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Abstract. The field of topological data analysis aims to characterize datasets by their topological
structures. In particular, representative tools such as persistent homology and persistence land-
scapes are used to condense the information provided by a shape or a point cloud into a more
compact form that highlights structural properties of the data. These tools have previously been
used to analyze global properties of shapes, such as their connectivity or their genus. Our work
shows the potential of these tools to capture the local, geometric properties of shapes, such as the
sharpness of its angles. Furthermore, we prove a theoretical result on how numerical metrics on
persistence landscapes can capture geometric distinctions between point cloud distributions with
arbitrarily high probability.

1. INTRODUCTION

Topological data analysis (TDA) determines and compares structural properties of large amounts
of data that would typically be difficult to analyze through classical algorithmic means. One such
tool used in TDA is the concept of persistent homology, in which point clouds are analyzed by
considering how their homology groups change with respect to a parameter, such as time or a
radius [4]. TDA is very successful in determining the shape of data, and information extracted
from TDA may be translated into objects such as persistence diagrams [6, 7] and decorated merge
trees [2], upon which we can more precisely determine, say, a numerical value representing how
different two clouds of data might be.

Most prior work in TDA has focused on how machinery in TDA can reveal global, topological
distinctions between point clouds, such as differences in the number of topological “holes” formed
by the general shapes of point clouds [2]. In contrast, this paper seeks to identify how TDA can
reveal local, geometric distinctions between point clouds, such as differences in the sharpness of
angles formed by the general shapes of point clouds. We consider how tools such as persistence
diagrams and persistence landscapes can provide useful metrics for numerically qualifying these
geometric differences.

We begin with experimental results. We evaluate the efficacy of persistence landscapes of point
cloud samples in distinguishing point cloud distributions in two regimes: in one, we consider point
cloud distributions taken noisily from the perimeters of isosceles triangles with varying base angles,
and in the second, we consider point cloud distributions taken noisily from the perimeters of reg-
ular polygons with varying numbers of sides. This allows us to deduce that metrics on persistence
landscapes are indeed capable of distinguishing geometric figures based solely on the angle mea-
surements present within their point cloud distributions. We also evaluate how certain statistics of
birth and death times (including averages, standard deviations, and sums) derived from persistence
diagrams offer useful distinguishing information about the distributions from which point clouds
were sampled.

We then prove a theoretical result concerning the relation between topological metrics on persis-
tence landscapes and geometric metrics on point cloud distributions (specifically, the Wasserstein
distance W∞). In particular, we show that if X and Y are sufficiently large point clouds sampled
from distributions µ and ν, and λX and λY are the persistence landscapes associated with X and
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Y , then ∥λX − λY ∥∞≤ O(W∞(µ, ν)) holds with high probability. This theoretical result provides
concrete justification for the high-probability effectiveness of persistence landscapes as a tool for
computationally capturing geometric differences in point cloud distributions.

This paper is organized as follows. In Section 2, we provide an expository discussion of topological
definitions and background that form the foundation behind TDA. In Section 3, we discuss the tools
of persistence diagrams and persistence landscapes. Experimental results are then provided in
Section 4, which justify the practical robustness of persistence diagrams and persistence landscapes
in distinguishing point clouds. In Section 5, we state and prove a theorem on how metrics between
persistence landscapes relate to the Wasserstein distance between point cloud distributions. Finally,
in Section 6, we discuss some potential directions for further investigation of this topic.

2. BACKGROUND: SIMPLICIAL COMPLEXES AND HOMOLOGY

The most useful tool in identifying topological features of spaces will be the computation of
homology groups. Throughout this paper, homology groups will be considered within the context
of simplicial complexes.

Definition 2.1. Consider a set of affinely independent points v0, v1, . . . , vk ∈ Rd, i.e. {vi − v0 : i ∈
{1, . . . , k}} is a set of linearly independent vectors in Rd. We define a k-simplex σ = ⟨v0, v1, . . . , vk⟩
to be the convex hull of its vertices {v0, v1, . . . , vk}. k is the dimension of σ, and a face of a simplex
σ is any simplex generated by some non-empty subset of its vertices.

In particular, a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle, and
a 3-simplex is a tetrahedron. Simplices can be used to model more complex topological objects by
effectively gluing them together, thus forming a simplicial complex. For our purposes, we prefer to
view simplicial complexes from a more abstract perspective, as described in Definition 2.2.

