
Adaptive Timeout Strategies for Microservice Applications

Govind Velamoor, Adrita Samanta

MIT PRIMES 2024

Mentors: Lan (Max) Liu, Zhaoqi (Roy) Zhang, and Prof. Raja Sambasivan (Tufts University)

Abstract
Timeouts are critical in determining whether a request has suc-
ceeded or failed. Developers face several challenges when setting
timeout values in distributed systems; the specific challenge we
investigate being the systems’ propensity to change, both over
the short- and long-term. We propose a timeout-optimized pol-
icy targeting change over different time scales, assuming APIs
that are both idempotent and atomic. We evaluate our ap-
proaches on a home-grown microservices testbed, by comparing
the timeout percentage, total time taken, and closeness to ac-
tual latency when our approaches and the industry standard of
Exponential Backoff are used in simulated environments with
changing system performance.

1. Introduction

In the past, systems have traditionally been built in mono-
liths, with all of their components running on a single machine.
With increasing speed and scale requirements, monolithic sys-
tems have faced several challenges. For one, the entire system
must scale together, resulting in some components being over-
or under-scaled. Monolithic applications are often hard to de-
ploy because of their large size and are often tightly coupled,
lack modularity, and have a limited development stack.

In the last two decades, organizations have been moving
from using one monolith to many small independent applica-
tions called microservices [1] which communicate via requests
to achieve more complex tasks. This architecture [2] allows
for various performance and scaling benefits. Each individual
service may be scaled to their own requirements rather than
everything having to be scaled together. In addition, with dis-
tributed systems, work can be parallelized and spread over mul-
tiple nodes, improving performance.

Microservices commonly communicate with each other us-
ing request protocols such as RPC (Remote Procedure Call)
and HTTP (Hypertext Transfer Protocol) which often result in
long tail latencies [3]; for example in a system where the server
usually responds in 10ms, the 99th percentile is often as high
as 1 second. In such a case, timeouts are employed to deter-
mine whether a request is failed or simply taking longer than
usual. After the client has waited a certain amount of time, the
request times out, is deemed failed, and a retry is issued.

Correct timeouts are vital in distributed systems to determine
whether information is flowing as intended. However, there has
been little work so far on how to allocate them. Ultimately,
poor timeouts result in additional latency for the user. Short
timeouts will result in legitimate responses being prematurely
abandoned by the system, causing unnecessary retries. Long
timeouts will result in resources being allocated fruitlessly (re-
quests that will never return a response would be kept alive
for longer than necessary, taking resources away from other re-
quests), slowing the system down for any requests which may
actually provide responses. Thus, extensively long timeouts
risk violating Service Level Agreements (SLAs) and in easier
exploitation through Denial-of-Service attacks.

When individual services in a distributed system change, as
they frequently do, it is important for every service to auto-
matically update its timeouts to not cause user frustration or
security vulnerabilities. In this paper, we investigate methods
for assigning timeouts in dynamic (constantly changing) mi-
croservice applications.

2. Background

As we have seen, distributed systems offer many advantages
to developers. However, with all the complexity they bring on
the macroscopic scale comes a challenge: being able to debug
and monitor the status of individual services. With developers
frequently updating the implementation of their microservices,
a request might take longer than usual. The central question
we aim to answer is: if one service sends a request to another
service but gets no response back in the expected time, what
should it do?

Timeouts are a good strategy to diagnose whether a request
has failed. There are, though, several challenges with setting
timeouts in distributed systems. The simplest one is that each
microservice’s latency will vary from request to request. A com-
monly used structure is a cache, which results in fast response
times for hits (when the request parameters are in the cache)
and slow response times for misses (when the request parame-
ters are not in the cache). In addition, multiples servers spread
geographically can theoretically accept the same request, and
different servers can have different response times. The primary
issue we aim to address is that the implementations of individ-
ual microservices can also change in the long term. Setting
timeouts in a once-and-done approach (hard coding them be-
fore ever running the system) is ineffective for dynamic systems
where optimal timeouts may also change.

Thus, we aim to find methods to set timeouts in such a way
that they can adapt to changes in the microservice application.

2.1. Prior Work

The following strategies are currently being used to reduce la-
tency in distributed systems [3, 4]:

Setting better timeout values What is missing in the following
options for setting timeout values is the capability for them to
be updated as the distributed system is modified.

1. Retrying with constant time backoffs.

2. Retrying with exponential backoffs (with random jitter).

3. Using the greatest time response observed from a sample.

Request operation and retry policies The following options for
manipulating how requests are handled are too general and do
not necessarily align with the behavior of a particular service.

1. Tied requests: queuing the same request across multiple
servers and allowing them to communicate results with
each other. Once one server begins execution of a request,
it is dequeued across all other servers.

