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A number of macroscopic analogues of quantum mechanics have drawn inspiration from the “walk-
ing droplet” system of Couder and Fort: a system of oil droplets surfing over a vibrating fluid bath,
propelled forward by self-generated waves. In particular, recent authors have observed a correspon-
dence between the probability density function (PDF) of the walking droplet and the mean wave
field (MWF) of the underlying bath, analogizing the fundamental relationship between quantum
probabilities and the wavefunction. Although this correspondence has been proven in certain single-
droplet systems, with particular system geometries and droplet-pressure models, the principle is
believed to hold more generally. In this direction, we prove an extension of Floquet’s Theorem
to periodically-driven PDEs, and we leverage it to rigorously derive the same PDF-MWF corre-
spondence for general pilot-wave models, including droplet systems with arbitrary droplet count,
system geometry, and droplet-pressure models. Our work applies functional-analytical methods for
non-autonomous equations, demonstrating the utility of such techniques in understanding pilot-
wave dynamics at a rigorous level. We demonstrate our results in 1D numerical simulations for
various domain and droplet scenarios, and, looking forward, we discuss how they might apply to
hydrodynamic analogues of quantum entanglement and measurement.

I. INTRODUCTION

In quantum mechanics, a particle is identified with its spatially-extended wavefunction. In the case of a single
particle in Rd under an energy potential V : Rd → R, the wavefunction ψ ∈ L2(Rd;C) evolves according to the
Schrödinger equation:

i∂tψ = −∇2ψ + V ψ. (I.1)

In turn, this dynamically-evolving wavefunction yields all the statistics of the quantum particle. For instance, if one
were to measure the position of a particle, the probability density ρ of the position qp ∈ Rd would satisfy Born’s rule:

ρ(qp = q) = |ψ(q)|2. (I.2)

In textbook quantum mechanics, qp cannot be interpreted as a well-defined particle position, at least until the
aforementioned measurement is performed. David Bohm’s “pilot-wave” interpretation of quantum mechanics offers a
somewhat-more-classical alternative, however, positing that qp exists at all times as a deterministic, “hidden-variable”
position of the particle [1, 2]. In this view, (I.2) becomes a fundamental correspondence between the dynamically-
evolving wavefunction and the statistics of a point-particle.

In order to further investigate this relationship, we move from Bohm’s quantum pilot-wave theory toward a macro-
scale, hydrodynamic analogue: the “walking droplet” dynamics of Couder and Fort [3]. In this classical pilot-wave
system, a millimetric oil droplet bounces on a vibrating fluid bath of silicone oil, propelled forward by its self-
generated waves. The high surface tension and fast vibration of the fluid bath prevent the droplet from coalescing
into the bath—instead, the droplet maintains a periodic bouncing motion on the bath’s surface. Under the right
conditions, the vibration of the system brings the droplet into resonance with its wave field, allowing it to “walk”
across the surface of the bath.

The walking droplet system gives rise to classical analogues of several characteristic quantum behaviors: single-
particle slit diffraction [3–6], “tunneling” past submerged barriers [7, 8], attaining quantized orbits [9, 10], following
“surreal” trajectories characteristic of Bohmian mechanics [11], and displaying quantum-like statistics in an analogue
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of the quantum corral [12]. Motivated by the successes of “hydrodynamic quantum analogues” [13], we would like to
see if the Born rule itself (I.2) could be analogized at the macro-scale.

In the walking droplet system, we consider two key statistical quantities: the mean wave field (MWF) and the
probability density function (PDF). More specifically, the MWF is the time-averaged wave field of the underlying
bath, analogous to the wavefunction in a stationary solution of the Schrödinger equation (I.1). The PDF is the long-
term probability distribution of a walking droplet’s position, analogous to the probability distribution of a Bohmian
point-particle, as expressed by the Born rule (I.2).

Unlike the linear wave dynamics of quantum mechanics, the nonlinear dynamics of the coupled droplet-wave system
blurs any simple relationship between the PDF and MWF. In 2018, Durey, Milewski, and Bush [14] derived a
mathematical relationship between the PDF and MWF in particular walking droplet scenarios. They rigorously
proved the relationship for a free domain in the droplet models of Milewski et al. [15], Fort et al. [9], and Oza et
al. [16], and argued that a similar relationship should occur more broadly. In 2020, by exploiting the radial symmetry
of the system, Durey, Milewski, and Wang [17] rigorously outline the case of a single droplet in a circular corral.
For these cases, they find that if there exists a stationary probability distribution µ(x) on a walking droplet domain
Ω ⊂ R2, for which the droplet position and the system dynamics are ergodic (or periodic), then the MWF η̄(x)
satisfies

η̄(x) =

∫
Ω

ηB(x, y)µ(y) dy, (I.3)

where ηB(x, y) is the MWF of a stationary, bouncing droplet centered at the position y. Given a PDF and relevant
domain parameters, one can use (I.3) to effectively predict the MWFs of applicable walking droplet systems. This
correspondence is pictured in Figure 1, albeit, in an elliptical corral, outside the scope of existing results.

FIG. 1: A walking droplet’s instantaneous wave field (left), mean wave field (center), and probability density
function (right) in an elliptical corral. A relationship between the probability density and mean wave field has been
widely observed, but only proven in particular cases—the elliptical corral not among them. Reproduced from [18]

with permission.

