of a �nite sum of cyclic groups of order pn for various primes p. In this case,

r is called the rank of the free component, known simply as �rank.�

The goal of the project is to determine the structure Ni for algebras over Z by studying patterns

in the ranks and torsion of Ni.

2.3 Sample Calculations for Z〈x, y〉

We provide a set of sample calculations to illustrate how Li, Mi, and Ni are constructed. We

consider the free associative algebra Z〈x, y〉. Because it is not known whether torsion exists in
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Ni for free algebras generated by 2 variables, we focus on calculating the ranks of Ni. First, we

calculate the bases of the �rst few Li in low degrees.

By de�nition, L1 = A, so L1 spanned by all the monomials in x, y. The next row L2 is

formed from the set of all [A,L1]. As the minimum degree of a non-trivial part of L1 is 1, the

minimum degree of a non-trivial part of L2 is 2. The only term in the basis of L2[2] is [x, y], as

[y, x] = −[x, y]. L2[3] is spanned by [L1[1], L1[2]]. Thus, the potential basis vectors are [x, xy],

[y, xy], [x, yx], [x, y2], [y, x2], [y, yx], [x, x2], and [y, y2]. However, both [x, x2] and [y, y2] are 0. In

addition, [x, xy] + [x, yx] = [y, x2]. Thus, [y, x2] is not linearly independent and can be removed

from the basis. Similarly, [y, xy] + [y, yx] = [x, y2], and [x, y2] can be eliminated. Only 4 terms

remain in the basis of L2[3]. Calculating L3[3] is more straightforward, as L3[3] = [L1[1], L2[2]].

The results of the basis of Li can be found in Table 1, where the top row indicates the degree d.

Li[d] 1 2 3

L1 x, y x2, xy, yx, y2 x3, x2y, xyx, yx2, y3, y2x, yxy, xy2

L2 0 [x, y] [x, xy], [y, xy], [x, yx], [y, yx]
L3 0 0 [x, [x, y]], [y, [x, y]]

Table 1: Bases for Li

TheMi can be constructed from Li, asMi = A ·Li ·A = A ·Li. By this de�nition, Li[i] = Mi[i],

as Li[i] must be multiplied by scalars on both sides for the minimum non-trivial degree i. Thus,

M1 = A, and M2[2] is also easy to compute. Calculating M2[3] is slightly more complicated.

M2[3] = L1[0] · L2[3] + L1[1] · L2[2]. Therefore, the possible terms in the basis of M2[3] are [x, xy],

[y, xy], [x, yx], [y, yx], x[x, y], and y[x, y]. Eliminating linearly dependent terms, the basis of M2[3]

contains [x, xy], [y, xy], [x, yx], and [y, yx]. Then, M3[3] = L3[3], so Table 2 is complete.

Mi[d] 1 2 3

M1 x, y x2, xy, yx, y2 x3, x2y, xyx, yx2, y3, y2x, yxy, xy2

M2 0 [x, y] [x, xy], [y, xy], [x, yx], [y, yx]
M3 0 0 [x, [x, y]], [y, [x, y]]

Table 2: Bases for Mi

Now we calculate the ranks of Ni[d], which are the cardinalities of the basis of each Ni[d]. As

Ni = Mi/Mi+1, rank(Ni[d]) = rank(Mi[d]) − rank(Mi+1[d]). Thus, computing the ranks of each

Ni[d] becomes a simple subtraction problem. The ranks are shown in Table 3.

Ni[d] 1 2 3

N1 2 3 4
N2 0 1 2

Table 3: Free Ranks for Ni

5



3 Data Collection

We �rst compile data tables of the ranks and torsion of Ni for various relations. By changing the

number of variables, coe�cients, or degree of the relations, we can �nd patterns and form conjectures

about the behavior of the ranks and torsion of Ni.

Data is collected by running computations in Magma [2]. This code was run for many relations

over the integers, and the outputs were then organized into table form by grading. The left column

displays the Ni, while the top row is organized by grading (degree). Each term in the data table

includes the rank, which is displayed outside of the parentheses, and the torsion, which is displayed

within the parentheses.

Here, we provide an example of how the data was processed and organized into tables. The

example below shows how to format the output in Magma to a data table.

Example 3. The output code

$N_ 4 $ & 8 16(Abelian Group isomorphic to Z/2 + Z/2 + Z/4 + Z/4)

is expressed as 16(22 · 42) for N4[8] in a table.