2. Hedging: sending a second request when the first has
reached 95% of max run time.

3. Disabling retries when the 99th percentile and 50th per-
centile are close together.

4. Continuously send requests until you receive a response

5. Retrying on 5xx (server-side) errors, but not 4xx (client-
side) errors.

We propose retry policies that change timeout values dynam-
ically, allowing us to have the generality and adaptiveness that
comes with retry policies and the specificity that comes with
setting accurate timeouts.



MIT PRIMES 2024

3. Algorithms

3.1. Assumptions

We assume that requests are both atomic, that they succeed
fully or fail entirely, and idempotent, that they are repeatable:
no matter the number of requests sent, the behavior is the same.
In addition, we assume a dynamic system, one that is con-
stantly changing. The following are examples of ways a system
can change, resulting a change in latency distribution:

• Changes to server use

– Using a different machine

– Moving from using multiple servers to a single server,
or vice versa

• Changes to service calls

– Using different APIs

– Calling new services

• Changing the programming language used

• Changing the hosting platform

Our major research goal was coming up with strategies to set
timeouts in a dynamic system and to design an algorithm to
determine the optimal timeout between any two microservices.

3.2. Timeout Principles

The algorithms we propose aim to satisfy the following princi-
ples:

Optimal An optimal timeout will result in the smallest feasi-
bly possible amount of latency for a given client. Long latencies
result in degraded throughput, and short timeouts result in long
latencies. Balancing these two issues will result in an optimal
timeout.

Dynamic The performance of microservices is constantly
changing, both over the short- and long-term. In the short
term, the microservice might experience higher latency due to
increased load, for example, and in the long term, the imple-
mentation of the microservice might change. The algorithms
we propose aim to be adaptive to both of these forms of change.

Consider the hypothetical scenario outlined in Figure 1,
where after a change to the implementation of services C and
D, B updates its timeout values, but A has not. Dynamicity
would allow timeout values to change with the modified imple-
mentation, and timeout Optimality will ensure that it is within
an acceptable range of the observed latency, what we define as
the amount of time the client experiences the request taking (if
the request times out, they only experience the timeout value
amount of time).

3.3. Timeout Architectures

There are two proposed classes of solutions, Local and Global.
They differ in who sets and calculates timeout values.

Local In the Local architecture, each service would spend its
own resources determining all of its timeouts independently (see
Figure 2a). Note that if a request times out, the service would
not have the knowledge of how long the request would have
taken. Parent services need to send requests without timeout
values frequently to their children services to maintain an un-
derstanding of their performance. The pros and cons of this
architecture are summarized below.

• Less accurate timeouts

• Repeated computation between independent microser-
vices

• Less computationally intensive to calculate timeouts for
one specific microservice

• New timeouts are regularly computed (services can afford
to do this), so this solution is more responsive to change

Global In the Global solution, an independent body (an ad-
min) would monitor all services within the system (see Figure
2b). It must be able to send requests without timeout values. If
possible, Admin tests should be run in an API’s shadow mode
[4]. When this is not possible, because the Global option needs
to send requests to the microservices while they are running
normally, it cannot be run very often (or else users will face
constant high latency due to the services being bombarded by
requests by the admin). Having a large amount of data, the
Global solution will be able to determine perfect timeout val-
ues. The pros and cons of the Global option are summarized
below.

• More accurate timeouts

• More computationally intensive because the system is pro-
cessing more data simultaneously

• Timeouts are computed less frequently because more data
is required

3.4. Sequential Timeout Values

A request may time out due to a fatal server error, or just a
temporary increase in latency. Normally, when a request times
out, the client will issue another request with the same time-
out value. However, by increasing the timeout value on a retry
request after a failed request, we can do both of the following:

• Be less sensitive to unfavorable network or load conditions
on the server side

• Determine whether we actually have a server failure

We propose a new way of dynamically setting timeouts, some-
thing we call sequential timeouts. Define an increasing sequence
of values, a1, · · · , an. The client will send its first request with
a1, and if we time out with some timeout value am, we will send
a retry with the longer timeout am+1. This allows the system
to be resilient over the short-term.

3.5. Testbed Creation

A preliminary goal of this project was to implement a new dis-
tributed system from the ground up. Other commonly used sys-
tems like DeathStarBench’s Social Network system were evalu-
ated, but because it was difficult to modify how each microser-
vice functioned. DeathStarBench uses Thrift to run RPC calls,
and Thrift did not have a mechanism to set or modify timeouts.