As suggested, these results have several limitations. For one, Durey et al. carried out their analysis with an idealized
droplet-pressure model, where the droplet and bath make contact only instantaneously in each bouncing period. This
assumption allowed them to reduce their wave equation to a homogeneous version; at this point, they could apply
Floquet theory to understand the time-averaged dynamics of the wave field. This step introduces another obstacle
to generalization: Floquet’s theory only necessarily holds for finite-dimensional systems. In both the free domain
and the circular corral, Durey et al. were able to diagonalize the full system along the eigenmodes of the Laplacian;
this step reduces the PDE to a family of finite-dimensional ODEs, each of which amenable to Floquet-type results.
Unfortunately, this property does not carry forward to generic geometries.

To handle the general case, then, one requires an analogue of Floquet’s theory that holds for inhomogeneous,
infinite-dimensional systems. Although some authors have made steps in developing Floquet theory for bounded
operators on a Banach space [19], our wave operators do not fall into this class.

We pursue this program in the present work, recovering a relationship between the PDF and MWF for generic
pilot-wave systems—including walking droplet systems with one or more droplets, with arbitrary geometries, and
with arbitrary droplet-pressure models. To illustrate our approach, we first derive a finite-dimensional version of our
particle-wave correspondence (Theorem IV.3) using classical Floquet theory, lifting the instantaneous-droplet-pressure
hypothesis of Durey et al. We then turn to our main result (Theorem IV.9), proving that this correspondence extends
to infinite-dimensional systems (and thus arbitrary geometries). Namely, by using the theory of evolution systems [20]
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to develop an infinite-dimensional analogue of Floquet’s theorem, we are able to generate abstract solutions to our
wave equation and retrieve the relationship (I.3) for periodic, driven-dissipative systems on Banach spaces, with
ergodic (or periodic) forcing at each period and only mild regularity conditions. In short, we recover the following
result:

Claim I.1. Suppose we have a 2D domain Ω ⊂ R2, a wave height field η : Ω → R, and a fixed vibration period
T > TFaraday. Suppose there are one or more walking droplets in Ω, and that the wave-droplet interaction in a single
period of vibration is parametrized (or well-approximated) by a finite collection of parameters α⃗ = {α1, ..., αN}; for
instance, these parameters can quantify droplet positions, velocities, or phase offsets of droplet bounces. Let ηB(x, α⃗)
be the mean wave field at x ∈ Ω corresponding to a “fixed bouncing configuration”, i.e., where α⃗ is constant in time.
If the system dynamics are ergodic with a stationary probability distribution ρ(α⃗), then the mean wave field η(x) is

related to ρ by

η(x) =

∫
RN

ηB(x, α⃗)ρ(α⃗) dα⃗. (I.4)

We formalize this result in Theorem IV.9, and, as an example, we highlight (Example IV.6) how our result applies
to the model of Milewski et al. [15] for arbitrary system geometries and droplet-pressure models.

To support our result numerically, we apply the 1D walking droplet model proposed by Nachbin [21]. Along with
its non-instantaneous droplet pressure, Nachbin’s model is able to exactly resolve the topography of the fluid bath
using an appropriate conformal map, allowing us to more-accurately deduce the effect of the system geometry—and
putting us outside the scope studied by Durey et al. By simulating Nachbin’s walking droplet model in MATLAB,
we verify the PDF-MWF relationship for various domain and droplet scenarios.

Looking forward, we show how our results can be applied toward a hydrodynamic analogue of quantum entanglement
and measurement. Nachbin [21] has observed correlation between the dynamics of two droplets separated by a
submerged barrier in a two-cavity domain. By investigating this analogue of “entanglement” through the lens of the
PDF and MWF, we may be able to study (or diagnose) particle entanglement using only their shared wave field.
Moreover, we may also observe how particle correlation and statistics collapse when we impose new cavities upon an
already-evolving droplet system, serving as a hydrodynamic analogue to quantum measurement.

II. APPLICATIONS

Before delving into our mathematical argument, we highlight various applications of our result to current themes
in hydrodynamic pilot-wave research.

a. Multiple Droplets, Arbitrary Pressure Models, Arbitrary Geometries. As suggested above, Claim I.1 directly
extends the results of Durey, Milewski, and Bush [14] and Durey, Milewski, and Wang [17] by covering the full range
of walking droplet models and settings.

For one, we note that Claim I.1 encompasses systems with several droplets. If x1, ..., xN ∈ Ω are the positions of
N droplets, distributed according to a stationary distribution ρ = ρ(x1, ..., xN ), the mean wave field η is given by

η(x) =

∫
ΩN

ηB(x, x1, ..., xN )ρ(x1, ..., xN ) dx1 · · · dxN ,

where ηB(x, x1, ..., xN ) is the mean wave field corresponding to N stationary bouncers. Investigations of multi-droplet
interactions have uncovered a variety of unique behaviors, including orbiting and promenading bound states [22–24],
regular lattices [25] and ring structures [26], and long-distance correlations between droplets [21]. We investigate the
mean wave field of the latter in Section V.

Likewise, our results place no constraints on the geometry of the bath, putting a number of other interesting
droplet phenomena within reach. The MWF-PDF correspondence has already been observed in elliptical corrals, for
instance [27], in agreement with Claim I.1.

