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On the Splitting of MO(2) over the Steenrod Algebra

Abstract

We study the problem of whether the cohomology of the Thom space, MO(2) can be

split as a module over the Steenrod algebra by considering various finite-dimensional

subalgebras with a basis of finite numbered operations. In order to solve this problem,

we attempt to find a disjoint splitting, based on a minimal generating set for the

cohomology of MO(2). First, we solve the hit problem over the cohomology of MO(2)

in order to find a minimal generating set. Second, we use a basis for the subalgebra

and find a splitting. The cohomology of MO(2) is constructed by multiplying the

symmetric algebra on two generators by ω, the Thom class of the universal two-

dimensional vector bundle. Topologically, this corresponds to adding a common point

at infinity to all the fibers of the vector bundle. We solve the hit problem over the

cohomology MO(2) in order to find a minimal generating set over a polynomial ring.

The motivation for this problem is to better understand the real unoriented bordism

spectrum MO. In this project, a splitting is first constructed for each of the cases

based on one and two basis operations. For the cases of three and four operations,

based on the generated sets, we conjecture that a splitting is not possible. From this

result, we predict that MO(2) is not split over the Steenrod algebra.



1 Introduction

The hit problem refers to a class of problems with the purpose of decomposing elements of a

graded module in terms of elements in lower degrees. The terms which cannot be generated

by lower degree elements are non-hit elements. A secondary goal of the hit problem is to find

a pattern for these non-hit elements. The other elements, which are the hit elements, have

the property of being submodule. An example of this is given by the polynomial ring F2[x],

which is a module over the ring F2 + F2θ (where x and θ have degree 1). The module action

is given by

θ · xn ≡ nxn+1 (mod 2) =

 xn+1 if n is odd

0 if n is even
(mod 2).

This means that the non-zero hit elements are the positive even powers of x (decomposable).

These polynomials form a minimal generating set. In this example, odd powers of x together

with x0 = 1 form a minimal generating set. The motivation of this paper is to solve an

extension of this example.

Described in 1947, the Steenrod algebra is a very powerful tool used in cohomology

and stable homotopy problems, composed of stable cohomology operations called Steenrod

squares, Sqi. All stable operations are generated by these squares. [6] As a consequence, our

main focus is on the properties of the Steenrod squaring operators.

The hit problem in algebraic topology focuses on modules over the Steenrod algebra.

There has been much work in the past on modules which are polynomial rings; these arise

from products of real projective spaces. The two variable case was solved by Peterson (1987)

[1] and the three variable case was solved by Kameko (1990) [2]. The symmetric two variable

case was solved by Janfada (1998) [3]. One version of the hit problem in the paper is to

find a minimal generating subset of a graded module. We study the case of the (reduced)

cohomology of the Thom space of the universal two-dimensional vector bundle. Our goal is

determine whether a stable splitting is possible in order to expand our understanding of the
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real unoriented cobordism spectrum MO. In order to solve this, we first observe whether a

splitting is possible for finite dimensioned subalgebras (of the module).

Section 2 is devoted to basic concepts/ideas of abstract algebra and the Steenrod algebra.

This includes the Steenrod squares, Adem relations, and the Cartan formula. In Section 3,

we explain the MO(2) problem respectively. Sections 4.1, 4.2, 4.3 and 4.4 treat the MO(2)

problem for the A(0), A(1), A(2) and A(3) cases. Also included in this section, methods

are shown to determine minimal generating sets for MO(2) over certain subalgebras of the

Steenrod algebra, which we use in subsequent sections to prove that MO(2) splits over some

of these algebras.

2 Definitions

2.1 Hit Element

Definition. An element mj in a module M over a ring R is called a hit element if for some

mi ∈M and ri ∈ R there exists

mj =
∑
i

rimi, (2.1)

where the ri have positive degrees and the sum is finite.

The study of the space of hit elements is commonly referred to as the hit problem. A major

part of this problem is the determination of the dimensions of the spaces of hit elements in

each degree given a particular ring and module.

2.2 Minimal Generating Set

Once the hit elements are determined, one can find a minimal generating set for the module as

follows. Let Un denote the space of hit elements in degree n, and let mn,1, ...,mn,kn represent

a basis for the quotient space Mn/Un. Then the mi,j form a minimal generating set.
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2.3 Steenrod Algebra

The Steenrod algebra is a graded ring, denoted by A, where all coefficients are in modular

two. This graded associative algebra is composed of linear operators called Steenrod Squares.