3.6. Statistical Analysis and Mathematical
Modeling

While systems are constantly changing, they largely remain
structurally similar and are still the same application. In this
approach, we assume that historical latency is representative
of future latency. Through a thorough statistical and math-
ematical analysis of an experimentally determined probability
density function for latency among other metrics, we are able
to precisely calculate optimal timeout values.

Consider the hypothetical scenario of a microservice continu-
ously updating its timeout value for a particular service it calls.
If it sets its timeout value to the 99th percentile of just the
times it sees, then since the latencies it sees will be restricted,
it creates a positive reinforcement loop where the next 99th
percentile will be lower than the previous one. In this case,
eventually the timeout value will go to zero. So, we need some
mechanism to know or predict the top 1 percent latencies. One
possible way is to use curve fitting to extrapolate the known to

2



MIT PRIMES 2024

Figure 1: Left. A working system with acceptable timeouts. Right. After some internal modifications, services C and D now take
2ms each instead of 1ms. Timeout values are now not optimal.

(a) The local architecture (b) The global architecture

Figure 2: Visuals of different timeout architectures

the unknown, though it fairly limited to specific distributions.
As the general distributions of microservice latencies have not
been well studied, we propose some possible curves. We will
now discuss a more thorough analytical model.

Mathematical Model for Expected Latency First, we introduce
two functions that take in timeout value. Define f to be the
probability density function for latency, and define g to be a
“cost” function: how much latency increases given a higher
timeout value. We propose the following model E, the expected
value of latency, given some timeout value t:

E(t) =

∫ ∞

t
f(x)dx∫ ∞

0
f(x)dx

(t + E(t)) +

∫ t

0
f(x)dx∫ ∞

0
f(x)dx

·

∫ t

0
xf(x)dx∫ t

0
f(x)dx

+ g(t) (1)

See Figure 3 for the Markov chain used to construct this model.
Let us break this model down into its parts.∫ ∞

t
f(x)dx∫ ∞

0
f(x)dx

: The probability that a request times out

t + E(t): The amount of time taken by another request (we
timed out, so we need to try again)∫ t

0
f(x)dx∫ ∞

0
f(x)dx

: The probability that a request succeeds

∫ t

0
xf(x)dx∫ t

0
f(x)dx

: The expected latency given that the request took

under time t to complete
g(t): Cost for sending an additional request

In order to use this model, we first derive E.

E(t) =
t

∫ ∞

t
f(x)dx +

∫ t

0
xf(x)dx + g(t)

∫ ∞

0
f(x)dx∫ t

0
f(x)dx

(2)

We then minimize this function over t to determine the opti-
mal timeout value.

Extensions to sequences This model is currently useful for
changes in the long-term (simply recompute timeout values with
new probability density function) but is ineffective in situations

of short-term change; spikes in latency will always result in
timeouts. To mitigate this issue, we use sequential timeout val-
ues. Define an increasing sequence {tn}0≤n≤z for some z. We
will always initially send a request with timeout value t0, but
whenever we encounter a timeout at ti, we will send a retry
with timeout value ti+1. If we timeout with value tz , the next
request will be sent with timeout value tz again. tz is an input
to the model.

We now modify the model to incorporate sequences.

En =

∫ ∞

tn

f(x)dx∫ ∞

0
f(x)dx

(tn + En+1) +

∫ tn

0
f(x)dx∫ ∞

0
f(x)dx

·

∫ tn

0
xf(x)dx∫ tn

0
f(x)dx

+ g(tn).

(3)
For the sake of readability, for n ̸= z, let En = an + bnEn+1.

Note that when n = z, Ez = az + bzEz , or

Ez =
az

1 − bz

We now have the piecewise function

En =

an + bnEn+1 n < z
az

1 − bz
n ≥ z

Deriving an and bn for future use, we have

an = tn

∫ ∞

tn

f(x)dx∫ ∞

0
f(x)dx

+

∫ tn

0
f(x)dx∫ ∞

0
f(x)dx

·

∫ tn

0
xf(x)dx∫ tn

0
f(x)dx

+ g(tn)

an =

∫ tn

0
xf(x)dx + tn

∫ ∞

tn

f(x)dx∫ ∞

0
f(x)dx

+ g(tn) (4)

and

bn =

∫ ∞

tn

f(x)dx∫ ∞

0
f(x)dx

(5)

In order to use this improved model, we need to minimize
it over t0, t1, · · · tz . But this z + 1−dimensional minimization
is very computationally intensive, and we propose a different
implementation. To find minima, we require that ∇E0 = 0.