The expression has a rank of 16, which is the last numbered output before the parentheses. The

torsion is slightly more di�cult to express. The output data in the parentheses represents the direct

sum of many cyclic groups. While prime power cyclic groups do not need to be further decomposed,

other groups can be decomposed into coprime components. For example, Z60 can be decomposed

into Z3 × Z4 × Z5 by the result in group theory that states Zmn = Zm × Zn for m, n coprime. The

data is decomposed into prime powers for the tables.

These components can then be combined through exponent rules (eg. Z/2 + Z/2 given in the

output is expressed in the table as 22). Thus, the �nal form of the term in the data table for N4[8]

is 16(22 · 42).

We look for patterns within these data tables, then try to prove them.

4 Observations of Patterns in Data

After compiling tables of algebras with various relations, we �nd several patterns in the ranks and

torsion of the Ni.
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4.1 Patterns in Z〈x1, . . . , xn〉/(x2
1)

Interesting patterns arise for the algebra with the relation x21 = 0 with a number of variables, shown

in Table 4. With two variables, it seems that the torsion and ranks of Ni stabilize rather quickly�

that is to say, the torsion and ranks do not chnage as d increases. Reading across the rows shows

the stabilization of the ranks from Ni[i+ 2] and a stabilizing torsion.

Ni[d] 2 3 4 5 6 7 8 9

N2 1 1(2) 1(2) 1(2) 1(2) 1(2) 1(2) 1(2)
N3 0 2 3(2) 3(22) 3(22) 3(22) 3(22) 3(22)
N4 0 0 2 3(22) 3(24) 3(25) 3(25) 3(25)
N5 0 0 0 4 7(23) 7(27 · 3) 7(29 · 3) 7(210 · 3)
N6 0 0 0 0 5 9(25) 9(212 · 3 · 5) 9(216 · 3 · 5)
N7 0 0 0 0 0 9 18(27) 19(219 · 32 · 5)
N8 0 0 0 0 0 0 12 25(212)
N9 0 0 0 0 0 0 0 20

Table 4: x21 = 0, two variables

This yields a conjecture about the stabilization of the ranks and torsion of Ni.

Conjecture 4.1.1. For Z〈x,y〉/(x2), Ni[j] ∼= Ni[j + 1] for j ≥ 2i− 1.

It would be interesting to know how soon the ranks stabilize for algebras with more generators,

and which primes will ultimately appear in torsion.

4.2 Patterns in Z〈x, y〉/(yx− qxy)

We notice that the ranks are non-zero only for the diagonal Ni[i], and these ranks are equal to i−1,

as seen in Tables 9 through 11, found in Appendix A.1. Additionally, �xing a d, the torsion in all

Ni[d] for i < d are the same: (Zq−1)d−1. Along the diagonal i = d, there is a more interesting

pattern with more primes. We are able to completely describe Ni in this case, and we show that on

the diagonal i = d, all primes will eventually appear, except those that divide q. A more detailed

description and proof of the result on the torsion in Z〈x, y〉/(yx− qxy) are provided in Section 5.

4.3 Patterns in Z〈x,y〉/(xm+ym)

By examining the algebras Z〈x,y〉/(xm+ym), we discover several patterns occurring across tables in Ni

for i = 2, 3, 4. The complete set of data can be found in Tables 12 to 14 in Appendix A.2. For N2,

the ranks follow a palindromic pattern similar to the one found in B2 [1], which is shown in Table

5, where the left column indicates values of m.
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N2[d] 2 3 4 5 6 7 8

2 1
3 1 2 1
4 1 2 3 2 1
5 1 2 3 4 3 2 1

Table 5: Ranks for N2[d] with the relation xm + ym = 0

Proposition 4.1. In the algebra Z〈x, y〉/(xm+ym), rank(N2[k]) = k−1 for k < m, rank(N2[k]) =

2m− k − 1 for m ≤ k ≤ 2m− 2, and 0 for all other values of k.

This proposition will be proven in Section 6.

The patterns developing in the ranks of N3 and N4 are almost palindromic, and we see pseudo-

arithmetic sequences. The values for the ranks of N3 are displayed in Table 6, with the left column

showing values of m.

N3[d] 3 4 5 6 7 8 9 10

2 2 1 0 0 0 0 0 0
3 2 5 4 1 0 0 0 0
4 2 5 8 7 4 1 0 0
5 2 5 8 11 10 7 4 1

Table 6: Ranks for N3[d] with the relation xm + ym = 0

Conjecture 4.3.1. In the algebra Z〈x, y〉/(xm + ym), rank(N3[k]) = 3k − 7 for k ≤ m + 1,

rank(N3[k]) = 6m− 3d+ 1 for m+ 1 < k < 2m+ 1, and 0 for all other values of k.

While N2 and N3 seem to have easily generalizable patterns, N4 is slightly more complicated.