An example of an element is Sq1Sq5 + Sq4Sq2 + Sq3Sq3. Steenrod subalgebras expressed by

A(n) are generated by Steenrod squares with degree of powers of two, up to n. The Steenrod

squares are natural transformations defined as

Sqi : Ha(X)→ Ha+i(X),

where Ha(X) is the ath cohomology group of X. [3]

Theorem 2.1. The Steenrod algebra is generated by the linear operators Sq2
n
, where n ≥ 0.

2.4 Symmetric Polynomials

We will be working with symmetric polynomials of two and three variables in this project. A

symmetric polynomial has the property that the variable labels are interchangeable. Recall

that symmetric polynomials are polynomials expressed in the elementary symmetric polyno-

mials σi. For example, the elementary symmetric polynomial for degree two in three variables

is σ2 = x1x2 + x1x3 + x2x3.

In this project, the elementary symmetric variables for degree one and two in two variables

are

σ1 = x1 + x2 and σ2 = x1x2,

respectively.

2.5 Adem Relations

The Adem relations are an essential tool for calculations in the Steenrod algebra. For a, b ∈ N

and a < 2b they say that
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SqaSqb =
∑
i

(
b− i− 1

a− 2i

)
Sqa+b−iSqi. (2.2)

For example,

Sq6Sq13 =

(
12

6

)
Sq19 +

(
11

4

)
Sq18Sq1 +

(
10

2

)
Sq17Sq2 +

(
9

0

)
Sq16Sq3 = Sq17Sq2 + Sq16Sq3.

An important note is that all of the binomial coefficients are reduced modulo 2. An

expression Sqi1Sqi2 ...Sqin is called an admissible monomial if ij ≥ 2ij+1, (j = 1, 2, ..., n− 1).

The Adem relations cannot be applied to these expressions.

In fact, the Adem relations can be used to show that A is generated by the Sq2
i
, where

i = 0, 1, 2, 3, .... In this paper, we work with subalgebras A(n), which are generated by

Sq1, Sq2, Sq4, ..., Sq2
n
. By considering the dual of the Steenrod algebra, one can show that

these algebras are finite; in fact, A(n) has dimension 2(n+1)(n+2)/2 (see Wood [6]).

Theorem 2.2. The admissible monomials form an additive basis for the Steenrod Algebra.

2.6 Cartan Formula

Modules over the Steenrod algebra that arise as the cohomology of spaces satisfy some

additional conditions. They are commutative graded rings, and satisfy the Cartan formula:

Sqn(ab) =
∑
i+j=n

Sqi(a)Sqj(b). (2.3)

For evaluating Sqi(x), some other rules apply.

(1) If the degree of x is equal to i, then Sqi(x) = x2.

(2) If j is greater than the degree of x, then Sqj(x) = 0.

(3) The Steenrod square, Sq0 is the identity, Sq0(x) = x.
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Janfada and Wood [3] showed that these facts allow us to evaluate any Steenrod square

of any polynomial in variables of degree 1. An example of such a module is given by the

polynomial algebra F2[x1, ..., xn], which arises as the cohomology of the product of n copies

of real projective space. The rules (1-3) and the Cartan formula completely determine the

action of the Steenrod algebra. Since this action commutes with permutations of the variable

labels, the subring B(n) of symmetric polynomials is a submodule. This module arises as

the cohomology of the base of the universal n-dimensional vector bundle.

2.7 Total Squaring Operation

To evaluate each Steenrod square operation we use the total squaring operation

Sq(x) = Sq0(x) + Sq1(x) + .... (2.4)

This sum is finite since Sqi(x) = 0 when i > deg(x). The total squaring operation is

used to compute or break down expressions. The Cartan formula implies that Sq is a ring

homomorphism. For example if we assume that x has degree one, we obtain the formula:

Sqk(xn) =

(
n

k

)
xn+k. (2.5)

3 The MO(2) Minimal Generating Set

The MO(2) module is similar to the symmetric two variable module B(2) = F2[σ1, σ2], with

the relation MO(2)n+2
∼= B(2)n. The Steenrod squaring operations in MO(2) are given by:

Sqk(ωσn
1σ

m
2 ) =

∑
i+j=k

Sqi(ω)Sqj(σn
1σ

m
2 ),

where ω is the Thom class of the universal two dimensional vector bundle over BO(2) with

degree two. This creates the Thom complex is topologically obtained from the vector bundle
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by adding a common point at infinity to the vector space fibers (this is called one point

compactification). The action of the Steenrod squares on ω is given as follows: the Sq1

operation on ω is equal to ω · σ1. The Sq2 operation of ω is equal to ω2 = ω · σ2. For k > 1,

Sqk(ωσn
1σ

m
2 ) = ω

[
Sqk(σn

1σ
m
2 ) + σ1Sq

k−1(σn
1σ

m
2 ) + σ2Sq

k−2(σn
1σ

m
2 )
]
. (3.1)

The action of the Steenrod squares on symmetric polynomials is given by:

Sqk(σn
1σ

m
2 ) =

∑
i+2j=n+2m+k

i≥n,j≥m

(
m

j −m

)(
2m+ n− j

i− n

)
σi
1σ

j
2. (3.2)

This can be proven by using the total squaring operation and using the axioms in Sec-

tion 2.6 to compute that Sq1σ2 = σ1σ2.

In the formulas (3.1) and (3.2), let us define h as the sum of k, 2m and n. Let us also

write ωσn
1σ

m
2 as (n,m) for simplicity.

Conjecture 3.1. For only n = 0 or 1, the MO(2) module is decomposable as MO(2) =

M1 +M2, where M1 and M2 are submodules of MO(2) over the ring A(n) and M1 ∩M2 = 0

Thus MO(2) is not decomposable over the Steenrod algebra is not decomposable.

To prove this in a specific case, we find a minimal generating set for MO(2) as a module

over A(n). Then we divide the minimal generating set into two groups, α and β such that

they generate two vector spaces, M1 and M2 whose sum is equal to MO(2) and have an

intersection of 0.
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4 Results and Discussion

4.1 A(0) Problem for MO(2)

The most elementary case of the MO(2) problem is with one operation, Sq1, which is defined

as:

Sq1(ωσn
1σ

m
2 ) = ω

[
Sq1(σn

1σ
m
2 ) + σ1(σ

n
1σ

m
2 )
]

= ω(n+m+ 1)σn+1
1 σm

2 ,

which means that if n+m+ 1 is even, the expression is zero, and if n+m+ 1 is odd, it

is σn+1
1 σm

2 .

Lemma 4.1. The non-hit elements are split into two cases:

• If h is odd, the non-hit elements are (h − 4a − 2, 2a + 1), where a is a non-negative

integer.

• If h is even, the non-hit elements are (h− 4a, 2a), where a is a non-negative integer.

Tables 1 and 2 are exemplified these two cases.

ωσ10
1 σ

0
2 ωσ8

1σ
1
2 ωσ6

1σ
2
2 ωσ4

1σ
3
2 ωσ2

1σ
4
2 ωσ0

1σ
5
2

ωσ11
1 σ

0
2 1 0 0 0 0 0

ωσ9
1σ

1
2 0 0 0 0 0 0

ωσ7
1σ

2
2 0 0 1 0 0 0

ωσ5
1σ

3
2 0 0 0 0 0 0

ωσ3
1σ

4
2 0 0 0 0 1 0

ωσ1
1σ

5
2 0 0 0 0 0 0

Example when h is odd (11). The expressions on the top generate the values on the left

when the entry is one, for example Sq1(σ10
1 σ

0
2) = σ11

1 σ
0
2.
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ωσ11
1 σ

0
2 ωσ9

1σ
1
2 ωσ7

1σ
2
2 ωσ5

1σ
3
2 ωσ3

1σ
4
2 ωσ1

1σ
5
2

ωσ12
1 σ

0
2 0 0 0 0 0 0

ωσ10
1 σ

1
2 0 1 0 0 0 0

ωσ8
1σ

2
2 0 0 0 0 0 0

ωσ6
1σ

3
2 0 0 0 1 0 0

ωσ4
1σ

4
2 0 0 0 0 0 0

ωσ2
1σ

5
2 0 0 0 0 0 1

ωσ0
1σ

6
2 0 0 0 0 0 0

Example when h is even (12). The expressions on the top generate the values on the left

when the entry is one, for example Sq1(σ9
1σ

1
2) = σ10

1 σ
1
2.