∂E0

∂t0
=

∂E0

∂t1
=

∂E0

∂t2
= · · · =

∂E0

∂tz−1
=

∂E0

∂tz
= 0

3



MIT PRIMES 2024

Figure 3: Markov chain used in the mathematical model

∂E0

∂ti
=

∂ (a0 + b0 (a1 + b1 (a2 + b2 (· · · ai + biEi+1 · · · ))))
∂ti

∂E0

∂ti
=

∂ (b0b1 · · · bi−1 (ai + biEi+1))

∂ti

∂E0

∂ti
= b0b1 · · · bi−1

∂ (ai + biEi+1)

∂ti

∂E0

∂ti
= b0b1 · · · bi−1

(
dai

dti
+ Ei+1

dbi

dti

)
Thus,

∂E0

∂ti
= 0 =⇒

dai

dti
+ Ei+1

dbi

dti
= 0,

As bi are strictly positive. From the definitions in (4) and (5),

dai

dti
=

d

dti


∫ ti

0
xf(x)dx + ti

∫ ∞

ti

f(x)dx∫ ∞

0
f(x)dx

+ g(ti)



dai

dti
=

tif(ti) + ti(−f(ti)) +

∫ ∞

ti

f(x)dx∫ ∞

0
f(x)dx

+ g′(ti)

dai

dti
=

∫ ∞

ti

f(x)dx∫ ∞

0
f(x)dx

+ g′(ti)

dbi

dti
=

d

dti


∫ ∞

ti

f(x)dx∫ ∞

0
f(x)dx

 =
−f(ti)∫ ∞

0
f(x)dx

So, ∫ ∞

ti

f(x)dx∫ ∞

0
f(x)dx

+ g′(ti) + Ei+1

 −f(ti)∫ ∞

0
f(x)dx

 = 0.

∫ ∞

ti

f(x)dx + g′(ti)

∫ ∞

0
f(x)dx− f(ti)Ei+1 = 0

Ei+1 =

∫ ∞

ti

f(x)dx + g′(ti)

∫ ∞

0
f(x)dx

f(ti)
(6)

As we know tz , and have that Ez = az
1−bz

, we can work our

way backwards to determine all ti.

3.7. Dynamic Timeout Control

In certain cases, it can be expensive to collect large amounts of
data. Additionally, day-to-day variations are hard to account
for in systems that process a lot of data to arrive at a perfect
timeout value. When the latency of a system spikes, it is impor-
tant to increase timeout values immediately in order to prevent
cascading failures. In this approach, we take inspiration from
the TCP congestion control algorithms.

TCP keeps track of a value known as cwnd, or congestion
window. It modifies the cwnd by an amount known as the mss,
or minimum segment size. TCP congestion control algorithms
all have three phases [5]:

• Slow start, when TCP is aggressive and increases the
cwnd by 1 mss upon every acknowledgement.

• Congestion avoidance, when TCP is cautious and in-
creases the cwnd by 1 mss per round trip time.

• Fast recovery, when TCP encounters a packet loss and
reduces cwnd to 1 or by a factor of 1

2
.

We extend the key ideas here (upon a failure, be more lenient;
upon a success, be more strict) to our dynamic timeout system:

• Decrease timeout value on a successful request

• Increase timeout value on failed request (timed out)

See Figure 4 for a full flowchart.

4. Implementation

4.1. Testbed

Design Principles The testbed was designed with the the fol-
lowing principles in mind:

• Simplicity: How lightweight is the system? How easy is
it to create a new distributed system from scratch?

• Robustness: Can a variety of behaviors be modeled? Is it
easy to implement each of these behaviors?

• Comprehensibility: Is it easy to understand the behavior
of the system:

Being a key part of the goal of the project, these principles
were especially important to be followed in the implementation
of the timeout scheme.

Simplicity To ensure simplicity, systems were implemented in
Python with a microservice library called Py-MS. Additionally,
a ”microservice generator” was implemented, which takes in a
configuration file containing details for each service and auto-
matically creates a base for every service, allowing the developer
to focus on the implementation of the service rather than the
boilerplate.

It is also easy to define a new type of timeout scheme, simply
by creating a new instance of the Timeout class below.

4



MIT PRIMES 2024

Figure 4: A flowchart describing how the control-based approach changes timeout values following each request.

Robustness The implementation of each service is completely
open to the developer. Each microservice system can either be
asyncronous or synchronous.

The following is how the Timeout class is defined:

class Timeout(ABC):

def __init__(self):

pass

@abstractmethod

def get(to):

pass

@abstractmethod

def update(to, val):

pass

@abstractmethod

def recompute():

pass

The get method retrieves the timeout; the update method
lets the Timeout class instance know current latency data, and
the recompute method reruns any computation to come up with
a new timeout.

Comprehensibility The Jaeger tracing agent was included in
the design.

4.1.1. Purpose

The primary purpose of the service is to compute the area of a
triangle using its coordinates using the formula abc

4R
, where a, b

and c are its side lengths and R is its circumradius.
Here is the detailed description of how each service works.