The bolded numbers in Table 7 are the ones that remain consistent as d increases.

N4[d] 4 5 6 7 8 9 10

2 2
3 3 7 4

4 3 8 13 10 4

5 3 8 14 19 16 10 4

Table 7: Ranks for N4[d] with the relation xm + ym = 0

Conjecture 4.3.2. The ranks of N4 will become stable outside of the diagonal d = m + 2, where

d is the degree of the grading. We expect rank(N4(A2/(x
m + ym))[2m− k]) to stabilize for large m

and �xed k ≥ 0. This rank vanishes for k < 0.
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5 Complete Description of Ni (Z〈x, y〉/(yx− qxy))

We consider the speci�c algebra Z〈x, y〉 with the relation yx − qxy, also known as a q-polynomial

algebra. A clear pattern emerges in the ranks and torsion of the Ni, as shown in Tables 9 through

10, which are located in Appendix A.1. The torsion in Ni[d] for i < d− 1 is (Zq−1)d−1. The torsion

along the diagonal i = d has a more interesting pattern. To understand this pattern, we use a �ner

grading on the degrees, de�ning x to have degree 〈1, 0〉 and y to have degree 〈0, 1〉 where for degree

〈u, v〉, d = u+ v.

Theorem 5.1. Let A = Z〈x, y〉/(yx − qxy), where q ∈ Z, q 6= ±1. The rank(Ni[j]) = i − 1 for

i = j. Otherwise, the rank is 0. The torsion in Ni[d], also written as Tor(Ni[d]), for i < d − 1 is

(Zq−1)d−1. Along the diagonal i = d− 1, Tor(Ni[d]) =
⊕
u+v=d

Zq(u,v)−1.

Note. In Theorem 5.1 and its proof, the greatest common divisor of u and v is denoted as (u, v).

Now we give some preliminary information for the proof. First, we consider the bases of the

spaces Lk and Mk. We �rst note that because yx = qxy under the relation, we can express the

result of any bracket operation as a sum of xuyv with some coe�cients. We �rst construct a table

(see Table 8 for Lk on the diagonal k = u+ v, keeping in mind that yx = qxy). For k > 1, the basis

element of Lk[〈u, v〉] will be denoted by Sku,vx
uyv.

De�nition 5.1. Sku,v is the largest possible integer such that Lk[〈u, v〉] ⊂ span
(
Sku,vx

uyv
)
.

In the table for k > 1, we include only the coe�cients of the bases, Sku,v, and the terms in which

u < v, as 〈u, v〉 and 〈v, u〉 are symmetric. There is no torsion if u, v = 0. The rank of Ni[j] = 0 if

j 6= i and Ni[j] = i− 1 if j = i.

〈0, 1〉 〈0, 2〉 〈1, 1〉 〈0, 3〉 〈1, 2〉 〈0, 4〉 〈1, 3〉 〈2, 2〉
L1 x y2 xy y3 xy2 y4 xy3 x2y2

L2 0 0 (q − 1) 0 (q − 1) 0 (q − 1) (q2 − 1)
L3 0 0 0 0 (q − 1)2 0 (q − 1)2 (q − 1) · (q2 − 1)
L4 0 0 0 0 0 0 (q − 1)3 (q − 1)2 · (q2 − 1)

Table 8: Construction of Lk for the relation yx− qxy = 0

We consider the bases along the diagonal k = u + v and �nd that there is a pattern (Lemma

5.1).
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Lemma 5.1. For the algebra Z〈x, y〉
/

(yx− qxy), with q ∈ Z and q 6= ±1, and Sku,v for k = u+ v,

is

Sku,v = (q − 1)u+v−2 · (q(u,v) − 1). (5.1)

To prove this lemma, we include a few known facts in number theory:

Fact 1. (λm − 1, λn − 1) = λ(m,n) − 1

Fact 2. (a, b) = 1 =⇒ (a, bc) = (a, c)

Fact 3.

(
i

h
,
j

h

)
= 1⇐⇒ (i, j) = h

Proof. We prove Lemma 5.1 by induction on u, v. The base case is satis�ed, as

S2
1,1 = (q − 1)1+1−2(q(1,1) − 1) = q − 1.