Definition 2.2. An abstract simplicial complex K is a finite collection of sets such that if σ ∈ K,
and τ ⊆ σ is non-empty, then τ ∈ K.

Any abstract simplicial complex may be realized geometrically by taking each set σ ∈ K of
size k to be the convex hull of k affinely independent points in some high-dimensional Euclidean
space. Thus, we will provide geometric realizations of abstract simplicial complexes to provide
intuition, whereas we will lean more toward abstract realizations when computationally working
with simplicial complexes.

Definition 2.3. Let K be a simplicial complex, and let p be a positive integer. Then a p-chain is a
formal sum

∑
ciσi, where ci ∈ F2 and σi is a p-simplex in K. Together with the addition operation,

these p-chains form the chain group Cp(K) (or simply Cp when the context is understood).

Remark 2.4. More generally, p-chains may be defined as formal sums of p-simplices over any field.
However, our paper operates entirely under the field F2, so certain results throughout are specific
to this field.

Example 2.5. If K is a simplicial complex consisting of a 3-simplex and all of its faces, then
C3

∼= F2. Also, C2
∼= F4

2, since a 3-simplex has four 2-simplices as faces.

Definition 2.6. The boundary operator ∂p : Cp → Cp−1 is the unique group homomorphism for
which any p-simplex σ = ⟨v0, . . . , vp⟩ ∈ Cp satisfies ∂p(σ) =

∑p
i=0⟨v0, . . . , vi−1, vi+1, . . . , vp⟩. The

image of any p-chain under ∂p is then deduced from the images of the p-simplices that make up the
p-chain. Let Bp ⊆ Cp and Zp ⊆ Cp denote the image of ∂p+1 and the kernel of ∂p, respectively.

Example 2.7. Consider a simplicial complex K consisting of

• the 0-simplices ⟨v0⟩, ⟨v1⟩, and ⟨v2⟩,
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• the 1-simplices ⟨v0, v1⟩, ⟨v1, v2⟩, ⟨v0, v2⟩, and ⟨v3⟩, and
• the 2-simplex ⟨v0, v1, v2⟩.

Figure 1. The simplicial complex K consisting of one labeled 2-simplex, three
labeled 1-simplices, and three labeled 0-simplices forms the interior, edges, and
vertices of a triangle.

Then ∂2(⟨v0, v1, v2⟩) = ⟨v0, v1⟩+ ⟨v1, v2⟩+ ⟨v0, v2⟩. Also,
∂1(⟨v0, v1⟩+ ⟨v1, v2⟩+ ⟨v0, v2⟩) = (⟨v0⟩+ ⟨v1⟩) + (⟨v1⟩+ ⟨v2⟩) + (⟨v2⟩+ ⟨v0⟩) = 0.

It then follows that ∂1(∂2(⟨v0, v1, v2⟩)) = 0.

As alluded to by the previous example, the proposition below describes one crucial property of
the boundary operator ∂p.

Proposition 2.8. [4, Chapter 4] Let K be a simplicial complex, and let p be a positive integer.
Then for all (p+ 1)-chains c ∈ Cp+1, we have ∂p(∂p+1(c)) = 0.

In particular, Bp is always a subgroup of Zp, and thus Bp must be a normal subgroup of Zp as
Zp is abelian. This allows us to produce the following definition:

Definition 2.9. Let K be a simplicial complex, and let p be a positive integer. Then the pth

homology group of K is the group Hp = Zp/Bp.

Proposition 2.10. [4, Chapter 4] For any simplicial complex K and positive integer p, the pth

homology group of K is isomorphic to Fβp

2 for some nonnegative integer βp, called the pth Betti
number of K.

Example 2.11. For any simplicial complex K, the rank β0 of the 0th homology group H0 is equal
to the number of connected components of K. This follows from the observation that any two
vertices correspond to the same equivalence class in H0 = Z0/B0 if and only if they are connected
by a path of 1-simplices.

Recall that one goal of topological data anslysis (TDA) is to analyze point clouds of data (i.e.
finite collections of points in Rd) by computing topological properties of its implied shape. In order
to apply topological methods to collections of points, however, we must first establish some method
of transforming point clouds into simplicial complexes. The most common simplicial complexes
associated with point clouds are the Čech Complex and the Vietoris-Rips Complex.