Triangle Area. The area service is given three coordinates, A,
B, and C. It finds the distances between each pair of points
through the distance service. It asks the circumradius service
what the circumradius of this triangle is. It then computes and
returns the area using the formula abc

4R

Circumradius. The circumradius service is given three coor-
dinates, A, B, and C. It finds the perpendicular bisectors of
pairs of points until it finds two that are not vertical and finds
their intersection, using the perpendicular bisector service and
the intersection service, respectively. This intersection is the
circumcenter of the triangle. Then, using the distance service

it finds the distance between any coordinate and the circum-
center, and returns this length.

Distance. The distance service is given the coordinates of two
points x1, y1) and (x2, y2). It computes their Euclidean dis-

tance
√

(x2 − x1)2 + (y2 − y1)2.

Perpendicular Bisector. The perpendicular bisector service is
two points (x1, y1) and (x2, y2). It finds the line through their
midpoint (midpoint service) and with a slope perpendicular to
the segment through both of them (slope service).

Intersection. The intersection service is given the slopes
(m1 and m2) of and a point ((x1, y1) and (x2, y2)) on
each of two lines. It returns the intersection, which is
(m1x1−m2x2−y1+y2

m1−m2
,m1(x− x1) + y1).

Midpoint. The midpoint service is given two points (x1, y1)

and (x2, y2). It returns the point (x1+x2
2

, y1+y2
2

).

Slope. The midpoint service is given two points (x1, y1) and
(x2, y2). It returns the slope of the line passing through both,
y1−y2
x1−x2

.

A diagram of the structure of the system can be seen in Fig-
ure 5.

Implementation Specifics The testbed was implemented with
the Python library pyms [6] and Docker, and instrumented with
Jaeger. Each service ran in a separate container on Debian-Slim
Linux, and communicated with another via HTTP requests. A
workload generator (WRK2 [7]) was incorporated into the sys-
tem. Python 3.8 was used.

4.2. Simple testbed design

Because our algorithms operate between exactly two services,
we created an even simpler testbed with only two services, App1
and App2. Our algorithms run outside of both services, so re-
quests are sent to them to set timeout values. App2 models
changes in latency by sleeping for a certain amount of time on
each request given by a latency model function. App1 sends a
request to App2, and if it gets a response back without tim-
ing out, it returns the elapsed time. Otherwise, it errors, the

5



MIT PRIMES 2024

Figure 5: A visual of the implemented triangle are service. An arrow (for example from Triangle Area to Distance) represents that
the former calls the latter.

response will be code 500, and the tester outside the services
records the the elapsed time as the current timeout value.

4.3. Mathematical Modeling

In order to use the mathematical model outlined previously,
we created a tree-based search algorithm to recursively find so-
lutions to equation (6). First, we sampled regularly spaced
values between an upper and lower bound (the minimum and
maximum observed latencies, respectively) and determined the
closest solution for each. For each of these solutions, excluding
duplicates, we solve the equation again, ending up with a tree.
When the tree depth (the number of elements in the timeout
sequence, specified by the user) is reached, solutions are not
found, and the sequence is ended by tz . We call the algorithm
that uses the mathematical model to determine timeout values
the Optimizer.

4.4. Timeout Control

Timeout control alters the timeout value between two services
following each request between them. It maintains a variable
called streak, which keeps track of the current number of con-
secutive successful requests whose observed latency is within a
percentage tolerance of the previous streak number of requests.
On a failed request, the timeout value is multiplied by a fixed
factor so that it will follow exponential backoff. On success-
ful request, the timeout value will be lowered proportional to
the distance to the observed latency the last request, divided
by the logarithm of streak to stabilize it. So that the timeout
value doesn’t decrease so far that a request is likely to time out,
a small value ϵ is added back onto the timeout value, defined
as the average of the last streak number of requests multiplied
by a factor called the buffer. Below is our implementation in
Python. We call the algorithm that uses congestion control to
determine timeout values the Controller.