Because Lk[〈u, v〉] = [x, Lk[〈u− 1, v〉]] + [y, Lk−1[〈u, v− 1〉]], Sku,v satis�es the recursive equation

Sku,v =
(
Sk−1u−1,v(q

v − 1), Sk−1u,v−1(q
u − 1)

)
. (5.2)

Assuming that

Sk−1u−1,v = (q − 1)u+v−3(q(u−1,v) − 1),

Sk−1u,v−1 = (q − 1)u+v−3(q(u,v−1) − 1),

we want to show that

Sku,v =
(

(q − 1)u+v−3(q(u−1),v − 1)(qv − 1), (q − 1)u+v−3(q(u,v−1) − 1)(qu − 1)
)

= (q − 1)u+v−2(q(u,v) − 1). (5.3)

We can pull out the expression (q − 1)u+v−3, as it is common to both of the components of the

greatest common divisor. Thus, equation (5.3) is reduced to

Sku,v = (q − 1)u+v−3
(

(q(u−1,v) − 1)(qv − 1), (q(u,v−1) − 1)(qu − 1)
)
. (5.4)

We set the following:

q(u−1,v) − 1 = α,

qv − 1 = β,

q(u,v−1) − 1 = γ,

qu − 1 = δ.
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Using Facts 3 and 1, we have

(α, γδ) = q − 1⇐⇒
(

α

q − 1
,
γδ

q − 1

)
= 1 (5.5)

and (
α

q − 1
,
γδ

q − 1

)
= 1 =⇒

(
γδ

q − 1
, β

)
=

(
γδ

q − 1
,
αβ

q − 1

)
(5.6)

We also note that (
β,

γ

q − 1

)
= 1 =⇒

(
β,

γδ

q − 1

)
= (β, δ). (5.7)

By Fact 1, (α, γ) = q−1, as ((u− 1, v), (u, v − 1)) = 1. Thus,

(
α

q − 1
,

γ

q − 1

)
= 1. By equation

(5.5),

(
γδ

q − 1
, β

)
=

(
γδ

q − 1
,

α

q − 1
β

)
is true.

Because (β, γ) = q−1 by Fact 1,

(
β,

γ

q − 1

)
= 1. By Fact 1, (β, δ) = (q(u,v)−1). Thus, by equa-

tion (5.7), (β, δ) =

(
β,

γ

q − 1
δ

)
= (q(u,v) − 1). By equation (5.6),

(
γδ

q − 1
,
αβ

q − 1

)
=

(
β,

γδ

q − 1

)
=

q(u,v) − 1.

It follows by Fact 3 that (αβ, γδ) = (q − 1)(q(u,v) − 1).

We can now prove Theorem 5.1.

Proof. We denote the basis of Mk[〈u, v〉] as T ku,vxuyv, and note that for k = u + v, Sku,v = T ku,v, as

the terms for Lk on the diagonal are of the lowest possible degree. Thus, Lk must be multiplied by

constants on either side to form Mk = A · Lk ·A.

Now we consider T ku,v for u+ v > k. We note that

Mu+v−1[〈u, v〉] = Lu+v−1[〈u, v〉] + x · Lu+v−1[〈u− 1, v〉] + y · Lu+v−1[〈u, v − 1〉].

Set T1x
uyv to be the basis of x ·Lu+v−1[〈u−1, v〉] and T2xuyv to be the basis of of y ·Lu+v−1[〈u, v−

1〉], where T1 = Su+v−1u−1,v and T2 = Su+v−1u,v−1 . It is true that T1x
uyv, T2x

uyv span Mu+v−1[〈u, v〉].

Thus, (T1, T2)x
uyv spans Mu+v−1[〈u, v〉]. It is known that (T1, T2) = (q − 1)u+v−2. Then, (q −

1)u+v−2xuyv spans Mu+v−1[〈u, v〉] by Lemma 5.1 and T u+v−1u,v = (q − 1)u+v−2. This suggests that

T ku,v = (q − 1)k−1 if u+ v > k.

Using this information, we can calculate the torsion Ni. Using the bases of Mk, we divide to get
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Tor (Nu+v−1[〈u, v〉]) =
Z · T u+vu,v xuyv

Z · T u,v−1u,v xuyv
= Zq(u,v)−1. Summing over all u, v yields

Tor (Nk−1[k]) =
⊕
u+v=k

Zq(u,v)−1.

The ranks are easy to verify given the bases. The spaceMk[k] is a free Abelian group with basis

Sk1,k−1xy
k−1, . . . , Skk−1,1x

k−1y with q 6= ±1, whileMk+1[k] = 0. So Nk[k] is free of rank k−1. Below

and above the diagonal i = d, the ranks of Mk[k] and Mk[k + 1] are the same, so the rank of Nk[k]

is 0.

Corollary 5.1. All primes except those that divide q appear in the torsion of Ni[i+ 1] for some i.

Proof. Given that the Ni has
(
q(u,v) − 1

)
-torsion, by Fermat's little theorem, all primes except those

that divide q will appear in the torsion of Ni.

