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Abstract. The process of neurogenesis in the mammalian brain is controlled by the Notch
signaling pathway, which can be modeled with a system of ordinary differential equations
relating the concentrations of species. However, this system contains a relatively large
number of state variables (species) and parameters; as such, it is computationally costly
to model the system, even with current techniques. In this paper, we describe a neural
network pipeline to elucidate properties of the system as well as forecast species. First, we
extensively discuss the use of identifiability analysis in systems biology problems to offer
guidance in modeling. We show the utilization Systems-Biology Informed Neural Networks
(SBINNs) architecture to extract values of ODE parameters as well as model the dynamics
of the chemical species. In addition, we describe the implementation of additions to SBINNs
such as warm-starting and considering sensitivity of parameters that enhance the learning
of the model. Our results should provide accurate predictions of the biochemical dynamics
in the Notch signaling pathway and help neuroscientists in the field better understand the
formation of neurons. We also describe how we can further this technique and evaluate
other modern architectures such as PINNformers and KANs to enhance predictions.

1. Introduction

Systems biology is the holistic study of complex interactions within biological systems
using computational and mathematical tools. Although it is sometimes possible to model
the system of interest using ordinary differential equations (ODEs), some parameters (e.g.
rate constants) may be unknown from current experimental procedures or require numerical
derivation due to careful estimation of state variables, which are often unavailable due to
technical limitations [7]. In addition, accurate models of the dynamics of the biochemical
species are of particular interest for biological applications and research. As such, we in-
vestigate methods for extracting both the equations and the variable dynamics of biological
systems.

The Notch signaling pathway is an evolutionarily conserved pathway in multicellular or-
ganisms that regulates the determination of cell fate during development while simultane-
ously maintaining adult tissue homeostasis [1]. This biological process regulates juxtacrine
cellular signaling, in which both signaling molecules and the receptor are affected by ligand-
receptor crosstalk [1]. Our goal is to determine the underlying ODE system of the Notch
signaling model, predict the dynamics of biochemical species, and help explain the factors
that lead to neurogenesis.

The reconstruction of the ODE system is an example of the inverse design paradigm.
The Physics-Informed Neural Network (PINN) architecture has been especially successful in
solving inverse design problems [22]. Using the PINN methodology in the form of systems
biology neural networks (SBINN) [39], we can determine the parameters of the ODE systems
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and model the system using Neural Networks. Our goal is to implement and evaluate the
efficacy of the SBINN architecture in determining the Notch signaling pathway.

With the large parameter space to search and ill-conditioning of the problem, many pa-
rameters cannot be immediately identifiable by the SBINN. So we propose implement a
pipeline for the development and identification of systems biological models introduced in
[7]. The workflow we employ is:

• Step 1: Data acquisition and development of systems-biological models. This is not
the primary focus of our work and we use the underlying ODE system from [24] and
the data provided from numerous literature sources [12, 15, 17, 19, 33, 37].

• Step 2: Structural identifiability analysis. We consider the identifiability of each
unknown parameter of the Notch pathway ODE system. If none of the parameters
are identifiable, then more data is needed to solve the system. If parameters are
locally identifiable, we need to impose search ranges for the model to converge to a
solution. Global identifiability is optimal as it gaurantees a convergence.

• Step 3: Implementation of SBINN. We use a modified SBINN architecture to es-
timate the identifiable parameters. Specifically, we implemented transfer learning
technique and used sensitivity to efficiently train the fitting of parameters and ensure
convergence.

• Step 4: Practical identifiability analysis. We check the sensitivity and quality of our
estimates of the parameter values from SBINN model to determine if the parameters
are practically identifiable. If sensitivity is high, then more data or conditions are
needed for the system.

• Step 5: Using the inferred parameters and the SBINN model, we are able to approx-
imate the dynamics of the Notch biochemical species. As of now, we are still striving
for accurate approximation of the model as well as recovery of all 22 structurally-
identifiable parameters.