class PID_Decay_Control:
def __init__(self):

self.timeout = 0.02
self.pid = PID(0.1, 0, 0, setpoint=self.timeout)
self.pid.output_limits = (-1, 1)
self.timeout_factor = 1.5
self.values = []
self.times = []
self.streak = 0
self.tolerance = 0.2
self.failures = 0
self.eps = 0.005
self.safe_buffer = 0.01
self.eps_reset = 0.05

def update(self, success: bool, time: float = None):
if success:

self.times.append(time)
self.streak += 1
self.pid.setpoint = time
power = self.pid(self.timeout)
ideal = sum(self.values[-self.streak:])/self.streak

self.eps = sum(self.times[-self.streak:]) \
/self.streak * self.safe_buffer

if abs(((ideal - self.timeout) / power) - 1) \
< self.tolerance:

power = self.pid(ideal)/math.log(self.streak + 1)

else:
self.eps = self.eps_reset
self.failures += 1
self.streak = 0
self.pid.setpoint = (self.timeout) * self.timeout_factor
power = self.pid(self.timeout)

self.timeout += (power + self.eps)

self.values.append(self.timeout)

def get(self):
return self.timeout

4.5. Combined System

Following evaluation of the Optimizer and the Controller inde-
pendently, we discovered that the former was under-responsive
and the latter was over-responsive (see Conclusions). Given
these opposite problems, we propose a combined architecture
that resolves both. Given the rapidly correcting Controller, we
use this system for timeouts on diagnostic requests, those sent
on a regular interval to determine the true latency of the sys-
tem (not cut off by the Optimizer ’s timeouts). The Optimizer
was also modified to consider newer requests more than older
requests by skewing the input data: the ith oldest request in
the buffer is repeated i times, then fed to the algorithm. The
Combined System is a Local architecture.

5. Results

We evaluated the Controller and Optimizer on three different
metrics, comparing them with the current state-of-the-art, ex-
ponential backoff.

• Speed. How fast we can recompute timeout values?

• Feasibility. What is the resource usage (compute and
memory) per request?

• Robustness. How adaptive is the timeout strategy to
short-term fluctuations like high network load?

– How many requests time out?

– How close is the timeout value to the latency?

5.1. Curve Fitting

Normal Distribution The normal curve didn’t fit the distribu-
tions well due its long tails and tall heads [8]. See Figure 6a.

6



MIT PRIMES 2024

(a) Normal distribution. (b) Log-normal distribution.

(c) χ2 distribution. (d) Pareto curve.

Figure 6: Histograms of distance (left) and area (right) service latencies best fitted to various curves and distributions

Log-Normal Distribution The log-normal curve fit the data
better than the normal curve, but still suffers from not match-
ing the long tails. See Figure 6b.

χ2 Distribution This distribution fits the Distance latencies
well, but is unable to meet the high peaks of the area service.
See Figure 6c.

Pareto Curve The general form of a Pareto curve [9, 10] tested
was f(x) = abcx

(1+b·(x−s)2)a+1 . This distribution fits the distance

service well, though it does not fit the area service well. See
Figure 6d.

Conclusions Overall, the χ2 distribution was the best-fitting.

5.2. Evaluation of Algorithms

We first evaluated the latency on the simpler 2-service testbed,
testing eight different scenarios, each 2000 requests long. Each
algorithm was allowed a 200 request initialization period. We
compared the performance of our two algorithms with exponen-
tial backoff, modeled as a sequence whose first element is 20%
higher than the starting latency, whose factor is 2, and has 5
elements. Here are the scenarios we tested:

• A stable latency of 0.1 ms (Stable)

• A mean reverting random walk with mean 0.1 ms, volatil-
ity 0.01 and reversion strength 0.3 (Mean Reverting Ran-
dom Walk)

• A slow increase from 0.1 ms to 0.4 ms (Slow Increase)

• A slow decrease from 0.4 ms to 0.1 ms (Slow Decrease)

• A fast jump from 0.1 ms to 0.4 ms (Fast Increase)

• A fast drop from 0.4 ms to 0.1 ms (Fast Decrease)

• Spikes from 0.1 ms to 0.4 ms (Spikes)

• Dips from 0.4 ms to 0.1 ms (Dips)

We plotted the timeout value, actual latency (obtained through
diagnostic requests with no timeout value), observed latency,
and marked where the systems timed out (Figures 15 -22).

We evaluated each solution based on three metrics:

• The sum of the observed latencies over all requests needed
to fill 2000 responses divided by the integral of the latency
model function (Time Fraction)

• The percentage of requests that timed out (Timeouts)

• The average percent change from observed latency to
timeout value (Closeness)

5.3. Algorithm-Specific Test Implementation

Timeout Control We used a tolerance of 0.2 and a buffer of
0.1.

Optimizer Every 5 requests another was sent with no timeout
to determine the actual processing time of the service. The
tester kept track of a buffer of the last 200 requests sent with
no timeout. Timeouts were recomputed every 20 requests. The
cost function used was g(t) = 0.4t.

5.4. Tabulated Results
Here are the tabulated results for the eight scenarios, comparing
the Combined solution with Exponential Backoff.