With Theorem 5.1 and Corollary 5.1, we now have a clearer idea of how the coe�cients of a

relation a�ect the ranks and torsion of Ni.

6 Ranks of N2(Z〈x, y〉/(xm + ym))

We wish to �nd the basis ofN2(A2/(x
m+ym)) in order to prove Proposition 4.1, where A2 = Q〈x, y〉.

To do so, we use the short exact sequence 0→ N2 → A/M3 → A/M2 → 0, where A = A2/(xm+ym).

First, we �nd the generators of A/M3. We then prove the linear independence of these generators by

using the isomorphism A2/M3
∼= Ωeven(Q2)∗ found in Feigin and Shoikhet's paper [4], thus proving

the result for the ranks of N2(Z〈x, y〉/(xm + ym)).

6.1 Generators of A/M3

We consider A = Q〈x, y〉/(xm + ym) with u = [x, y]. We want to show that xiyj for 0 ≤ i ≤

m − 1, 0 ≤ j and xiyju for 0 ≤ i, j ≤ m − 1 span A/M3. To do this, we show that the following

relations are satis�ed in A/M3: u
2 = 0, [u, x] = [u, y] = 0, xm + ym = 0, and xm−1u = ym−1u = 0.

Because xm + ym = 0 in A, the relation also holds in A/M3.

Lemma 6.1. In A/M3, u
2 = 0.

Proof.

u2 = [x, y] · [x, y] = [x, y] · (xy − yx).
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Because [x, y] · xy = [[x, y], x]y + x[x, y]y,

u2 = [[x, y], x]y + x[x, y]y − [x, y]yx.

Because x[x, y]y − [x, y]yx = −[[x, y]y, x],

u2 = [[x, y], x]y − [[x, y]y, x].

Because [[x, y], x]y ∈M3 and −[[x, y]y, x] ∈M3, the relation u
2 = 0 is satis�ed in A/M3.

Lemma 6.2. In A/M3, the relations [u, x] = [u, y] = 0 hold.

Proof. [u, x] = [[x, y], x]. Because [[x, y], x] ∈M3, [u, x] = 0 in A/M3. Similarly, [u, y] = 0.

Lemma 6.3. In A/M3, x
m−1u = ym−1u = 0.

Proof. We know that 0 = [xm + ym, x] because xm + ym = 0. Additionally, [xm + ym, x] = [x, ym].

We will show that [x, ym] = mym−1u in A2/M3 through induction. Because u and y commute with

each other by [u, y] = 0, the base case is satis�ed:

0 = [x, y2] = xy2 − y2x = xy2 − yxy + yxy − y2x = uy + yu = 2yu,

since [y, u] = 0 in A2/M3. Now we assume that for some integer k, [x, yk] = kyk−1u. We can expand

[x, yk] as follows:

0 = [x, yk] = xyk − ykx = xyk +
k−1∑
i=1

(
−yixyk−i + yixyk−i

)
− ykx.

Now we consider [x, yk+1] = xyk+1 − yk+1. We expand and factor:

0 = [x, yk+1] =

(
xyk +

k−1∑
i=1

(
−yixyk−i + yixyk−i

)
− ykx

)
y + ykxy − yk+1x.

Thus,

[x, yk+1] = [x, yk]y + yku = kyku+ yku = (k + 1)yku = 0

since [y, u] = 0 in A2/M3. We have proved through induction that [x, ym] = mym−1u = 0. Because

m is some positive integer, ym−1u = 0 is satis�ed in A/M3, since we are working over Q. Similarly,

xm−1u = 0 is also satis�ed.

From Lemma 6.1, 6.2, and 6.3, we know that xiyj for 0 ≤ i < m and xiyju for i, j < m− 1 span

A/M3. Since u commutes with x and y, we can assume without loss of generality that u appears at

the end of all expressions in A/M3. Thus, the degree of u can either be 0 or 1, as for a ≥ 2, ua = 0.

13



Calculating the number of generators for each degree, we �nd that the dimension (from the data)

for that degree equals the number of generators, predicted by Proposition 4.1.

We now show the linear independence of these generators.

6.2 The Basis of A/M3

We consider the short exact sequence

0→M2/M3 → A/M3 → A/M2 → 0,

and let f be the surjection A/M3 → A/M2. A/M2 is the abelianization of A, so A/M2 =

Q[x, y]/(xm + ym). Now we wish to prove that the generators xiyj and xiyju are linearly inde-

pendent.

Lemma 6.4. The images of xiyj in A/M2 are linearly independent for 0 ≤ i < m.