Definition 2.12. Consider a finite collection S of points in Rd. Then for any real number ϵ > 0,
the Čech Complex Cϵ is the abstract simplicial complex with vertices {v0, v1, . . . , v|S|−1}, where
σ = ⟨vi0 , vi1 , . . . , vik⟩ is a simplex in Cϵ if and only if there exists some point p ∈ Rd such that
|p− vik | < ϵ

2 for all i ∈ {0, . . . , k}.
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Intuitively, one can think of the Čech Complex for some point cloud S and some ϵ > 0 as the
result of constructing one k-simplex for every k-wise intersection of balls of radius ϵ

2 centered at
each point in S.

Example 2.13. Given the point cloud S = {(−1, 0), (1, 0), (0,
√
3)} ⊆ R2, its Čech complex C21/10

consists of the three vertices v0 = (−1, 0), v1 = (1, 0), and v2 = (0,
√
3), along with the one-simplices

⟨v0, v1⟩, ⟨v1, v2⟩, and ⟨v2, v0⟩. Notably, C21/10 does not contain the 2-simplex ⟨v0, v1, v2⟩.

Figure 2. Čech complex of C21/10 for S = {(−1, 0), (1, 0), (0,
√
3)} ⊆ R2

The Nerve Theorem [4] states that the simplicial complex Cϵ is homotopy equivalent to the
topological space formed by the union of all balls of radius ϵ

2 centered at each vi ∈ S. Thus, we

can be confident that the Čech complex is a fair representation of S as a topological space.

Definition 2.14. Consider a finite collection S of points in Rd. Then for any real number ϵ > 0,
the Vietoris-Rips Complex V Rϵ is the abstract simplicial complex whose vertices {v0, v1, . . . , v|S|−1}
consist of the point cloud S, where σ = ⟨vi0 , vi1 , . . . , vik⟩ is a simplex in V Rϵ if and only if |via−vib | <
ϵ for all a, b ∈ {0, . . . , k}.

Example 2.15. Given the point cloud S = {(−1, 0), (1, 0), (0,
√
3)} ⊆ R2, its Vietoris-Rips complex

V R21/10 consists of the three vertices v0 = (−1, 0), v1 = (1, 0), and v2 = (0,
√
3), along with the

one-simplices ⟨v0, v1⟩, ⟨v1, v2⟩, and ⟨v2, v0⟩, and the 2-simplex ⟨v0, v1, v2⟩.

Though the Vietoris-Rips complex and Čech complex are different, the following proposition
suggests that the two complexes capture roughly the same amount of information.

Proposition 2.16. [3, Theorem 2.5] For any point cloud S and any ϵ > 0, we have

Cϵ ⊆ V Rϵ ⊆ C√
2ϵ.

Also of concern is the means through which the Čech complex and Vietoris-Rips complex may
be computed. Although such computations generally have exponential time complexity in the size
of the point cloud, the Vietoris-Rips complex V Rϵ is notably easier to compute, as it may be
summarized by the graph whose vertices are the point cloud, with an edge between two vertices
whose distance is less than ϵ. Thus, in practice the Vietoris-Rips complex is easier to use than the
Čech complex.

3. PERSISTENT HOMOLOGY

A key feature of our method of transforming point clouds into simplicial complexes is that the
precise simplicial complex that we arrive at is heavily dependent on our choice of ϵ. This motivates
the concept of persistent homology, in which we analyze how the homology groups of the simplicial
complexes corresponding to a given point cloud change as ϵ is changed.
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Definition 3.1. Let p be a positive integer. Given an interval I ⊆ R, a persistent complex is a

collection of chain groups C = {Ci
p : i ∈ I}, together with maps ϕi→j : C

i
p → Cj

p for all i, j ∈ I with
i ≤ j. Throughout this paper, we work exclusively with persistent complexes with chain groups Cϵ

p

derived precisely from the Vietoris-Rips complexes V Rϵ, and with maps ϕi→j defined as inclusion
maps.

Definition 3.2. Let p be a positive integer, and consider a persistent complex C = (Ci
p)i. Recall

that for any Cx
p , C

y
p ∈ (Ci

p)i with x ≤ y, there exists a map ϕx,y : Cx
p → Cy

p . This map thereby

induces a homomorphism φx,y : Hp(C
x
p ) → Hp(C

y
p ). Then the (x, y)-persistent homology group of

C, denoted by Hx→y
p (C) is defined to be the image of φx,y.