For this case, it is fairly obvious that these two groups generate submodules that intersect

trivially, since m is odd in the first group and m is even in the second group.

4.2 A(1) Problem for MO(2)

To have A(1) we add an additional operation, Sq2:

Sq2(ωσn
1σ

m
2 ) = ω[Sq2(σn

1σ
m
2 ) + σ1(Sq

1(σn
1σ

m
2 )) + σ2(σ

n
1σ

m
2 )]

= ω

[((
m

1

)
+ 1

)
σn+2
1 σm

2 +

((
m+ n

1

)
+

(
m+ n

2

))
σn
1σ

m+1
2

]
.

In this project, we used the Python programming language to determine the action of the

operations. The method to most efficiently calculate the binomial coefficient
(
n
m

)
in modulo

2 is to write n and m in binary and compare each pair of bits. If m has a one where n has a

zero, the binomial coefficient will be even, which is zero modulo 2; otherwise, it will be odd.

Example, for
(
6
5

)
:
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6 = 110

5 = 101

The ones digit of 110 is zero while the ones digit of 101 is one, so
(
6
5

)
is even, six in this

case.

Lemma 4.2. For the module MO(2) over A(1), a minimal generating set is given by:

(h− 4− 8a, 2 + 4a), when h ≡ 0 (mod 4)

(0, h/2), when h ≡ 0 (mod 8)

(h− 8a, 4a), when h ≡ 2 (mod 4)

(0, h/2), when h ≡ 6 (mod 8).

Proof. For A(1) the hit equation can be simplified to

x = Sq1(y) + Sq2(z),

where deg(y) = deg(x)− 1 and deg(z) = deg(x)− 2. For MO(2), one has a convenient basis

with degree h+2, given by the monomials ωσn
1σ

m
2 with n+2m = h. To find the hit elements,

one can form a matrix representing the map Sq1 ⊕ Sq2, and preform column operations to

put the matrix into column echelon form. The rows without leading ones then determine a

minimal generating set. Some of these matrices are listed in the appendix. Inspecting the

formulas for Sq1 and Sq2, one sees that they only depend (up to offsetting the exponents)

on the values of n and m modulo 4. Thus these matrices follow a pattern which repeats with

period 8. Thus we can see from the low degree cases that the above monomials will give a

minimal generating set.

Theorem 4.3. MO(2) splits as a module over A(1).
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Proof. We show that we can divide the above minimal generating set into two subsets which

span submodules that intersect trivially. These two subsets are:

• (4a, 2 + 4b) with a, b ≥ 0

• (0, 3 + 4a) with a ≥ 0

and

• (2 + 4a, 4b) with a, b ≥ 0

• (0, 4a) with a ≥ 0.

The ring A(1) is generated by Sq1 and Sq2, and has a basis consisting of 1, Sq1, Sq2, Sq3,

Sq2Sq1, Sq3Sq1, Sq5 + Sq4Sq1, and Sq5Sq1. We must apply these to the above elements.

Rather than using variables a and b in the above, it is much more efficient to use a single

template for each case. For example,

Sq0(0, 2) = (0, 2)

Sq1(0, 2) = (1, 2)

Sq2(0, 2) = (2, 2) + (0, 3)

Sq3(0, 2) = (3, 2)

Sq2Sq1(0, 2) = (1, 3)

Sq3Sq1(0, 2) = (2, 3)

(Sq5 + Sq4Sq1)(0, 2) = (5, 2) + (3, 3)

Sq5Sq1(0, 2) = (4, 3).

To compute the values for arbitrary a and b, one would simply take the above and add (4a, 4b)

to each label. Doing this for all four cases, using the templates (0, 2), (0, 3), (2, 0), and (0, 0),
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one sees that the span of the first group of elements above only involves the monomials (n,m)

with m ≡ 2 or 3 (mod 4), while the span of the second group only involves monomials with

m ≡ 0 or 1 (mod 4).