Finally, although phenomenological and reduced models of walking droplets have employed instantaneous droplet-
pressure effects on the wave field [9, 16, 28, 29], more complete models account for the spring-like interaction between
the droplet and the wave. With these dynamics in place, the model of Milewski et al. [15] is able to capture important
nuances missed by earlier models, such as modulations of the vertical bouncing state [30].

b. Non-Resonant Walking Droplets. Primkulov et al. [31] have recently undertaken a study of droplets bouncing
out of resonance with the underlying bath. They found that non-resonant bouncing explains a number of subtle
details of the droplet system, including the intermittent “backtracking” behavior reported by Perrard et al. [32] and
the intermittent mode switching seen in high memory systems.
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There are two ways to incorporate such effects into the current theory. First, if an instantaneous pressure model
suffices, one can model a single droplet using its position x and its impact phase θ. If both are distributed according
to a stationary distribution ρ = ρ(x, θ), then the mean wave field η is given by

η(x) =

∫
Ω×S1

ηB(x, x
′, θ′)ρ(x′, θ′) dx′dθ′,

where ηB(x, x
′, θ′) is the mean wave field of a bouncer with a consistent impact phase. If an instantaneous pressure

model does not suffice, we must account for the fact that a single period [0, T ] of wave oscillation could contain effects
from two droplet bounces: the end of the previous bounce (at t < 0) and the start of a new bounce (at t ∈ [0, T ]).
We could thus model a droplet as carrying two impact phases, θ1 and θ2, and proceed as previously. If θ1 = θ2 with
high probability, this reduces to the previous equation.
c. Droplet-Inspired Pilot-Wave Theories. Finally, the walking droplet system has inspired a wider investigation

of classical pilot-wave systems, both to explore a wider parameter regime than available in the laboratory [33] and to
investigate further (and more faithful) classical analogues of quantum phenomena [34–36]. In one parameter regime,
the model of Darrow and Bush [36] has been shown to reproduce key features hypothesized in de Broglie’s early
“double-solution” model of quantum mechanics [37] and to recover a quantitative match to single- and double-slit
Fraunhofer patterns [38]; in another parameter regime, it has been proved to converge in the non-relativistic limit to
single-particle Bohmian mechanics [39].
In the latter model, the droplet and wave continuously interact, with the wave oscillating regularly over the Compton

period Tc = 2π/ωc = 2πℏ/mc2. Although the “droplet pressure” depends on the full path of the particle over one
period, we could approximate it as depending only on the mean position and velocity of the particle over that period:

P (x([0, T ])) ≈ P (x, v).

With this approximation in hand, the mean wave field could be recovered using Claim I.1 and a PDF ρ(x, v) of the
particle’s position and velocity.

III. BACKGROUND ON PREVIOUS RESULTS

Durey, Milewski, and Bush [14], and Durey, Milewski, and Wang [17] prove (I.3) in the case of a free domain and
circular corral, respectively, using the trajectory equation of Molaçek and Bush [28] to model the droplet and the
quasi-potential flow equations of Milewski et al. [15] to model the surface of the fluid bath:

ϕt = −G(1− Γ cos(4πt))η + Bo∆η + 2Re−1∆ϕ− P0,

ηt = DtN(ϕ) + 2Re−1∆η,
(III.1)

with appropriate (homogeneous) boundary conditions on ϕ and η. Here, η is the free-surface displacement, ϕ is the
velocity potential, Re is the Reynolds number, Bo is the Bond number, and P0 = P0(x, t) is the droplet pressure;
in the studies of Durey, Milewski, and Bush and Durey, Milewski, and Wang, the forcing pressure is taken to be
instantaneous and fully local, i.e., P0 ∼ δ2(x− x0)δ(t− t0). The coefficient −G(1−Γ cos(4πt)) represents the vertical
shaking of the bath, with gravitational constant G, amplitude Γ, and period 1/2 corresponding to the (2, 1) walking
mode [28]. Finally, the operator DtN is the geometry-dependent Dirichlet-to-Neumann map from the velocity potential
ϕ to the vertical velocity ϕz at the surface of the bath.

In both the free domain and the circular corral, the result (I.3) was obtained by decomposing L(t) along a basis
of Bessel functions, thereby diagonalizing both ∆ and DtN. This procedure reduces (III.1) to a family of finite-
dimensional ODEs. Moreover, by supposing that P0 acts instantaneously, these equations can be further reduced to
homogeneous ODEs over each bouncing period. These hypotheses thus allowed Durey et al. to apply Floquet’s theory
to analyze the time-averaged wave field, recovering (I.3) explicitly.

As we show in Section IVA, their analysis can be extended to generic finite-dimensional systems using classical
techniques, thus lifting their hypotheses on P0 and on the number of droplets. For an infinite-dimensional function
space, however, it requires strict hypotheses on the wave operator L(t) : (ϕ, η) 7→ (ϕt, ηt). For instance, if L(t) is
normal, or if the Dirichlet-to-Neumann map commutes with the Laplacian in (III.1) (as it did in Durey et al.’s case),
then L(t) can be decomposed into finite-dimensional operators as before. Alternatively, if L(t) is bounded, one can
use the extended Floquet theory of Albasrawi [19] to retrieve the result. However, diagonalizability does not hold for
arbitrary system geometries, and boundedness does not generally hold for any differential operator, forcing us to look
elsewhere for a more general proof of (I.3). We carry out such a procedure in the next section.

4



IV. RELATING THE MEAN WAVE FIELD TO THE PROBABILITY DENSITY

In order to relate the MWF and PDF of the droplet system, we model the wave field as an infinite-dimensional
vector in a Banach space B. We recall:

Definition IV.1. A Banach space B is a real or complex vector space, equipped with a norm ∥ · ∥ and with the
property of “completeness”. That is, if uk ∈ B is a sequence for which ∥uk − uℓ∥ → 0 as k, ℓ→ ∞, then the sequence
converges to a limit u ∈ B.