Example 3.3. See Figure 3. Consider the point cloud S = {(−4, 0), (0, 4), (4, 0), (0,−4), (9, 0)} ⊆
R2, and take the persistent complex with chain groups C1

p , C
2
p , and C3

p resulting from the Vietoris-

Rips complexes V R6, V R7.5, and V R9, respectively. Then H1→2
1 has rank 1, since the hole in V R6

persists into V R7.5. However, H
2→3
1 has rank 0, since the hole in V R7.5 does not persist into V R9.

Figure 3. Vietoris-Rips complexes for S = {(−4, 0), (0, 4), (4, 0), (0,−4), (9, 0)} ⊆ R2

At this point, we remark that persistence complexes can be derived more generally from any
monotone function f on a simplicial complex X.

Definition 3.4. Given a simplicial complex X, a monotone function on X is a map f : X → R
such that if σ is a simplicial complex in X, and τ is a face of σ, then f(τ) ≤ f(σ). Given a monotone
function f : X → R, we may construct a persistent complex whose chain groups Cϵ

p are precisely

the simplicial complexes f−1((−∞, ϵ]), together with maps ϕi→j : Ci
p → Cj

p defined as inclusion
maps.

3.1. PERSISTENCE DIAGRAMS. Since the collection of all persistent homology groups of
a persistent complex substantiates an immensely large amount of information, we use persistence
diagrams to condense this information into a visually cleaner format.

Definition 3.5. Let S be a point cloud, and let n be a positive integer. The nth degree persistence
diagram of S (for all relevant n) is a collection of ordered pairs (bi, di) ∈ R2 corresponding to basis
elements ci of the homology groups Hn(Vϵ), for all real ϵ > 0. In particular, for all ϵ > 0, the
homology group Hn(Vϵ) has a basis made up of all ci for which bi < ϵ < di. These ordered pairs
are typically displayed graphically as a collection of points on the coordinate plane, with the x and
y axes denoting birth time bi and death time di, respectively.

Remark 3.6. In the nth degree persistence diagram of a point cloud S (for relevant positive integers
n), we use the term Hn feature to refer to an ordered pair (bi, di) in the persistence diagram of S.
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Example 3.7. Consider the point cloud and persistent complex described in Example 4.3. Shown
below are its 0th and 1st degree persistence diagrams. Note that the dotted horizontal line at the
top of the graph is used for ordered pairs (bi, di) representing features that never die i.e. persist in
Hn(Vϵ) for arbitrarily large ϵ ∈ R. In this case, the simplicial complex Vϵ will always consist of a
single connected component that never dies, so the 0th persistence diagram contains one point on
this dotted line.

Figure 4. Persistence diagrams of S = {(−4, 0), (0, 4), (4, 0), (0,−4), (9, 0)} ∈ R2.

Persistence diagrams summarize the birth and death times of topological features in the most
simple form possible: a collection of (possibly repeated) ordered pairs {(bi, di)} in R2.

3.2. PERSISTENCE LANDSCAPES. In addition to persistence diagrams, we now define the
persistence landscape, which in contrast summarizes birth and death time pairs through a function
λ : N× R → [0,∞].

Definition 3.8. Consider a point cloud S whose nth degree persistence diagram consists of ordered
pairs (bi, di) ∈ R2. For each ordered pair (bi, di), define f(bi,di) : R → [0,∞] by

f(bi,di)(x) := max{0,min{x− bi, di − x}}.

Then the nth degree persistence landscape of S is the function λ : N× R → [0,∞], defined so that
λ(k, x) is the kth largest value of f(bi,di)(x) across all i. If f(bi,di)(x) attains less than k distinct
values, we take λ(k, x) = 0 by convention.

Visually, the graphs of persistence landscapes in the coordinate plane consist of line segments
that either form 45◦ angles with the x-axis or lie on the x-axis. Taller peaks in these graphs
correlate with longer-lasting, isolated homological features.

Example 3.9. The plot in Figure 5 below shows the graphs of the 1st degree persistence landscape
λ(k, x) of a point cloud S noisily sampled from the perimeter of an isosceles triangle triangle with
vertices {(−10, 0), (0, 4), (10, 0)}. In particular, the plot shows the two functions λk : R → [0,∞]
for k = 0, 1 defined by λk(x) = λ(k, x). Both λ0 and λ1 feature a single prominent hump near
larger values of x, along with several smaller humps surrounding smaller values of x. The singular
prominent hump indicates that the shape of S contains only one notable degree-one homological
feature, whereas the smaller humps reflect the noise in the arrangement of points in S.