Proof. If
∑(

Cijx
iyj
)

= 0 for Cij constants that are not all zero, xm + ym divides
∑(

Cijx
iyj
)
.

However, this is impossible, as i < m. Thus, if
∑(

Cijx
iyj
)

= 0, all Cij must be zero, proving that

xiyj are linearly independent in A/M2.

Lemma 6.5. The spaces spanned by xiyj for 0 ≤ i < m and xiyju for i, j < m − 1 have 0

intersection.

Proof. Let v be a common vector in the spaces spanned by the two sets of generators. Because v is

a linear combination of some xiyju ∈ ker f , f(v) = 0. We know that v is also in the space spanned

by xiyj , so it must be a linear combination of xiyj . However, we have proved by Lemma 6.4 that

xiyj is linearly independent in A/M2, so in order for f(v) = 0, we must have v = 0.

Lemma 6.6. The generators xiyju for i, j < m− 1 are linearly independent in A/M3.

To prove this lemma, we work with Ω(Q2), the space of all di�erential forms over Q2. A

di�erential form α is of the form f0 + f1 dx + f2 dy + f3(dx ∧ dy), where fi are polynomials

of x and y. We assign dx and dy to be of degree one, so even di�erential forms are of the form

f0 + f3 dx ∧ dy. We write the space of di�erential forms of degree k as Ωk, so the space of even

di�erential forms is denoted by Ωeven(Q2). We de�ne a distributive wedge product, ∧, on Ω(Q2)

such that dx ∧ dx = dy ∧ dy = 0 and dx ∧ dy = −dy ∧ dx. Functions commute with dx, dy, and

dx ∧ dy. If f is a polynomial, we write f ∧ α as fα for any form α. The wedge product makes
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Ω(Q2) a noncommutative ring. Now we de�ne a linear map d : Ωi → Ωi+1. If f ∈ Q[x, y], then

df = (∂f/∂x)dx+ (∂f/∂y)dy, and df is of degree 1. We have the following properties:

d(f dx) = df ∧ dx = −(∂f/∂y) dx ∧ dy,

d(dα) = 0,

d(α ∧ β) = dα ∧ β + (−1)deg(α)(α ∧ dβ).

We also de�ne an associative asterisk operation, ∗, such that α ∗ β = α ∧ β + (−1)deg(α)(dα ∧ dβ).

The even di�erential forms with this ∗ operation form a subring, denoted by Ωeven(Q2)∗. Now we

can prove Lemma 6.6.

Proof. We want to prove the linear independence of xiyju for i, j < m − 1 in A/M3, where A =

A2/(x
m + ym). We know that A/M3 = A2/M3(A2)/〈P 〉. If xiyju is independent in A/M3, then

span(xiyju) ∩ 〈P 〉 = 0, where 〈P 〉 is the ideal generated by xm + ym in A2/M3(A2).

We consider the isomorphism φ : A/M3 → Ωeven(Q2)∗ [4], where φ(x) = x and φ(y) = y.

Because Ωeven(Q2)∗ is not a quotient, it is easier to study than A/M3. We consider φ(xiyju) and

the ideal generated by φ(xm + ym), which is spanned by α ∗ (xm + ym) ∗ β, where α and β are even

di�erential forms. It is easy to calculate that φ(xiyju) = 2xiyjdx ∧ dy, so the images of xiyju in

Ωeven(Q2)∗ are forms of degree 2, with coe�cient 2xiyj , i, j < m− 1. Thus, we only need to show

that α ∗ (xm + ym) ∗ β = f + g dx ∧ dy, where f and g are polynomials, and each term in g has

either a power of xm−1 or ym−1, ensuring no overlap with φ(xiyju), where i, j < m− 1, which will

prove linear independence. Let α = f0 + f1 dx∧ dy, β = g0 + g1 dx∧ dy, and γ = (xm + ym). Thus,

dα = dfo, dβ = dg0, and dγ = m(xm−1 dx+ ym−1 dy). Then,

α ∗ γ = α ∧ γ + dα ∧ dγ = γf0 + df0 ∧ dγ + γf1 dx ∧ dy.

From this, we know that d(α ∗ γ) = d(f0γ) = γdf0 + f0 dγ, by the chain rule. Now we wish to �nd

(α ∗ γ) ∗ β = (α ∗ γ) ∧ β + d(α ∗ γ) ∧ dβ. We calculate:

(α ∗ γ) ∧ β = γf0g0 + g0 df0 ∧ dγ + γg0f1 dx ∧ dy.