Vector spaces of physical interest typically fall into this class, such as:

1. If Ω ⊂ Rd is a fixed domain, the space L∞(Ω;Rm) of bounded vector fields on Ω is a Banach space. For any
bounded vector field f : Ω → Rm, we define the norm ∥f∥∞

.
= supx∈Ω |f(x)|.

2. In the same setting, the space W∞,k(Ω;Rm) of vector fields with bounded kth derivatives is a Banach space,
with norm ∥f∥∞,k =

∑
ℓ≤k ∥∇⊗ℓf∥∞.

3. Hilbert spaces—used widely in quantum mechanics—are special cases of Banach spaces. If ⟨·, ·⟩ is the inner

product on a Hilbert space H, the norm ∥ψ∥H
.
=

√
⟨ψ,ψ⟩ furnishes H with a Banach space structure.

Notably, we can identify L∞ =W∞,0. The derivative ∇ can be seen as a linear map from W∞,k to W∞,k−1 for any
k. To study a wave equation like ours (III.1), one might be interested in the case B = W∞,2, for which our solution
has two well-defined spatial derivatives.

With this in mind, we write our wave equation (III.1) as an abstract differential equation on a Banach space B:

ẏ(t) = L(t)y + b(t,X(t)). (IV.1)

Here, y(t) is our time-evolving wave field, L(t) is our wave operator, X(t) is the position of the droplet on impact,
and b(t,X(t)) is the pressure applied by the droplet on y. In the droplet setting, we identify y = (η, ϕ) and, as before,
we identify L(t) with the linear wave operator of (III.1).

Remark. It is important to note that L is not generally well-defined as a map from B to B. For instance, if B =W∞,2

and L involves two spatial derivatives, we can generically only say that Ly ∈ L∞ for any y ∈W∞,2. This is a typical
feature of differential equations; such an operator is said to be unbounded on B. Conversely, if Ly ∈ B for all y ∈ B,
the operator L is said to be bounded.

Even with an unbounded operator, one often wants to keep working within the setting of B. To this end, we
associate to any unbounded operator L a subspace dom(L) ⊂ B such that, if y ∈ dom(L), we have Ly ∈ B; this
subspace is known as the domain of L. We can resolve the case discussed above, then, by taking B = L∞ and
dom(L) =W∞,2 ⊂ L∞.
In this case (and those we study below), the domain dom(L) has the property that it is “dense” in B. That is, for

any y ∈ B, there is a sequence yk ∈ dom(L) such that yk → y as k → ∞. This property is critical; it means that,
even if L cannot be applied everywhere in B, it can be applied nearly everywhere.

A. The Finite-Dimensional Case

Before proving our main result, we take a step back from operator theory and look at the case where B = Rd (or
Cd) is finite-dimensional. This case can be handled using classical methods of linear algebra, and helps to illustrate
our technique before moving to the infinite-dimensional setting. Physically, the finite-dimensional case represents a
fixed numerical discretization of our wave equation.

As a starting point, for a fixed period T > 0, consider the differential equation

ẏ = L(t)y + b(t), (IV.2)

where L(t) ∈ Cd×d and b(t) ∈ Cd are continuous and T -periodic. Comparing against (IV.1), we see that this equation
corresponds to a stationary droplet X(t) = const . The following result shows how to apply Floquet’s theory to an
inhomogeneous equation, thus lifting the instantaneous-droplet-pressure hypothesis employed by Durey et al. [14]:

Lemma IV.2. Suppose L(t) and b(t) are T -periodic and continuous. Then, any solution y(t) to (IV.2) satisfies

y((n+ 1)T + t0) = C(t0)y(nT + t0) +R(t0), (IV.3)
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for any n ∈ N0 = {0, 1, 2, . . . } and t0 ∈ [0, T ], where C(t0) = Q(t0)e
BTQ−1(t0) and

R(t0) = eB(t0+T )

∫ t0+T

t0

e−BsQ−1(s)b(s) ds (IV.4)

are dependent only on t0.

Proof. Let Y (t) be a fundamental matrix of the homogeneous equation, i.e., a matrix consisting of n linearly inde-
pendent solutions to ẏ(t) = L(t)y(t). By Floquet’s theorem [40], we can write Y (t) = Q(t)eBt for a continuously
differentiable, T -periodic matrix Q ∈ Cd×d with Q(0) = 1 and a constant matrix B ∈ Cd×d. Substituting this

expression into Ẏ (t) = L(t)Y (t) and removing a common factor of eBt, we have

Q̇+QB = LQ. (IV.5)

Separately, let z(t) = Q−1(t)y(t) for a given solution y(t) to (IV.2). We have

Q̇z +Qż = LQz + b. (IV.6)

After right multiplying (IV.5) by z, we combine (IV.5) and (IV.6) to obtain

ż = Bz +Q−1b, (IV.7)

which is solved by

z(t) = eBtz0 + eBt

∫ t

0

e−BsQ−1(s)b(s) ds,

for a given z0 = z(0) = y(0). Setting t = nT + t0, we find

z(t+ T ) = eB(t+T )z0 + eB(t+T )

∫ t+T

0

e−BsQ−1(s)b(s) ds

= eB(t+T )z0 + eB(t+T )(e−Btz(t)− z0) + eB(t+T )

∫ t+T

t

e−BsQ−1(s)b(s) ds

= eBT z(t) + eB(t+T )

∫ t+T

t

e−BsQ−1(s)b(s) ds

= eBT z(t) + eB(t0+T )

∫ t0+T

t0

e−BsQ−1(s)b(s) ds,

applying the T -periodicity of Q and b. The lemma follows.