The general shape of persistence landscapes can sometimes indicate strong topological differences
between point clouds as well.
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Figure 5. The top plot shows a point cloud S noisily sampled from the perimeter
of a triangle with vertices {(−10, 0), (0, 4), (10, 0)}. The bottom plot shows the 1st

degree persistence landscape of S.

Example 3.10. The plots in Figure 6 below show the graphs of the 1st degree persistence land-
scapes of two different point clouds. One point cloud is noisily sampled from the circumferences
of two tangent circles of radii 2

3 and 1
3 , whereas the other point cloud is noisily sampled from the

circumference of a single circle of radius 1. The graphs of λ(1, x) for the two point clouds differ
noticeably; the graph of the former point cloud features a single prominent hump, whereas the
graph of the latter point cloud does not feature any prominent humps. This difference in general
shape of persistence landscapes reflects how the topology of the former point cloud has two holes,
whereas the topology of the latter point cloud has only a single hole.

We may define a metric on the space of persistence landscapes as follows.

Definition 3.11. Consider two persistence landscapes λ, λ′ : N × R → [0,∞]. Then for any real
number p > 0, the p-landscape distance between λ and λ′ is defined as follows:

∥λ− λ′∥p :=

( ∞∑
k=0

∫
R
(λ(k, x)− λ′(k, x))p dx

)1/p

For p = ∞, we define ∥ • ∥∞ as follows:

∥λ− λ′∥∞ := sup
(k,x)∈N×R

|λ(k, x)− λ′(k, x)|

In previous examples, we have loosely qualified the differences between persistence landscapes
by identifying their geometric qualities as graphs in R2. This approach, however, only works most
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Figure 6. The topmost plot shows the two sampled point clouds overlaid on top
of each other. The leftmost and rightmost plots show the 1st degree persistence
landscapes of the blue and orange point clouds, respectively.

effectively in distinguishing persistence landscape of point clouds with very blatant topological
differences; the persistence landscapes of point clouds with more local, geometric differences are
harder to observe by eye. The p-landscape distances defined above allow us to more rigorously
assign quantitative measurements to the differences between persistence landscapes, allowing for a
more robust and statistical analysis of point clouds.

4. STATISTICAL EXPERIMENTS

In this section, we provide experimental evidence to demonstrate the utility of persistence land-
scapes and persistence diagrams in distinguishing point cloud distributions.

4.1. PERSISTENCE LANDSCAPES. First, we compare the persistence landscapes of isosce-
les triangles with varying base angles θ ∈ {5◦, 10◦, . . . , 85◦}. In particular, we perform the following
procedure:

• For each of the 17 values of θ ∈ {5◦, 10◦, . . . , 85◦}, consider the isosceles triangle ∆θ with
two base angles of measure θ and perimeter 1.

• Produce 25 different point cloud samples consisting of 300 points taken uniformly at random
from the perimeter ∆θ. Then adjust each sample by adding two-dimensional Gaussian noise
with standard deviation 0.01.

• For each of these 25 different point cloud samples, construct its 1st degree persistence
landscape {λi}25i=1. Then take the empirical average of these 25 persistence landscapes.

• For each of the 17 average persistence landscapes λθ over θ ∈ {5◦, 10◦, . . . , 85◦}, compute
the pairwise ∞-landscape distances between these persistence landscapes.
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Figure 7 displays visualizations of some of the point cloud samples produced through this procedure,
along with the set of all computed distances derived from this procedure.

Figure 7. The top diagram shows six point cloud samples from acute triangles
with base angles θ ∈ {20◦, 55◦, 15◦, 60◦, 65◦, 85◦}. In the bottom diagram, the entry
labeled (a, b) indicates the ∞-landscape distance between the persistence landscapes
λa and λb.

We make the following observations:

• The ∞-landscape distance between the persistence landscapes for θ = 20◦ and θ = 65◦

is relatively large. This reflects the fact that their respective triangles have very strong
geometric dissimilarities; the former is an obtuse isosceles triangle very sharp acute angles,
whereas the latter is nearly equilateral and lacks obtuse angles or sharp acute angles.

• The ∞-landscape distance between the persistence landscapes for θ = 60◦ and θ = 65◦ is
relatively small. This reflects the fact that their respective triangles are very similar, as
each of their corresponding angles differ by 10◦ at most.