4.3 A(2) Problem for MO(2)

We add an additional operation, Sq4:

The third operation is Sq4:

Sq4(ωσn
1σ

m
2 ) = ω

[
Sq4(σn

1σ
m
2 ) + σ1(Sq

3(σn
1σ

m
2 )) + σ2(Sq

2(σn
1σ

m
2 ))
]

= ω

{[(
m

1

)
+

(
m

2

)]
σn
1σ

m+2
2

+

[(
m

2

)
+

(
m

1

)((
m+ n− 1

1

)
+

(
m+ n− 1

2

))]
σn+2
1 σm+1

2

+

[(
m

3

)
+

(
m

4

)]
σn+4
1 σm

2

}
.

Lemma 4.4. For the A(2) case, there are five families of generators:

(0, 8a)

(0, 2 + 8a)

(6 + 8a, 0)

(8a, 6 + 8b)

(4 + 8a, 2 + 8b).

Along with these families there is a special case: (2, 0).

We determined these with the same method as the previous case.

Theorem 4.5. The above elements form a minimal generating set for MO(2) over A(2).

Proof. We proceed as in the previous section. The hit equation in this case can be expressed
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as

x = Sq1(w) + Sq2(y) + Sq4(z),

where deg(w) = deg(x) − 1, deg(y) = deg(x) − 2, deg(z) = deg(x) − 4. Thus the set of hit

elements is the image of the map Sq1⊕ Sq2⊕ Sq4. Inspecting the formulas for Sq1, Sq2 and

Sq4, we see that (up to offsetting the exponents) they only depend on n and m modulo 8.

Thus, the relevant matrices follow patterns that repeat with period 16. The matrices are

given in the appendix for low degrees. Again we preform column operations to put these

matrices into column echelon form. The rows without leading ones determine a minimal

generating set consisting of monomials. The special case of (2, 0) arises because there is no

contribution from Sq4, since this would have to come from the degree with h = −2, which

is zero.

Conjecture 4.6. MO(2) cannot split as a module over A(2).

Argument We show that we cannot divide the above minimal generating set into two

subsets which span submodules that intersect trivially. The generating terms are:

• (0, 8a)

• (0, 2 + 8a)

• (6 + 8a, 0)

• (8a, 6 + 8b)

• (4 + 8a, 2 + 8b)

• (2, 0)

The ring A(2) is generated by Sq1, Sq2 and Sq4, and has a basis consisting of sixty-

four elements. We must apply these to the above elements. Again, we use a single template

for each case. We first notice that all of the of the above generating sets are connected by
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common terms (we will always call these terms as ”common terms”). Thus to make a disjoint

group, we must add a term (hit or non-hit) and its set, comprised of 64 elements, to one of

the sets generated by a generating terms and cancel out the common terms. We found that

this is impossible because there is only one way to express the common term in with the

same squaring operations. For example consider the set generated by (0, 8):

((0, 8), (1, 8), (1, 9, 3, 8), (2, 9), (0), (0, 9), (0), (0), (1, 11, 5, 9, 7, 8),

(2, 11, 6, 9), (4, 11))

The common term for this set is (4, 11), generated by Sq2Sq1Sq4Sq2Sq1. Our goal is to

find a term that can generate (4, 11) with the same operation so we work backwards, where

xa are the terms in each step (x0 is the generating term):

x5 = (4, 11) = Sq2[x4], x4 = (2, 19)or(4, 18)

x4 = (2, 19)or(4, 18) = Sq1[x3], x3 = (1, 19)

x3 = (1, 19) = Sq4[x2], x2 = (1, 17)

x2 = (1, 17) = Sq2[x1], x1 = (1, 16)

x1 = (1, 16) = Sq1[x0], x0 = (0, 18)

For each of the six templates, there are common terms which cannot be canceled out.

Thus making a splitting is impossible.

4.4 A(3) Problem for MO(2)

We add a fourth operation Sq8:
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Sq8(ωσn
1σ

m
2 ) = ω

[
σ2Sq

6(σn
1σ

m
2 ) + σ1Sq

7(σn
1σ

m
2 ) + Sq8(σn

1σ
m
2 )
]

= ω

{[(
n+m

8

)
+

(
n+m

7

)]
σn+8
1 σm

2

+

[
m

((
n+m− 1

6

)
+

(
n+m− 1

5

))
+

(
n+m

6

)]
σn+6
1 σm+1

2

+

[(
m

2

)((
n+m− 2

4

)
+

(
n+m− 2

3

))
+m

(
n+m− 1

4

)]
σn+4
1 σm+2

2

+

[(
m

3

)((
n+m− 3

2

)
+

(
n+m− 3

1

))
+

(
m

2

)(
n+m− 2

2

)]
σn+2
1 σm+3

2

+

[(
m

4

)
+

(
m

3

)]
σn
1σ

m+4
2

}
.