Now, the (discretized) droplet system nearly obeys an equation of the form (IV.2), except that the forcing b(t),
which here would represent the droplet pressure, can generally vary with the droplet position from one period of
vibration to the next. Even still, we can use a technique reminiscent of Durey et al. [14] to characterize the mean
dynamics of such a system:

Theorem IV.3. Suppose X(t) ∈ Cm is piecewise constant on each period [k, k + T ), for k ∈ TN0 = {0, T, 2T, ...},
and undergoes an ergodic process with stationary probability density µ on Cm. Suppose that y(t) ∈ Cd solves

ẏ = L(t)y + b(t,X(t)), (IV.8)

where L(t) ∈ Cd×d is T -periodic with eigenvalues of strictly negative real part, and b(t, x) is T -periodic in t for each

fixed value x ∈ Cm. Further suppose that x 7→
∫ T

0
|b(t, x)| dt is uniformly bounded for x ∈ Cm. Then, the mean field

⟨y⟩ .= limN→∞N−1
∑N

n=1 y(nT ) is given by

⟨y⟩ =
∫
R
µ(X )y0(X )dX ,

where y0(X ) ∈ Cn is the mean field when X(t) = X is constant.
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Remark. Here, the term y0(X ) ∈ Cd represents the wave field generated by a fixed bouncer at X ∈ Cm; note that
this term can be computed numerically for a given droplet model. The hypothesis that L(t) carries only negative
eigenvalues corresponds to a subcritical forcing frequency Γ < ΓF in the droplet system, and the (relatively mild)
integral hypothesis on b simply guarantees that R(t0, x) is well-defined and uniformly bounded in x.

Proof. Recall that the fundamental matrix of the homogeneous equation can be expressed as Y (t) = Q(t)eBt, from
Floquet’s theorem [40]. Viewing the restriction y|[t,t+T ] as a solution to (IV.8) with periodic forcing, Lemma IV.2
implies

y(t+ T ) = eBT y(t) +R(X (t)), (IV.9)

noting that the dependence of b on X confers the same to R. We can now take the mean value of both sides,
noting (from our integrability assumptions on b) that R is uniformly bounded in X ; subsequently using the ergodic
theorem [41] to simplify, we have

(1− eBT )⟨y⟩ =
∫
R
R(X )µ(X ) dX .

That L(t) has eigenvalues of negative real part means that ∥eBT ∥ < 1; hence, 1− eBT is invertible, and

⟨y⟩ =
∫
R
(1− eBT )−1R(X )µ(X ) dX .

The stationary bouncing droplet corresponds to a Dirac measure µ(X ) = δ(x−X ). Thus, y0(x,X ) = (1−eBT )−1R(X ),
proving the theorem.

B. The Infinite-Dimensional case

Broadly speaking, the main difficulty in the infinite-dimensional case is that Floquet’s Theorem [40] does not
generally hold on a Banach space, preventing us from recovering an equivalent of Lemma IV.2 directly. As discussed
above, one could proceed by hypothesizing that L(t) decomposes along finite-dimensional subspaces of our Banach
space B. This was the approach taken previously to study the free particle and the circular corral [14, 17], made possible
by the strong symmetries of both systems; in both cases, the wave equation (III.1) decomposes along eigenmodes of
the Laplacian. In general, however, we require an analogue of Floquet’s theory appropriate to the present setting.
For this, we use the following notation:

Definition IV.4. Following Pazy [20, Definition 5.3], we define an evolution system on a Banach space B as a
two-parameter family of bounded linear operators U(t, s) : B → B, for values 0 ≤ s ≤ t ≤ T , satisfying

(E1) U(s, s) = 1;

(E2) U(t, r)U(r, s) = U(t, s) for s ≤ r ≤ t; and

(E3) For any x ∈ B, the map (t, s) 7→ U(t, s)x is continuous.

The primary utility of evolution systems is in providing solutions to differential equations with time-dependent
coefficients. For a Banach space B and a family of operators L(t) : D → B on a uniform, dense domain D ⊂ B,
consider the initial value problem

ẏ(t) = L(t)y, y(0) = y0 ∈ D. (IV.10)

We say that (IV.10) “admits an evolution system U(t, s)” if, for any x ∈ D, we have

∂

∂t
U(t, s)x = L(t)U(t, s)x,

∂

∂s
U(t, s)x = −U(t, s)L(s)x, (IV.11)

for 0 ≤ s ≤ t ≤ T [20, Theorem 5.2]. In this setting, we say that y(t) = U(t, 0)y0 is a “classical solution” to (IV.10).
Following Pazy, we propose the following criteria for the equation (IV.10) to admit a unique evolution system:

Proposition IV.5. The equation (IV.10) admits a unique evolution system U(t, s) if the following conditions are
met:
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(P1) The domain D is dense in B and independent of t.

(P2) There are constants c,M > 0 such that for all t ∈ [0, T ] and for all λ with Re λ ≥ c, the resolvent R(λ : L(t))
.
=

(L(t)− λ)−1 exists and has operator norm [42] bounded as

∥R(λ : L(t))∥ ≤ M

|λ− c|+ 1
.

(P3) The map t 7→ L(t) is Hölder continuous in operator norm [43].