2. Notch Signaling Pathway

2.1. Notch mutation in the common fruit fly Drosophila melanogaster . The first
alleles of Notch in history arose as spontaneous dominant mutations in a genus of fruit flies
known as Drosophila [14]. It was not difficult to recover them because Notch is haploinsuffi-
cient in Drosophila, meaning that a heterozygous combination of a wild allele is insufficient
to produce a wild phenotype. Continuing work on Notch—beginning with one of the first
characterized chromosomal deficiencies, O. L. Mohr in the 1970s strove to establish the con-
text of advancing concepts regarding the nature of genes [23]. The various kinds of alleles
of Notch generated during this era became a priority for molecular biologists when cloning
and sequencing became applicable tools in the 1980s.

Notch proteins in vertebrates consist of four single-pass transmembrane receptor pro-
teins (Notch-1 to Notch-4) that contain multiple epidermal growth factor-like repeats fol-
lowed by conserved cysteine-rich Notch/Lin12 repeats in their extracellular domain and
six cdc10/ankyrin repeats in their intracellular domain [9]. The Notch ligands (Jagged-
1, Jagged-2, and Delta-1 to Delta-3) represent transmembrane proteins that, like Notch,
contain multiple epidermal growth processes in their extracellular domain. Ligand binding
induces proteolytic cleavage and release of the intracellular domain in the C-terminus, the
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Figure 1. Process map of solving ODE-Based Mechanistic Model of
Biological Signaling Pathways. Figure is adapted with permission [24].

end of an amino acid chain that retains signals for protein sorting. Consequently, the sig-
naling molecule crosses into the intracellular domain (Notch-IC) followed by being nuclear
translocated.

A primary target of activated Notch-1 is the ubiquitous DNA binding protein RBP-
Jκ/CBF-1. Activated Notch proteins interact with RBP-Jκ/Su(H) primarily through the
RAM23 domain, a sequence that was identified N-terminus, the start of a protein or polypep-
tide. This transactivation domain is localized adjacent to the ankyrin repeats of Notch-1-IC,
resulting in the activation of transcription. Downstream targets of Notch signaling such
as Enhancer of split [E(spl)] complex genes and mammalian homologs of Hairy and E(spl)
genes, HES-1 and HES-5, have been identified. These basic helix-loop-helix (bHLH) proteins
antagonize other bHLH factors like myoblast determination protein 1 (MyoD) that induce
differentiation.

2.2. Modeling Biological Pathways. Biological pathways are ubiquitous to the study of
cellular biology. These pathways can be studied in a systems-biology lens by construct-
ing lumped-element model that, although idealistic, can capture much of the interaction
quantities of interest with tuning of parameters. However, measurements of parameters are
often difficult or not possible during reactions. Therefore, biologists seek to determine these
parameters (namely reaction rates).

ODE models of interest to us involve a cell releasing a stimulus, such as a vascular endothe-
lial growth factor (VEGF), that binds to the receptors of endothelial cells. The reactions
caused by this process can be tracked by rate factors, as in production rate constant =
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rate of VEGF. We set our parameters as these rate factors, which we then reference in our
ODE systems. The complexity of the framework increases exponentially with the addition
of parameters, so the 26 parameters in our problem lead to considerable computational
complexity.

In the context of our work, we follow the mechanistic model development and evaluation
schemes followed by systems-biologists as in Fig. 1. However, our methodology differs from
the general workflows namely due to our implementations of SBINNs for parameter esti-
mation and incorporating various methods like sensitivity analysis directly into the fitting
stage.

2.3. Notch Pathway Data. In order to train our neural networks and validate our pipeline,
we require data on the state variables. Indeed, our system aims to recover the dynamics of
the state variables from the observable values. However, due to difficulties in experimental
measurement, our empirical dataset is limited to the following Table 2.