For the A(3) case, there are six families of generators:

(16a− 4, 2)

(16a− 2, 0)

(16a, 14 + 16b)

(0, 6 + 16a)

(8 + 16a, 6 + 16b)

(0, 2 + 16a).

Along with these families there is a special case: (4, 2), (6, 0), (2, 0), (0, 0).

We proceed as in the previous section. The hit equation in this case can be expressed as

x = Sq1(v) + Sq2(w) + Sq4(y) + Sq8(z),

where deg(v) = deg(x)− 1, deg(w) = deg(x)− 2, deg(y) = deg(x)− 4, deg(z) = deg(x)− 8.

Thus the set of hit elements is the image of the map Sq1 ⊕ Sq2 ⊕ Sq4 ⊕ Sq8. Inspecting

the formulas for Sq1, Sq2, Sq4 and Sq8, we see that (up to offsetting the exponents) they

only depend on n and m modulo 16. Thus, the relevant matrices follow patterns that repeat
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with period 32. Again we preform column operations to put these matrices into column

echelon form. The rows without leading ones determine a minimal generating set consisting

of monomials.

Conjecture 4.7. MO(2) cannot split as a module over A(3).

Argument The ring A(3) is generated by Sq1, Sq2, Sq4 and Sq8, and has a basis con-

sisting of 1024 elements. We must apply these to the above elements. Again, we use a single

template for each case. We first notice that all of the of the above generating sets are con-

nected by common terms. Thus to make a disjoint group, we must add a term (hit or non-hit)

and its set, comprised of 1024 elements, to one of the sets generated by a generating terms

and cancel out the common terms. Using the same method as A(2), we found that this is

impossible because there is only one way to express the common term in with the same

squaring operations.

5 Conclusion

The hit problem over the Steenrod algebra that arises from cohomology theory asks for a

criterion of the the minimal generating set. In addition, we ask whether the generated terms

can be split into two independent subsets based in the minimal generating set. To answer

this questions, we look at Steenrod subalgebras which are generated by n + 1 Steenrod

Square operations with degree 2k, 0 ≤ k ≤ n. We have proved that for particular cases, there

is a splitting of MO(2) into two submodules, but not the subalgebra A(2) and A(3). On

those cases, we conjecture that a splitting is not possible which means that MO(2) over the

Steenrod algebra cannot be split into two disjoint groups. We also observe that the size of

the algebra A(n) increases rapidly with n; when the number of operators ranges from one

to four, the number of dimensions of the corresponding algebra grows from 2, 8, 64 to 1024.
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6 Future Work

Future work includes a proof of the conjecture that MO(2) cannot be split into two sub-

modules over the Steenrod algebra. This includes the determination of whether A(4), which

contains 216 basis elements, can be spilt into two submodules. Another goal is to find whether

MO(3) splits over the Steenrod algabra as two submodules. Another possibility is to find

whether MO(4) (four variables) can be split. We also plan to generalize our current work to

find a solution for MO(n) over the Steenrod algebra.
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A Appendix: Visual Graphs of A(n) subalgebras

The diagram of A(0) (taken from [? ])

The diagram of A(1). A straight line means (left) multiplication by Sq1, a curved line means
multiplication by Sq2 (taken from [? ])

The diagram of A(2). A straight line means (left) multiplication by Sq1, a curved line means
multiplication by Sq2, and a bent line means multiplication by Sq4 (taken from [? ])
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B Appendix: Matrices of Various Powers

The following are the combined matrices of the hit elements for Sq1, Sq2, Sq4 and Sq8. The
relevant basis elements are the monomials (n,m) of appropriate degree listed in order of
increasing m.

For h = 1:
(1)

For h = 2: (
0 0
0 1

)
For h = 3: (

1 0 1
0 0 1

)
For h = 4:  0 0 1 0 0

0 1 1 1 0
0 0 0 0 0


For h = 5:  1 0 0 0 0 0

0 0 0 1 1 0
0 0 1 0 0 0


For h = 6: 

0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1


For h = 7: 

1 0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1


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