Remark. The requirement (P3) can be significantly weakened, although it is not necessary for the application to
walking droplet dynamics. In general, the proposition still holds if (P3) is weakened to

∥(L̃(t)− L̃(s))L̃(τ)−1∥ ≤ C|t− s|α,

for constants C > 0 and α ∈ (0, 1] and all t, s, τ ∈ [0, T ]. Here, L̃(t)
.
= L(t)− c.

Proof. Define L̃(t) = L(t) − c, which carries the same domain D as L(t). From (P2), note that L̃(t) has a resolvent

R(ζ : L̃(t)) defined for all ζ ≥ 0. So, for all ζ = λ− c ≥ 0, we have

(P2)
′ : ∥R(ζ : L̃(t))∥ = ∥R(λ : L(t))∥ ≤ M

|ζ|+ 1
,

for some constant M > 0. Now, (P3) implies that L̃(t) is also Hölder continuous, so we have

(P3)
′ : ∥(L̃(t)− L̃(s))L̃(τ)−1∥ ≤ ∥L̃(t)− L̃(s)∥∥L̃(τ)−1∥ ≤ CM |t− s|α,

for constants C > 0 and s, t, τ ∈ [0, T ]. The conditions (P1), (P2)
′, and (P3)

′ imply that L̃(t) admits a unique

evolution system Ũ(t, s) [20, Theorem 6.1].

Now, let U(t, s) = ec(t−s)Ũ(t, s); we now show that U(t, s) is the unique evolution system that L(t) admits. Note

that (E1) is satisfied since U(s, s) = Ũ(s, s) = I, (E2) is satisfied since U(t, r)U(r, s) = ec(t−r)ec(r−s)Ũ(t, r)Ũ(r, s) =

ec(t−s)Ũ(t, s) = U(t, s), and (E3) is satisfied since strong continuity is preserved when multiplying by the continuous
scalar function ec(t−s). Moreover,

∂

∂t
U(t, s) = ec(t−s) ∂

∂t
Ũ(t, s) + cec(t−s)Ũ(t, s) = (L̃(t) + c)ec(t−s)Ũ(t, s) = L(t)U(t, s),

∂

∂s
U(t, s) = ec(t−s) ∂

∂s
Ũ(t, s)− cec(t−s)Ũ(t, s) = −ec(t−s)Ũ(t, s)(L̃(s) + c) = −U(t, s)L(s),

so L(t) indeed admits the evolution system U(t, s). That U(t, s) is unique follows from running the same logic
backwards; if there were a distinct evolution system U ′(t, s) for L(t), we could construct a distinct evolution system

e−c(t−s)U ′(t− s) ̸= Ũ(t− s) for L̃(t).

The conditions in IV.5 cover a wide range of physically-relevant wave operators. As an example, we consider the
operator found in the model of Milewski et al. [15].

Example IV.6. In the model (IV.12) of Milewski et al. [15], the wave operator is given as follows:

L(t) =

(
2Re−1∆ −G(1− Γ cos(4πt))
DtN 2Re−1∆

)
. (IV.12)

If we consider the case B = L∞(R2;R2) of bounded flow fields on R2, the domain of L(t) would be D =W∞,2(R2;R2),
independent of t. As discussed before, this subspace is dense in B, so it satisfies (P1). The spectral condition (P2)
follows from splitting L(t) into a time-independent component L0 = L(cos 4πt = 0) and a time-dependent component
L1(t) = L(t) − L0. The spectrum of the former—which corresponds to a non-vibrating fluid bath—is supported in
the negative half-plane, so L0 satisfies (P2) with c = 0. Applying the perturbation result [44, Section 4, Theorem
3.17], one can see that L(t) satisfies (P2) with a potentially larger c. The equation satisfies (P3) because the only
time dependent term is uniformly (and thus Hölder) continuous; hence, L(t) itself is Hölder continuous.
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In this setting, we can construct an infinite-dimensional analogue of Floquet’s theorem:

Lemma IV.7 (Floquet form on a Banach space). Suppose the differential equation (IV.10) admits a unique evolution
system U(t, s), and suppose the operators L(t) are T -periodic. Then, for any n ∈ N0 and t0 ∈ [0, T ], we have

U(nT + t0, 0) = C(t0)
nU(t0, 0),

for a fixed, bounded operator C(t0) on B. Equivalently, y(nT + t0) = C(t0)
ny(t0) for any classical solution y.

Proof. Consider the family of operators U(t+ T, s+ T ). Since L(t) is T -periodic, U(t+ T, s+ T ) satisfies (IV.11), so
U(t+ T, s+ T ) is an evolution system of (IV.10). However, our evolution system is unique by hypothesis, so we have
U(t, s) = U(t+ T, s+ T ). Hence,

U((n+ 1)T + t0, 0) = U((n+ 1)T + t0, nT + t0)U(nT + t0, 0)

= U(T + t0, t0)U(nT + t0, 0)

= C(t0)U(nT + t0, 0),

noting that C(t0)
.
= U(t0 + T, t0) depends only on t0. The lemma follows inductively.

As in the finite-dimensional case, we can leverage the Floquet form provided by Lemma IV.7 to characterize solutions
of the inhomogeneous equation:

Lemma IV.8. Suppose L(t) is T -periodic and satisfies the criteria of Proposition IV.5, and that b(t) ∈ D is a
T -periodic, Hölder continuous family of vectors. Then there is a unique solution to (IV.10), and it satisfies

y ((n+ 1)T + t0) = C(t0)y(nT + t0) +R(t0) (IV.13)

for any n ∈ N0 and t0 ∈ [0, T ]; here, C(t0) is as given in Lemma IV.7 and R(t0) ∈ B is a constant vector.