Reference Time mDll4 NICDNotch Hes NICD2 R2
Fish (2017) [12] 0 0.169
Izumi (2012) [15] 0 0.678480181
Fish (2017) [12] 900 0.2394
Izumi (2012) [15] 900 0.720351573
Takeshita (2007) 900 0.530068885 0.48525544
Fearnley (2016)[11] 1200
Fish (2017) [12] 1800 0.6338
Izumi (2012) [15] 1800 1
Takeshita (2007) [33] 1800 1 1
Fish (2017) [12] 3600 1
Izumi (2012) [15] 3600 0.920314286
Takeshita (2007) 3600 0.699141704 0.50385688
Fish (2017) [12] 7200 0.352
Izumi (2012) [15] 7200 0.68713585
Takeshita (2007) 7200 0.509760438 0.206604465
Fearnley (2016) [11] 0 1
Fearnley (2016) [11] 300 1.007343
Fearnley (2016) [11] 900 0.852512
Fearnley (2016) [11] 1800 0.716371
Fearnley (2016)[11] 3600 0.680827
Fearnley (2016) [11] 7200 0.67802

Table 2. Experimental data of Notch model species.

Such data is not sufficient to train models, and as here we are validating the efficacy of our
models, we generate synthetic data from the inferred parameter values given in Appendix B.
Substituting the nominal parameter values into the ODE system with initial values x(0) ≈ 0,
we use standard numerical methods to retrieve the training data fulfilling Step 1 of this
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workflow. For training purposes, we only use the synthetic data generated for the observables,
as in general application, this is the data present. See Fig. 2 for data generation for the
dynamics of pR2 species.

Figure 2. Notch signaling model observation data for parameter in-
ference 100 measurements on ribonucleotide reductase (pR2) levels are ran-
domly sampled in the time window of (0, 7200) minutes (∼ five days).

3. Structural Identifiability

When analyzing the fit of a neural network model to the equations and parameters of
a dynamic system, issues arise in the identification of the parameters. The parameter p is
identifiable if the confidence interval of the estimate of p̂, the value of the inferred parameter,
is a finite interval. The two classes of problems that may occur are structural and practical,
not necessarily disjointly. In this section, we detail the theory and application of several
methods for discerning and addressing structural non-identifiability a priori, so that our
models will not run into issues with impossible or incorrect convergence.

3.1. Structural Identifiability. A model is structurally non-identifiable when multiple
solutions of y, the observable state variables, appear due to insufficient mappings, denoted
h, of the state variables x to y. Structural identifiability, hence, is performed a priori in
terms of fitting parameters. Such analysis is necessary for two reasons: one is that we are
interested in seeing what biochemical species can be modeled given experimental data and
current knowledge of reactions, and the other is avoid fitting problems in the subsequent
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applications of SBINNs. There are two solutions to resolve this: one is acquiring more data
for more species, the other is to fix a subset of the parameters to nominal values while fitting
the model to the complement set of parameters.

Consider a dynamical system given by,

(1) X′ = f(X,Θ,u), y = g(X,Θ,u),

where X = (X1, · · · , Xn) represents the state variables, y = (y1, · · · , ym) represents the
observable state variables, Θ = (θ1, · · · , θk) are the parameters, and u represents the input
variable to the system.

Definition 1. A parameter set Θ is called structurally globally identifiable if

(2) g(X,Θ,u) = g(X,Φ,u) =⇒ Θ = Φ

for every Φ = (ϕ1, · · · , ϕk) in the same space as Θ. Local identifiability requires Eq. (2) to
hold in a neighborhood of Θ.

If the set is locally identifiable, this suggests a search range to train the model. In this
section, we determine the structural identifiability of the Notch signaling pathway using
three different methods: the Julia library StructuralIdentifiability [8], the Generating Series
test for Structural Identifiability [6, 5] (a.k.a GenSSI), and Structural Identifiability Taken
as Extended-Generalized Observability with Lie Derivatives and Decomposition [35] (a.k.a
STRIKE-GOLDD).