• The ∞-landscape distance between the persistence landscapes for θ = 15◦ and θ = 85◦ is
relatively small, even though 15◦ and 85◦ differ greatly in numerical value. This relatively
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small distance reflects the geometric similarities in their respective triangles yet again;
indeed, both triangles feature very sharp acute angles.

Next, we compare the persistence landscapes of regular polygons with varying numbers of sides.
In particular, we perform the following procedure:

• For each integer n ∈ {4, 5, 6, 7, 8, 9, 10,∞}, consider the regular polygon ∆n with n sides
and perimeter 1. We take ∆∞ to be the circle of perimeter 1.

• Produce 25 different point cloud samples consisting of 300 points taken uniformly at random
from the perimeter of ∆n. Then adjust each sample by adding two-dimensional Gaussian
noise with standard deviation 0.01.

• For each of these 25 different point cloud samples, construct each of their 1st degree persis-
tence landscapes {λi}25i=1. Then take the empirical average of these 25 persistence landscapes
λn.

• For each of the 8 average persistence landscapes λn over n ∈ {4, 5, 6, 7, 8, 9, 10,∞}, compute
the pairwise ∞-landscape distances between these persistence landscapes.

The set of all computed distances derived from this procedure is summarized in Figure 8.

Figure 8. The entry labeled (a, b) indicates the ∞-landscape distance between the
persistence landscapes λa and λb.

Contrary to the previous example, the heat map shown here indicates that the point clouds are com-
paratively less distinguishable. This is to be expected, as the geometric differences between regular
polygons become less apparent when considering regular polygons with much greater quantities of
sides, as shown in Figure 9.
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Figure 9. The point clouds (from left to right) are sampled from the perimeters
of a regular decagon, a regular octagon, and a regular hexagon. Their geometric
features are only barely distinguishable.

4.2. PERSISTENCE DIAGRAMS. To further demonstrate the utility of persistent homology
in distinguishing point cloud distributions, we discuss trends in the following empirical metrics
on persistence diagrams taken from point clouds noisily sampled from the perimeters of isosceles
triangles.

• avgDH0: average time of death of H0 features,
• avgBH1: average time of birth of H1 features,
• avgDH1: average time of death of H1 features,
• devDH0: standard deviation of time of death of H0 features,
• devBH1: standard deviation of time of birth of H1 features,
• devDH1: standard deviation of time of death of H1 features,

For any given point cloud distribution, we repeatedly compute each statistic for several point
clouds sampled from that distribution, keeping sample size constant. For example, we might take
k = 200 random point cloud samples of a given figure, each of which contains n = 500 points.
Then, our computed statistic for that point cloud distribution is taken to be the average of all k
statistics derived from each of the k point clouds.

See Figure 10. Here, we consider point cloud distributions determined by noisily sampling
points from the perimeters of isosceles triangles with bases 20 and heights h, for real numbers h
varying from 0 to 20. These isosceles triangles are then scaled to have a normalized perimeter of 1.
Using k = 200 random point cloud samples each containing n = 500 points, we derive the following
plots of these statistics against h.

Remark 4.1. To be precise about the sampling procedure, these point clouds are formed by selecting
500 points uniformly at random along the perimeter of the triangle, then adjusting each of them
in a direction chosen at random, by a distance chosen uniformly at random between 0 and 1.5% of
the perimeter of the triangle. In particular, these experiments do not implement Gaussian noise.
This method of constructing point cloud samples has appeared similarly in prior research [2].

The devDH1 statistic is notably very effective at distinguishing triangles for h > 5 as it stabilizes
only for values of h much closer to 20. In contrast, the avgDH0 and devDH0 statistics do not
distinguish triangles for h > 5 very well; this is expected, as these statistics effectively reflect the
density of a point cloud, which will always remain constant between different triangles. Other
notable features of these graphs include the local maxima in the graphs of avgBH1, avgDH1, and
devBH1 at roughly h = 3.

See Figure 11. Recall from Remark 4.1 that the process of creating these point clouds involved
the introduction of random noise with a distance bounded by 1.5% of the perimeter of the triangle.
If we instead generate point clouds to have no noise at all, the resulting point clouds will feature
points that are largely collinear with each other, resulting in TDA statistics with very different
behaviors.
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Figure 10. Plots of avgDH0, avgBH1, avgDH1, devDH0, devBH1, and devDH1 with
respect to height. Each statistic is an average of k = 200 measurements of point
cloud samples of n = 500 points from the perimeters of isosceles triangles of varying
shapes, with added noise of at most 1.5% the triangle’s perimeter. Triangles are
normalized to have perimeter 1.