Proof. From [20, Theorem 4.1], the solution to the initial value problem

ẏ(t) = L(t)y + b(t), y(0) = y0 ∈ D

exists, is unique, and is given by

y(t) = U(t, 0)y0 +

∫ t

0

U(t, r)b(r) dr.

Setting t = nT + t0, we have

y (t+ T ) = U (t+ T, 0) y0 +

∫ t+T

0

U(t+ T, r)b(r) dr

= C(t0)U(t, t0)y(t0) + C(t0)

∫ t

0

U(t, r)b(r) dr + C(t0)

∫ t+T

t

U(t, r)b(r) dr

= C(t0)y(t) + C(t0)

∫ t0+T

t0

U(t0, r)b(r) dr,

noting that U(t+ T, r) = C(t0)U(t, r) and U(t, s) = U(t+ T, s+ T ).

Finally, we recover our primary result:

Theorem IV.9. Suppose X(t) ∈ Ω ⊂ Cm is piecewise constant on each period [k, k+T ), for k ∈ TN0 = {0, T, 2T, ...},
and undergoes an ergodic process with stationary probability density µ. Suppose that y(t) ∈ B solves

ẏ = L(t)y + b(t,X(t)), (IV.14)

where L(t) is a T -periodic operator satisfying the conditions of Proposition IV.5, and b(t, x) is T -periodic and Hölder

continuous in t for each fixed value x ∈ Ω. Further suppose that the map x 7→
∫ T

0
∥b(t, x)∥ dt is uniformly bounded over

Ω, and that the map C(0) : y(0) 7→ y(T ) has norm ∥C(0)∥ < 1. Then, the mean field ⟨y⟩ .= limN→∞N−1
∑N

n=1 y(nT )
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is given by

⟨y⟩ =
∫
Ω

µ(X )y0(X )dX ,

where y0(X ) ∈ B is the mean field when X(t) = X is constant.

Proof. Let C
.
= C(0). As in the finite-dimensional case, Lemma IV.8 gives us

y(t+ T ) = Cy(t) +R(X (t)). (IV.15)

We can now take the mean value of both sides, noting that R is uniformly bounded in X from our uniform integrability
assumption on b. Using the ergodic theorem to simplify, we have

(1− C)⟨y⟩ =
∫
Ω

R(X )µ(X ) dX

Since ∥C∥ < 1, we know that 1− C is invertible with continuous inverse. Hence,

⟨y⟩ =
∫
Ω

(1− C)−1R(X )µ(X ) dX .

The stationary case X(t) = X corresponds to the Dirac measure µ(X ) = δ(x − X ), or y0(x,X ) = (1 − C)−1R(X ).
Thus, y0(X ) = (1− C)−1R(X ), proving the theorem.

V. NUMERICAL SIMULATION OF THE WALKING DROPLET MODEL

We explore the PDF-MWF relationship within the 1-dimensional model of Nachbin [21], which exactly resolves
the topography of the fluid bath using an appropriate conformal map. This allows us to observe the walking droplet
system on domains that do not conform to the hypotheses of Durey et al. [14]. Nachbin reduces the Faraday wave
model of Milewski et al. [15] to the 1-dimensional case as follows:

ϕt = −g(t)η + 2v∗ϕxx +
σ

ρ
ηxx and ηt = DtN(ϕ) + 2v∗ηxx.

Here, v∗, σ, and ρ represent viscosity, surface tension, and density, respectively. The function g(t) = g(1+Γ sin(ω0t))
represents vertical acceleration of the vibrating bath for frequency ω0 and amplitude Γ. Unlike in the 2-dimensional
case, the Dirichlet-to-Neumann operator can be exactly expressed using a conformal map, which transforms a non-
trivial geometry into a domain of constant depth, simplifying numerical computation.

Now that we have the appropriate equations and method to simulate the wave field, we apply Nachbin’s equation
for the horizontal position xp of the particle:

m
d2xp
dt2

+ 0.01F (t)
dxp
dt

= −F (t)∂η
∂x

(xp, t),

where m is the drop mass and F (t) is the force exerted on the droplet by the bath: constant while the two are in

Variable Value Description

g 981 cm s−2 Gravity

ω0 80× 2π s−1 Vibration Frequency (×2π)

Tf 0.025 s Faraday period

σ 20.9 dyn cm−1 Surface tension

ρ 0.95 g cm−3 Fluid density

ν 0.16 cm2 s−1 Fluid viscosity

νp 0.01 g cm−1 Stokes’ drag coefficient

R0 0.035 cm Droplet radius

TABLE I: Physical parameters used for the simulation, following Nachbin [21].
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(a) (b) (c)

FIG. 2: (a) A snapshot of the droplet model, showing the bath topography (black, partially shown), the wave field
(blue), and the droplet (red). (b) A droplet (red) starts at −0.5cm and traverses the 3cm-wide domain for ∼ 5s
seconds, or 200 Faraday periods; the memory parameter is Γ/ΓF = 0.85. Snapshots of the underlying wavefield

(blue) are shown at each Faraday period. (c) The long-term mean wave field (black) is calculated by averaging the
value of the wave field at the start of each Faraday period.

contact, and 0 otherwise. In our simulation, the contact time is a quarter of the bath’s Faraday period, which is the
period of the droplet’s bouncing motion. We use the physical parameters given in Table I.