3.1.1. Structural Identifiability: Julia Library. The first method to realize structural non-
identifiabilities is using the Julia Library Structural Identifiability. The code relies on the
method outlined in Dong et al. [8], viewing structural identifiability as the central differential
elimination problem. In an arbitrary scientific problem, there exist state variable X, observ-
able (or output), y, and input u related by Eq. (1). Of principal interest is the determination
of the input-output relations which is performed by an elimination algorithm. In addition,
the structural identifiability algorithm (Algorithm 5.3 [8]) probabilistically determines the
sufficiency of the relations for local and global identifiability.

3.1.2. GenSSI. GenSSI is a Matlab tool box using the generating series method [36] of
structural identifiablity coupled with the accessible interpretation of identifiability tableaus
[2]. Generating series method is an extension of the Taylor Series method [26] approach.
The Taylor series approach seeks to determine the Taylor series of the observable in terms
of the inputs around the initial values. Given a system of equations for these coefficients, if
there does not exist a unique-solution (rank deficiency), then non-identifiability is detected.
However the complexity of the algebraic parameters relations, the failure to know to what
extend the Taylor series must be taken, and the lack of insight into local identifiability render
this method not preferable. The generating series method similarly calculates coefficients of
the observables in series expansion with respect to time and inputs in such a way that the
coefficients of this series are the output functions h(x,Θ, t) and their Lie derivatives with
respect to f,g from Eq. (1).
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Definition 2. The Lie derivative of a function h : M → R on manifold M with respect to
vector field Y of a point p ∈ M on flow γ(t) is given by,

(3) (LY h)(p) = lim
t→0

h(γ(t))− h(p)

t
=

nX∑
i=1

Yi
∂h

∂xi

Calculating the Lie derivatives and the resulting set of non-linear algebraic equations will
require systemic computation of identifiability tableaus to discern identifiability problems.
The tableau is simply the Jacobian of the coefficients of the generating series expansion
(the Lie derivatives taken to an a priori order) taken over the parameters, and the non-zero
elements are shaded. If the Jacobian is rank-deficient, this indicates that the corresponding
system of equations does not have a unique solution, causing non-identifiability. Such a
deficiency can be visually seen by an “empty-column” of a parameter. On the other hand, if
there is a unique element in a column, this means that the parameter is globally structurally
identifiable. As such, continuing a series of reductions will elucidate the globally identifiable
and non-identifiable solutions. Once the final tableau is reached, there are either several
meaningful solutions, indicating local identifiability, or none, indicating non-identifiability.

3.1.3. STRIKE-GOLDD. STRIKE-GOLDD is another Matlab toolbox that determine iden-
tifiability using the concept of observability, introduced by Kalman for linear models [16].
For a non-linear vector system, we use Lie derivatives (Definition 2) creating observablity
matrix [35] for a system Eq. (1):

O(x) =



(
∂
∂x
g(x)

)⊺(
∂
∂x
(Lf g(x))

)⊺(
∂
∂x
(L2

f g(x))
)⊺

...(
∂
∂x

(
Ln−1

f g(x)
))⊺


for n state variables. Then the Observability Rank Condition (ORC) formulates that the
parameters of the system are locally identifiable if rank(O(x)) = n [34]. To determine which
parameters are causing non-identifiability, we sequentially remove them from the observabil-
ity matrix and recalculate rank.

3.2. Results of Structural Identifiability Analysis for Notch Model. We implement
the aformentioned structural identifiability methods to the ODE system governing the notch
model (enumerated in Appendix C) using the corresponding python and MATLAB tools.
Due to the probabilistic nature of the Julia method and the necessity of immense compute
to calculate higher Lie series in the other two methods, we compare the results of all three
to derive theoretically sound council before proceeding.