The avgDH0 and devDH0 statistics behave similar to as before. However, the avgBH1 statistic
instead appears to have a local minimum at roughly h = 3.5 before stabilizing for values of h > 10.
In the devBH1 statistic, we observe that the standard deviation of birth times tends to zero for
values of h > 10. This is because for values of h > 10, there is only one H1 feature, that being the
hole formed by the perimeter of the triangle; only rarely do other H1 features appear since many
points in the point cloud are collinear. This also explains the trend in the devDH1 statistic.
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Figure 11. Plots of avdH0, avgBH1, avgDH1, devDH0, devBH1, and DH1 with respect
to height. Each statistic is an average of k = 200 measurements of point cloud
samples of n = 500 points from the exteriors of isosceles triangles of varying shapes,
with no added noise. Triangles normalized to have perimeter 1.

5. A THEORETICAL RESULT

We may formally describe point cloud distributions over R2 with probability measures µ on R2,
in which a point cloud of size N may be viewed as a collection of N points sampled from R2 in
accordance with µ. Given two probability measures µ and ν and any real p > 1, we take the
Wasserstein distance Wp to be as defined in [5]; that is, we say

Wp(µ, ν) :=

(
inf

{(∫
R2×R2

|x− y|p ξ(dx, dy)
)

: ξ ∈ H(µ, ν)

}) 1
p

,

where H(µ, ν) denotes the set of probability measures on R2×R2 with marginals µ and ν. We also
make the following well-known remark about the Wasserstein distance.
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Proposition 5.1. For any two reals p1 < p2 and any probability measure µ on R2, we have
Wp1(µ) ≥ Wp2(µ).

In this section, we seek to prove a relationship between the ∞-landscape distance between per-
sistence landscapes and the ∞-Wasserstein distance between the point cloud distributions from
which those landscapes were derived.

Theorem 5.2. Let µ and ν be probability measures on R2, and let ϵ > 0 be a real number.
For positive integers N , take XN and YN to be sets of N points sampled independently from
the probability distributions µ and ν, respectively. Furthermore, let λµ and λν denote the respec-
tive landscapes of the Vietoris-Rips complexes of XN and YN , respectively. Then the inequality
∥λµ − λν∥∞ ≤ 2W∞(µ, ν) + ϵ holds with arbitrarily high probability for sufficiently large N .

In particular, the above theorem states that if persistence landscapes sampled from two different
distributions have a large ∞-landscape distance, then their corresponding point cloud distributions
must have a large W∞ distance. In this sense, persistence landscape metrics can detect geometric
differences in point cloud distributions.

Roughly speaking, we will approach our proof to Theorem 5.2 by showing that if W∞(µ, ν) is
small, then ∥λµ−λν∥∞ must be small. We begin by proving Lemma 5.3, which states that if µN and
νN are the empirical measures on R2 derived from XN and YN , then W∞(µ, ν) being small must
imply W∞(µN , νN ) is small. Separately, we describe how point clouds XN and YN may produce
monotone functions fX and fY . In Lemma 5.5, we use the result from Lemma 5.3 to argue that
these monotone functions fX and fY take on similar values, which allows us to conclude that λX

and λY also take on similar values by invoking a result from [1].

In the statement of Lemma 5.3 below, recall that µN and νN denote the empirical measures on
R2 derived from XN and YN .

Lemma 5.3. For any real ϵ > 0 and for sufficiently large N , the inequality W∞(µN , νN ) ≤
W∞(µ, ν) + ϵ must hold with arbitrarily high probability.

Our proof requires the following result on the empirical convergence of the Wasserstein distance,
taken as an immediate corollary from results in [5].

Theorem 5.4. [5] Given any probability distribution µ on R2 and any real ϵ > 0, the inequality
P(W1(µN , µ)) ≤ ϵ must hold for sufficiently large N with arbitrarily high probability.

Proof of Lemma 5.3. Using Theorem 5.4, we may write the following chain of inequalities.