We first run the simulation on two rectangular domains: a 3cm domain from x = −1.5cm to x = 1.5cm, and a
4cm domain from x = −2cm to 2cm. In both cases, the depth is 5cm within the cavity and 0.01cm outside, and
the boundary extends 0.5cm past the edges of the cavity. The variables η and ϕ are discretized with 256 horizontal
nodes for the 3cm domain and 384 nodes for the 4cm domain. We run the simulation with a minimum timestep of
∆t = 1.25× 10−5s = 5× 10−4Tf .
An important parameter for our model is the amplitude of vibration Γ. We consider the Γ as a proportion of the

Faraday threshold ΓF , which is the smallest value of Γ such that standing waves on the free surface become unstable.
The proportion Γ/ΓF < 1 acts as the “memory” value of the system, corresponding (inversely) to the dissipation rate
of the wave field [13].

In order to verify the result in Theorem IV.9, we run a long-time simulation (∼ 500 seconds, or 2 × 104 Faraday
periods) of the walking droplet model, recording the instantaneous wave fields and droplet position once every Faraday
period (example shown in Figure 2a). The droplet generates a time-varying wave field as it moves about the cavity
(as shown in Figure 2b), and we aggregate these to generate our MWF. An example MWF is shown in Figure 2c.

Separately, we numerically compute y0(X ) for each X in the domain by allowing the MWF to converge for fixed,
bouncing droplets at each position in the domain. Finally, we integrate the computed kernel y0(X ) against the
probability density of our simulation, in accordance with Theorem IV.9, to retrieve a predicted MWF. We compare
these predictions against the true MWFs in various cases, shown in Figure 3.

We also apply our analysis to a two-droplet simulation, considering the joint PDF µ : R2 → [0,∞) of two droplets in
our 1D pilot-wave system. We conduct experiments in two different variations of the two-cavity domain of Nachbin [21],
which we refer to as the “uncorrelated” and ”correlated” systems, respectively. In both, the left cavity is 1cm wide,
and the right cavity is 1.1cm wide. For the uncorrelated case, the two droplets are separated by a wide, shallow
region, such that their wave fields interact minimally. We run the simulation for 1.8× 104Tf . For the correlated case,
the central barrier is replaced by another cavity, giving room for the each droplet to affect the other through their
shared wave field. Even with the droplet correlation, we find that the predicted PDF-MWF relationship holds closely.
Results from both systems are displayed in Figure 4.

VI. CONCLUSION AND PERSPECTIVES

In this work, we have derived a correspondence between the mean wave field (MWF) and probability density
function (PDF) of a general pilot-wave system, recovering a fundamental relationship analogous to that between the
wavefunction and probability density of a quantum particle. In particular, we used the theory of evolution systems [20]
to derive a Floquet-like result on Banach spaces, allowing us to treat the solution of the wave equation directly. This
result extends previous work on the PDF-MWF relationship [14, 17] by rigorously proving the relationship in non-
simple geometries, for non-instantaneous pressures, and for more than one droplet at a time.
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(a) Γ/ΓF = 0.75, 3cm domain (b) Γ/ΓF = 0.80, 3cm domain (c) Γ/ΓF = 0.85, 3cm domain

(d) Γ/ΓF = 0.75, 4cm domain (e) Γ/ΓF = 0.80, 4cm domain (f) Γ/ΓF = 0.85, 4cm domain

FIG. 3: Measured and predicted MWFs from single-droplet experiments, where the droplet moves around within a
single, rectangular cavity. Each is calculated over 2× 104 vibration periods for both 3cm and 4cm domains and with
a variety of memory parameters. In all cases, we note a strong correspondence between the measured MWF and the

prediction from Claim I.1.

We numerically verify this relationship by simulating the walking droplet system on 1-dimensional rectangular
domains, retrieving the expected PDF-MWF correspondence. We conclude that a strong relationship between the
MWF and PDF is characteristic of pilot-wave systems, and, given system parameters, one can recover particle and
field statistics from one another.

Looking forward, it might be interesting to apply our results to hydrodynamic analogues of quantum entanglement
and measurement. For a hydrodynamic entanglement analogue, we consider “correlating” two droplets in a two-
cavity system, as seen in V. The droplets move within their own, separated cavities, but their shared wave field
allows communication back and forth. Closing off the central separator allows for the observation of how the droplet
correspondence changes; as suggested by Theorem IV.9, one should be able to detect entanglement by observing just
the MWF, similar to the role of the wavefunction in quantum mechanics. Moreover, it might be interesting to impose
new cavities in each of the separated domains, analogous to imposing a particle detector in quantum measurement,
and potentially observe the decoherence of the particle statistics in the same way.

More generally, we believe the functional analysis techniques applied in this work may be useful in further studies
of classical pilot-wave theories and may provide a new, analytical perspective on wave-particle relationships in these
systems.
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(a) (b) (c)

(d) (e) (f)

FIG. 4: Two droplets move in each of the asymmetrical “uncorrelated” and “correlated” systems, following
Nachbin [21]. The uncorrelated domain consists of two cavities separated by a wide central barrier, preventing the
droplets from communicating with one another; the correlated domain replaces the barrier with another cavity, such
that the droplets interact through their shared wave field. One droplet starts at −1.20cm (red) and another starts at
1.00cm (black). The vertical acceleration is given by Γ = 4.8. (a,d) The uncorrelated and correlated two droplet
systems, respectively, during the first 200 Faraday periods. (b,e) The PDF of the systems after 1.8× 104 Faraday

periods. (c,f) The comparison between the actual and predicted MWFs.
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