Now we calculate d(α ∗ γ) ∧ dβ:

d(α ∗ γ) ∧ dβ = γdf0 ∧ dg0 + f0dγ ∧ dg0.
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We calculate:

α ∗ γ ∗ β = γf0g0 + γ(g0f1 dx ∧ dy + df0 ∧ dg0) + dγ ∧ (f0 dg0 − g0 df0).

It is easy to see that each term of g dx ∧ dy = γ(g0f1 dx ∧ dy + df0 ∧ dg0) + dγ ∧ (f0 dg0 − g0 df0)

has a power of xm−1 or ym−1, as γ = xm + ym and dγ = m(xm−1dx + ym−1dy). Thus, φ(xiyju)

and the ideal generated by φ(xm + ym) have no intersection in Ωeven(Q2)∗, so x
iyju is independent

in A/M3.

By Lemmas 6.4, 6.5, and 6.6, we have proved that xiyj for 0 ≤ i < m and xiyju for i, j < m− 1

are the basis of A/M3, and x
iyju, and using the short exact sequence, xiyju is the basis of N2(A).

We now count the number of generators by degree in N2(A) to verify Proposition 4.1.

6.3 Counting xiyju in N2(A)

We wish to count the number of generators xiyju for i, j < m − 1 in N2, where x and y are of

degree 1, and u is of degree 2. The maximum degree of xiyju is 2m − 2, as i, j < m − 1. Let k

be the degree in which we are counting generators. We count by two cases and use the short exact

sequence to �nd dim(N2[k]).

Case 1. k ≥ 2m− 1

Because the maximum degree of xiyju is 2m− 2, there will be no xiyju for k ≥ 2m− 1.

Case 2. k ≤ 2m− 2

For the maximum degree 2m − 2, i = j = m − 2. Because u is of degree 2, we also know

that i + j = k − 2. So we wish to solve for i and j for 0 ≤ i, j ≤ m − 2. Because j ≤ m − 2,

k−2− i ≤ m−2 and i ≥ k−m. For k < m, 0 ≤ i ≤ k−2 has k−1 solutions. For m ≤ k ≤ 2m−2,

k −m ≤ i ≤ m− 2 has 2m− k − 1 solutions, which con�rms the results of Proposition 4.1.

7 Conclusion

We have carefully examined the ranks and torsion of Ni for several classes of relations. Using a

program in Magma, we generated data which we examined for patterns in the structure of Ni. In

particular, we looked at homogeneous relations in two variables (xm+ym), q-polynomials (yx−qxy),

and x2 in multiple variables. We discovered patterns in all of these relations and provided a full

proof of the ranks of N2(A2/(x
m + ym)) and a complete description of the behavior of Ni for the
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q-polynomial algebra. These results illustrate how the degree and coe�cients in a homogeneous

relation can a�ect the ranks and torsion of Ni of the algebra with that relation, particularly with

regard to which primes appear in torsion.

There remains much to study about the structure of Ni. For example, the pseudo-arithmetic

pattern in the ranks of the N3 and N4 (Conjectures 4.3.1 and 4.3.2) with relation xm + ym is yet to

be proved, perhaps with previous results [3]. The pattern found in N2 for that relation matches the

one found in B2, which suggests a natural isomorphism B2 → N2, at least over Q. We plan to show

that this mapping is an isomorphism by using the description of A/M3 by generators and relations.

In addition, the behavior of torsion can be studied for x2 = 0 of multiple variables, and in

particular, Conjecture 4.1.1 could be proved. More work could be done in discovering which primes

appear in the torsion, and why they appear.

The study of Ni and its structure has applications in the study of commutativity in groups

and rings, and it can be used to study maps between groups. It also has connections in cyclic

cohomology. Studying Ni can help us build a better understanding of the structure of a general

associative algebra. Outside of its mathematical implications, the lower central series has wider

applications, as noncommutative algebras often appear in quantum theory, so studying lower central

series ideas can help build our fundamental understanding of the universe, as well as bring about

the technological advancements quantum theory promises.
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A Data Tables

The tables contain the free and torsion components of Ni[d], with the relation used in the caption.