First consider the use of StructrualIdentifiability.jl. We provide the results given all of the
observables and fixing subsets of non-identifiable parameters. Note that the parameters are
provided in two lines. The results are Table 3:
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Parameter kfdllN kpR2 kdpR2 krdllN Km kcat kdegNICD kdegNotch kdegDll4 kpDll teta kdegHes1 KpHes

✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

kcat fixed ✓ ✓ ✓ ✓ ✓ – ✓ ✓ ✓ ✓ ✓ ✓ ✓

kcat, kdegiR2 fixed ✓ ✓ ✓ ✓ ✓ – ✓ ✓ ✓ ✓ ✓ ✓ ✓

Parameter tetaHe koncis kdegJag krjagNotch krcis kfjagNotch KpJag tetaJag kdegpR2 kdegiR2 Gs kformNotch kp

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗

kcat fixed ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗

kcat, kdegiR2 fixed ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ ✓ ✓

Table 3. Identifiability results of the Notch model fixing different
observables and parameters. ✓ indicates local identifiability; ✗ indicates
non-identifiability.

Observe that initially, the system is structurally non-identifiabiale. However after fixing
both kcat, kdegiR2, the system becomes identifiable. Hence, for the purposes of the SBINN
model, to have a fit of the other parameters we must use the nominal values for kcat, kdegiR2

found in [25] and [32] respectively.
Now consider the results of the GenSSI implementation. We choose eight orders of Lie

Derivatives to determine the Jacobian to have maximal accuracy, and note that further
orders do not imply much change. Running identifiability on all of the parameters initially,
we observe the following identifiability tableau Fig. 3.

Figure 3. Identifiability Tableau from GenSSI. The parameters are
given on the horizontal axis and their appearance in the Lie derivative ex-
pansion is indicated by shading of the Jacobian matrix.

Due to the lack of shaded squares in the columns of Fig. 3 corresponding to: kdegHes1,
KpHes, tetaHe, koncis, kdegJag, krjagNotch, krcis, kfjagNotch, KpJag, tetaJag, kdegiR2, kp we
conclude their non-identifiability. Given this information, we can eliminate these parameters
and re-frame the system down for the reduced first-order tableau in Fig. 4.

In Fig. 4, observe there are no further non-identifiable parameters. Moreover, consider
parameters: kpR2, kdpR2, and kdegpR2. kpR2 is globally identifiable, as it is the only pa-
rameter that appears in the degree one Lie derivative Jacobian. Removing this parameter,
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kdpR2 is identifiable as it is the only one that appears in degree three. Again removing
this parameter, kdegpR2 is identifiable as it appears in the degree 2 coeffecient. Hence we
see that these three parameters are globally identifiable. The final resultant tableau is the
second-order tableau Fig. 4.

Figure 4. Reduced First and Second Order Identifiability Tableau
from GenSSI. The resulting shading of the Jacobian matrix once non-
identifiable parameters from the previous order tableau are fixed and Lie
derivatives are recalculated.

There are no new clear non-identifiable or globally identifiable parameters, and the rest
of the parameters are not locally identifiable due to a rank deficient system of equations.
Hence, the identifiability summary of GenSSI, becomes Table 4:

Parameter kfdllN kpR2 kdpR2 krdllN Km kcat kdegNICD kdegNotch kdegDll4 kpDll teta kdegHes1 KpHes

Identifiability ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Parameter tetaHe koncis kdegJag krjagNotch krcis kfjagNotch KpJag tetaJag kdegpR2 kdegiR2 Gs kformNotch kp

Identifiability ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗

Table 4. Structural identifiability results from GenSSI.

Finally we consider the application of STRIKE-GOLDD software with summary results
in Table 5:

Parameter kfdllN kpR2 kdpR2 krdllN Km kcat kdegNICD kdegNotch kdegDll4 kpDll teta kdegHes1 KpHes

Identifiability ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Parameter tetaHe koncis kdegJag krjagNotch krcis kfjagNotch KpJag tetaJag kdegpR2 kdegiR2 Gs kformNotch kp

Identifiability ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗

Table 5. Structural Identifiability of Notch model with STRIKE-
GOLDD.