W∞(µN , νN ) ≤ W∞(µ, ν) +W∞(µ, µN ) +W∞(ν, νN ) by the Triangle Inequality

≤ W∞(µ, ν) +W1(µ, µN ) +W1(ν, νN ) by Proposition 5.1

≤ W∞(µ, ν) + ϵ with high probability, by Theorem 5.4

This concludes the proof. □

In essence, Lemma 5.3 states that if W∞(µ, ν) is small, then W∞(µN , νN ) must also be compara-
bly small with high probability. Furthermore, Lemma 5.3 is equivalent to the existence (with high
probability) of a bijection π : XN → YN such that d(x, π(x)) ≤ W∞(µ, ν) + ϵ for all x ∈ XN .

In order to consider the persistence landscapes derived from point clouds XN and YN , we refocus
our attention to the monotone functions derived from point clouds XN and YN . In particular, we
take our simplicial complex K to be the simplicial complex on N points such that nonempty subset
of points in K form a simplex. Take πX to be an arbitrary bijection between from XN to the points
in K, and take πY to be the bijection from YN to the points in K so that π−1

Y ◦ πX = π. We may
then define a monotone function fX : K → R for the point cloud XN by defining f(k) for k ∈ K
to be the diameter of π−1

X (k) in XN ; we may define fY similarly.
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Lemma 5.5. For all k ∈ K, we have |fX(k)− fY (k)| ≤ 2W∞(µ, ν) + 2ϵ.

Proof. Take x := π−1
X (k) ⊆ XN and y := π−1

Y (k) ⊆ YN . By construction, we have y = π(x), so by
Lemma 5.3, each point xi ∈ x is paired with a point yi ∈ y for which d(xi, yi) ≤ W∞(xi, yi) + ϵ.
Take the diameter of x to be d(xi, xj) for the appropriate xi, xj ∈ x, and assume without loss of
generality that the diameter of y is less than or equal to the diameter of y. It follows that

(diameter of Y ) ≤ d(yi, yj)

≤ d(xi, xj) + d(xi, yi) + d(xj , yj) by the Triangle Inequality

≤ d(xi, xj) + 2W∞(µ, ν) + 2ϵ

≤ (diameter of X) + 2W∞(µ, ν) + 2ϵ

It follows that absolute difference in the diameters of x and y is at most 2W∞(µ, ν) + 2ϵ. Yet
|fX(k)− fY (k)| is precisely this absolute difference, so the lemma is proven. □

We now conclude with a proof of Theorem 5.2.

Proof of Theorem 5.2. Recall that we seek to analyze the persistence landscapes of point clouds
XN and YN of size N sampled from probability measures µ and ν on R2, respectively. To do so, we
define filtrations fX and fY on a simplicial complexK of size n in a manner dependent on a bijection
π : XN → YN , which exists with the properties we desire with arbitrarily high probability according
to Lemma 5.3. This desired property of π allows us to conclude |fX(k)− fY (k)| ≤ 2W∞(µ, ν) + ϵ
for all k ∈ K by Lemma 5.5. We now conclude by invoking a theorem from [1].

Theorem 5.6. [1] Let f and g be filtrations on a simplicial complex X. (Recall Definition 3.4.)
Furthermore, let λf and λg denote the persistence landscapes derived from the persistence complexes
corresponding to f and g. Then ∥λf − λg∥∞ ≤ supx∈X |f(x)− g(x)|.

It follows that if λµ and λν are the persistence landscapes derived from XN and YN , we have

∥λf − λg∥∞ ≤ sup
k∈K

|fX(k)− fY (k)| ≤ 2W∞(µ, ν) + ϵ.

This concludes the proof of Theorem 5.2. □

Theorem 5.2 ultimately demonstrates that large∞-landscape distances between persistence land-
scapes is indicative of large geometric differences in the probability distributions from which those
persistence landscapes were constructed.

6. FURTHER DISCUSSIONS

Future directions could attempt to refine the inequality provided in Theorem 5.2 to achieve a
tighter bound more representative of the true capabilities of persistence landscapes. Furthermore,
Theorem 5.2 only provides asymptotic guarantees on the relationship between the sample size N
and the probability of success, so future work could attempt to give estimates of the quantitative
values of N needed for Theorem 5.2 to apply in specific practical, experimental settings.

Alternative directions may also consider a geometric metric other than the Wasserstein distance
W∞; in particular, the Wasserstein distance is unfortunately not invariant under rigid transfor-
mations of probability measures, so two probability measures that model the same point cloud
distributions up to congruence may still have very large Wasserstein distances in spite of their
geometric similarities.
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