A.1 Z〈x,y〉/(yx−qxy)

Ni[d] 2 3 4 5 6 7 8 9 10 11

N2 1 0(32) 0(33) 0(34) 0(35) 0(36) 0(37) 0(38) 0(39) 0(310)
N3 0 2 0(33) 0(34) 0(35) 0(36) 0(37) 0(38) 0(39) 0(310)
N4 0 0 3 0(34) 0(35) 0(36) 0(37) 0(38) 0(39) 0(310)
N5 0 0 0 4 0(34 · 9) 0(36) 0(37) 0(38) 0(39) 0(310)
N6 0 0 0 0 5 0(36) 0(37) 0(38) 0(39) 0(310)
N7 0 0 0 0 0 6 0(37 · 5) 0(38) 0(39) 0(310)
N8 0 0 0 0 0 0 7 0(37 · 9) 0(39) 0(310)
N9 0 0 0 0 0 0 0 8 0(39 · 11) 0(310)
N10 0 0 0 0 0 0 0 0 9 0(310)

Table 9: yx+ 2xy

Ni[d] 2 3 4 5 6 7 8 9 10

N2 1 0(42) 0(43) 0(44) 0(45) 0(46) 0(47) 0(48) 0(49)
N3 0 2 0(42 · 8) 0(44) 0(45) 0(46) 0(47) 0(48) 0(49)
N4 0 0 3 0(44) 0(45) 0(46) 0(47) 0(48) 0(49)
N5 0 0 0 4 0(43 · 7 · 8) 0(46) 0(47) 0(48) 0(49)
N6 0 0 0 0 5 0(46) 0(47) 0(48) 0(49)
N7 0 0 0 0 0 6 0(44 · 5 · 82 · 16) 0(48) 0(49)
N8 0 0 0 0 0 0 7 0(48 · 72) 0(49)
N9 0 0 0 0 0 0 0 8 0(45 · 84 · 61)
N10 0 0 0 0 0 0 0 0 9
N11 0 0 0 0 0 0 0 0 0

Table 10: yx+ 3xy

Ni[d] 2 3 4 5 6 7 8 9 10 11

N2 1 0(52) 0(53) 0(54) 0(55) 0(56) 0(57) 0(58) 0(59) 0(510)
N3 0 2 0(3 · 53) 0(54) 0(55) 0(56) 0(57) 0(58) 0(59) 0(510)
N4 0 0 3 0(54) 0(55) 0(56) 0(57) 0(58) 0(59) 0(510)
N5 0 0 0 4 0(32 · 55 · 13) 0(56) 0(57) 0(58) 0(59) 0(510)
N6 0 0 0 0 5 0(56) 0(57) 0(58) 0(59) 0(510)
N7 0 0 0 0 0 6 0(33 · 57 · 17) 0(58) 0(59) 0(510)
N8 0 0 0 0 0 0 7 0(58 · 132) 0(59) 0(510)

Table 11: yx+ 4xy
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A.2 Z〈x, y〉/(xm + ym)

Ni[d] 1 2 3 4 5 6 7 8

N2 0 1 0(22) 0(22) 0(22) 0(22) 0(22) 0 (22)
N3 0 0 2 1(22) 0(24) 0(24) 0(24) 0(24)
N4 0 0 0 2 0(24) 0(25) 0(26) 0(26)
N5 0 0 0 0 4 2(23) 0(26) 0(27)
N6 0 0 0 0 0 3 0(26) 0(27)
N7 0 0 0 0 0 0 6 3(24)
N8 0 0 0 0 0 0 0 4
N9 0 0 0 0 0 0 0 0

Table 12: x2 + y2

Ni[d] 1 2 3 4 5 6 7 8 9

N2 0 1 2 1(32) 0(33) 0(33) 0(33) 0(33) 0(33)
N3 0 0 2 5 4(34) 1(38) 0(39) 0(39) 0(39)
N4 0 0 0 3 7(2) 4(24 · 37) 0(24 · 314) 0(2 · 315) 0(315)
N5 0 0 0 0 6 16(22) 11(26 · 314) 2(27 · 330) 0(24 · 335)
N6 0 0 0 0 0 9 22(25) 11(217 · 322) 0(217 · 343)
N7 0 0 0 0 0 0 18 45(27) 30(221 · 339)
N8 0 0 0 0 0 0 0 27 3(214)

Table 13: x3 + y3

Ni[d] 1 2 3 4 5 6 7 8 9

N2 0 1 2 3 2(42) 1(43) 0(44) 0(44) 0(44

N3 0 0 2 5 8 7(2 · 43) 4(22 · 46) 1(24 · 47) 0(24 · 48)
N4 0 0 0 3 8 13(2 · 5) 10(28 · 32 · 44 · 52) 4(27 · 34 · 412 · 52) 0(210 · 34 · 414)
N5 0 0 0 0 6 18 30(22 · 52) 26(213 · 34 · 48 · 55) 12(226 · 32 · 418 · 56)
N6 0 0 0 0 0 9 30 49(24 · 43 · 55) 38(226 · 310 · 420 · 512)
N7 0 0 0 0 0 0 18 63 106(212 · 43 · 510)
N8 0 0 0 0 0 0 0 30 110(22)

Table 14: x4 + y4
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