Random Walk Time Fraction Timeouts Closeness

Combined 0.91 0.398% 38.3%

Exponential Backoff 1.04 0.00% 15.2%

Slow Increase Time Fraction Timeouts Closeness

Combined 1.05 0.349% 18.9%

Exponential Backoff 1.57 49% 2.39%

Slow Decrease Time Fraction Timeouts Closeness

Combined 1.05 0.1% 103%

Exponential Backoff 1.08 0.00% 104%

Fast Increase Time Fraction Timeouts Closeness

Combined 1.02 0.843% 29.0%

Exponential Backoff 1.57 46.5% 7.05%

Fast Decrease Time Fraction Timeouts Closeness

Combined 1.01 0.299% 77.0%

Exponential Backoff 1.05 0% 189%

Spikes Time Fraction Timeouts Closeness

Combined 0.981 12.7% 32.7%

Exponential Backoff 1.20 10.7% 12.5%

Dips Time Fraction Timeouts Closeness

Combined 1.04 0.249% 33.5%

Exponential Backoff 1.06 0% 37.6%

Stable Time Fraction Timeouts Closeness

Combined 0.861 0.299% 29.1%

Exponential Backoff 1.07 2.77% 20.6%

7



MIT PRIMES 2024

Figure 7: Comparison of Exponential Backoff (left) and Combined System (right) with latency modeled by a mean reverting walk

Figure 8: Comparison of Exponential Backoff (left) and Combined System (right) with latency modeled by a slow increase

Figure 9: Comparison of Exponential Backoff (left) and Combined System (right) with latency modeled by a slow decrease

Figure 10: Comparison of Exponential Backoff (left) and Combined System (right) with latency modeled by a fast increase

Figure 11: Comparison of Exponential Backoff (left) and Combined System (right) with latency modeled by a fast decrease

8



MIT PRIMES 2024

Figure 12: Comparison of Exponential Backoff (left) and Combined System (right) with latency modeled by spikes

Figure 13: Comparison of Exponential Backoff (left) and Combined System (right) with latency modeled by dips

Figure 14: Comparison of Exponential Backoff (left) and Combined System (right) with latency that is stable

9



MIT PRIMES 2024

6. Conclusions and Future Work

The Controller and Optimizer significantly outperform Expo-
nential Backoff on scenarios where the latency increases (Figure
16, 18). Exponential Backoff performs equivalently to our Con-
troller and Optimizer when latency is decreasing (Figure 17,
19). The Controller performs better on Spikes than the Opti-
mizer and Exponential Backoff, which perform equally (Figure
20). On Dips, the Optimizer performs equivalently to Exponen-
tial Backoff, both performing better than the Controller (Figure
21).

The Controller is able to maintain all of its statistics. How-
ever, it has a fundamental problem illustrated by how it times
out on the way up from dips (Figure 21): it is much too dy-
namic, and its timeouts are not really useful in understanding
the state of a microservice. On the contrary, the optimizer so-
lution is too static, seen in how it takes a very long time to
increase its timeout values on the fast increase (Figure 18).

The Combined solution remedies both of these issues, and
by skewing data to newer results, it also outperforms the Op-
timizer, specifically in the case of a Fast Increase in latency
(Figure 10 versus Figure 18). As expected, there are not signif-
icant differences between the Combined solution and Exponen-
tial backoff in Stable latency (Figure 14) and Mean Reverting
Random Walk (Figure 7). When latency decreases, the Com-
bined solution’s timeout value also falls, giving it an advantage
in Timeout Closeness (Figures 9, 11). In situations of Dips and
Spikes, the two algorithms perform similarly (Figures 12, 13).
When the latency increases, the Combined solution significantly
outperforms Exponential Backoff (Figures 8, 10).

In addition, the current testbed is very simplistic as it con-
sisted of only two services. We will extend our methods to a
full distributed system, evaluating both the local and global ar-
chitectures, starting with the Triangle Area distributed system,
then SocialNetwork, a significantly larger distributed system
with more diverse processes commonly used for benchmarking.

SocialNetwork does not have a mechanism for individual ser-
vices to time out on requests, and neither does Thrift, which
provides the mechanism for services to send requests to each
other. We have so far modified SocialNetwork so that requests
can timed out. We plan to create an implementation for time-
outs in SocialNetwork like we did in the Triangle Area system
by manually implementing timeouts, cutting off requests after

the given wait time.
One limitation with out current testbed is that the time frac-

tion is not entirely accurate, and has significant margins of er-
ror, seen in how the time fraction for Timeout Control in Dips
is less than 1. We may need to develop a different metric to
test how long the requests take on average relative to how long
they are expected to take.

References

[1] Martinek P. Al-Debagy, O. A comparative review of mi-
croservices and monolithic architectures. 18th IEEE In-
ternational Symposium on Computational Intelligence and
Informatics, pages 000149–000154, 2019.