Curiously, we observe that the results of STRIKE-GOLDD and StructuralIdentifiability.jl
are the exact same when all assumed observables are given and no additional parameters are
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fixed. However, there are severe differences between GenSSI and the other two. We suspect
this may be due to the initial conditions and non enough orders of Lie derivative calculated
(an issue that requires significantly more computational power), hence we proceed with the
results of StructuralIdentifiability.jl and STRIKE-GOLDD methods.

4. Parameter Estimation from Systems-Biology Informed Neural Networks

4.1. Neural Networks in PDE Modeling. Partial Differential Equations (PDEs) are
ubiquitous in governing physical systems and are integral to modeling problems in diverse
fields from systems-biology to economics [10]. However, standard numerical methods are
either inaccurate or too computationally intensive, and machine learning (ML) has shown
promise in universal function approximation. Specifically, physics-based methods such as
Physics-Informed Neural Networks embedding physical constraints have shown wide impli-
cations. Here we introduce the field of physics-based ML of relevance to our model.

4.1.1. Deep Learning. There are several architectures in Deep Neural Networks that maybe
employed, however we begin with a consideration of feed-forward Neural Networks (FNNs).
We denote a L-layer FNN (see Fig. 5), with (L − 1) hidden layers and an output layer, by
N L(x) : Rdin → Rdout , where din, dout are the dimensions of the input and output, respectively.
Layer l contains Nl neurons (note N0 = din, NL = dout). Each layer is fed input from the
previous layer and is transformed according to affine transformation T l(x) = Wlx+ bl and
non-linear function σ. That is,

N l(x) = TL ◦ σ ◦ T (L−1) ◦ · · · ◦ σ ◦ T 1(x).

There are several possible choices for the activation function such as hyperbolic tangent or
sigmoidal. We employ the swish activation function [28] in our methodology.

Figure 5. FNN Architecture. Input layer, t; hidden layers, with weights
Wl, bias bl, and activation σ); and output layer. Figure adapted with per-
mission [7].

4.1.2. Physics-Informed Neural Networks (PINNs). Physics-informed Neural Networks (PINNs)
were introduced in [27] by Raissi et al., employing neural network architecture to learn the un-
derlying physics of a system through data and partial differential equations (PDEs). PINNs
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embed the PDE residual as a soft constraint by including it to the loss function of the base
neural network, and the gradient is computed via automatic differentiation.

PINNs are well suited for so-called “inverse problems.” Inverse problems in PDEs consist
of reconstructing some part of a PDE (such as a coefficient, a boundary condition, an initial
condition, the shape of a domain, or a singularity) from partial knowledge of solutions to
the PDE [3]. Begin by defining an inverse problem over domain Ω ⊂ Rd,

F [u(x); γ(x)] = 0, x ∈ Ω

with boundary conditions,
B[u(x)] = 0, x ∈ ∂Ω

where F is a system of PDE operators and B is the boundary operator. The system yields
vector solution u(x) and some optimal γ. This function, mapping, or parametrization γ is
the core of the inverse paradigm and the quantity of interest (QoI). We search for the best γ
by minimizing an objective function J that depends on û and γ̂. The inverse design problem
is formulated as an optimization problem:

min
u,γ

J (u; γ).

To use PINNs, we employ n FNNs û(x;θu), γ̂(x;θγ) to approximate u, γ where θu,θu is
the set of trainable parameters in the network. The network takes the coordinates x as the
input and outputs the approximate solution û(x). The loss quantifies the innate constraint
of the PDE through sampling of M residual points over the N PDEs as,

LF(θu,θγ) =
1

MN

M∑
j=1

N∑
i=1

|Fi [û(xj); γ̂(xj)]|2 ,

where {x1,x2, . . . ,xM} are a set of M residual points in the domain Ω, and |Fi [û(xj); γ̂(xj)]|
measures the discrepancy of the i-th PDE Fi[u; γ] = 0 at the residual point xj.
The training of such a neural network follows identical to a regular FNNs with appro-

priate optimizers (SGD, Adam, L-BFGS, etc...) and regularization techniques prevalent in
standard machine learning to approximate u(x). Through classical methods, we recover an
approximation of the PDE solution u and determine the unknown quantity of interest γ to
arbitrary convergence.