[2] Ojdowska A. Przyby lek A. Blinowski, G. Model-driven en-
gineering of fault tolerant microservices. Fourteenth Int.
Conf. Internet Web Appl. Serv, pages 1–6, 2019.

[3] Barroso L. A. Dean, J. The tail at scale. Communications
of the ACM, 56:74–80, 2013.

[4] Vishal Varshney Anton Ilinchik. All you need to know
about timeouts: How to set a reasonable timeout for your
microservices to achieve maximum performance and re-
silience. Zalando Engineering Blog, 2023.

[5] Tcp congestion control algorithms.

[6] pyms.

[7] J. Richards. wrk2.

[8] The second law of latency: Latency distributions are never
normal.

[9] Li Q. Yang, B. Enhanced particle swarm optimization al-
gorithm for sea clutter parameter estimation in generalized
pareto distribution. Appl. Sci., 2023.

[10] He J. Zhang, W. Modeling end-to-end delay using pareto
distribution. Second International Conference on Internet
Monitoring and Protection (ICIMP 2007), 2007.

10



MIT PRIMES 2024

A. Full Tabulated Data

Random Walk Time Fraction Timeouts Closeness
Timeout Control 1.04 1.48% 26.0%

Optimization 1.11 0.891% 50.9%
Combined 0.91 0.398% 38.3%

Exponential Backoff 1.04 0.00% 15.2%

Slow Increase Time Fraction Timeouts Closeness
Timeout Control 1.06 0.150% 7.28%

Optimization 1.12 1.28% 6.54
Combined 1.05 0.349% 18.9%

Exponential Backoff 1.57 49% 2.39%

Slow Decrease Time Fraction Timeouts Closeness
Timeout Control 1.05 0.200% 12.9%

Optimization 1.10 0.00% 77.7%
Combined 1.05 0.1% 103%

Exponential Backoff 1.08 0.00% 104%

Fast Increase Time Fraction Timeouts Closeness
Timeout Control 1.05 0.695% 14.2%

Optimization 1.14 8.13% 22.2%
Combined 1.02 0.843% 29.0%

Exponential Backoff 1.57 46.5% 7.05%

Fast Decrease Time Fraction Timeouts Closeness
Timeout Control 1.04 0.150% 19.4%

Optimization 1.08 0.150% 121%
Combined 1.01 0.299% 77.0%

Exponential Backoff 1.05 0% 189%

Spikes Time Fraction Timeouts Closeness
Timeout Control 1.26 1.04% 22.3

Optimization 1.36 10.3% 41.7%
Combined 0.981 12.7% 32.7%

Exponential Backoff 1.20 10.7% 12.5%

Dips Time Fraction Timeouts Closeness
Timeout Control 0.986 0.498% 15.5%

Optimization 1.07 0.00% 37.3%
Combined 1.04 0.249% 33.5%

Exponential Backoff 1.06 0% 37.6%

Stable Time Fraction Timeouts Closeness
Timeout Control 1.03 0.249% 14.1%

Optimization 1.07 0.100% 33.3%
Combined 0.861 0.299% 29.1%

Exponential Backoff 1.07 2.77% 20.6%

11



MIT PRIMES 2024

B. Timeout Control and Optimizer Graphs

Figure 15: Comparison of Controller (left) and Optimizer (right) with latency modeled by a mean reverting walk

Figure 16: Comparison of Controller (left) and Optimizer (right) with latency modeled by a slow increase

Figure 17: Comparison of Controller (left) and Optimizer (right) with latency modeled by a slow decrease

Figure 18: Comparison of Controller (left) and Optimizer (right) with latency modeled by a fast increase

12



MIT PRIMES 2024

Figure 19: Comparison of Controller (left) and Optimizer (right) with latency modeled by a fast decrease

Figure 20: Comparison of Controller (left) and Optimizer (right) with latency modeled by spikes

Figure 21: Comparison of Controller (left) and Optimizer (right) with latency modeled by dips

Figure 22: Comparison of Controller (left), and Optimizer (right) with latency that is stable

13


	Introduction
	Background
	Prior Work

	Algorithms
	Assumptions
	Timeout Principles
	Timeout Architectures
	Sequential Timeout Values
	Testbed Creation
	Statistical Analysis and Mathematical Modeling
	Dynamic Timeout Control

	Implementation
	Testbed
	Purpose

	Simple testbed design
	Mathematical Modeling
	Timeout Control
	Combined System

	Results
	Curve Fitting
	Evaluation of Algorithms
	Algorithm-Specific Test Implementation
	Tabulated Results

	Conclusions and Future Work
	References
	Full Tabulated Data
	Timeout Control and Optimizer Graphs