4.2. Systems-Biology Informed Neural Network (SBINN). SBINN was proposed in
[39], using systems-biological models as ODE systems for PINN architectures. Given a
system described in Eq. (2), the aim is to use neural networks of parameters θ (not to be
confused with parameters Θ of the dynamic system) that take time t as input and act as a
surrogate model, outputting state variables x̂(t;θ) = (x̂1(t;θ), x̂2(t;θ), · · · , x̂n(t;θ)) in place
of ODE solution x(t). In addition to the core DNN, the SBINN architecture also has an
Input-scaling layer, a Feature layer, and an Output-scaling layer (Fig. 6).

• Input-scaling layer: The input time domain varies my many orders of magnitude, so
linearly scaling the time component via t̃ = t/T for some predefined T or normalizing
T such that t ∼ O(1).

• Feature layer: In many systems models, the ODE solution will have specific patterns
(e.g. periodicity). To construct a better surrogate, it is beneficial to use a feature
layer incorporating these patterns as hard conditions. We do this by adding functions
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e1, e2, . . . , eL for corresponding features e1(t̃), e2(t̃), . . . , eL(t̃). This method just helps
the model fit, and the choice and necessity of the functions is problem-dependent.

• Output-scaling layer: The state variables in the output are also of varying mag-
nitudes, so we scale the output of the hidden layers x̂1, x̂2, . . . , x̂S (of order 1) by
k1, k2, . . . , kS respectively, where ki is the mean value of xi.

Figure 6. Neural network architecture for SBINNs [39]. The input is
scaled to order one, fed into a feature layer for projection, run through a FNN,
and scaled for proper output. Figure adapted with permission [7].

To train the neural network, we must enforce convergence of both the state variables
and the ODE predicted dynamics (the systems-biology portion). We define a loss function,
computing the mean square error of the neural network predictions and the desired behav-
ior over provided observations at times t1, t2, . . . , tNdata and the ODE predictions at times
τ1, τ2, . . . , τNdata .

For the definitions of the loss functions, we use the notation from Eq. (1). Usually for
observation of biological systems, the set of observables is a subset of the state variables,
with Gaussian noise. That is, y = xs + ϵ, where xs is a subset of the state variables X.
Then the output of the neural network model is x̂s. First, we define Ldata for M sets of
observations of y:

Ldata(θ) =
M∑

m=1

wdata
m

 1

Ndata

Ndata∑
n=1

(ym(tn)− x̂sm(tn;θ))
2

 .

for trainable parameters θ and weights wdata
i for 1 ≤ i ≤ m. Similarly, we define a loss for

the dynamics of the state variables, Lode, over sampled times,

Lode(θ,Θ) =
S∑

i=1

wode
s

 1

N ode

Node∑
n=1

(
dx̂i

dt
|τn − fi (x̂i(τn;θ), τn;Θ)

)2
 .

We use Automatic differentiation (AD) [21] to compute the derivative dx̂s

dt
|τn . Finally, define

the auxillary loss function to include additional infromation of system identification. In this
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case, we assume the measurements of the state variables at two times T0, T1, and calculate:

Laux(θ) =
S∑

i=1

waux
s

(xi(T0)− x̂i(T0;θ))
2 + (xi(T1)− x̂i(T1;θ))

2

2
.

Therefore the final loss function is:

L(θ,Θ) = Ldata(θ) + wodeLode(θ,Θ) + wauxLaux(θ).

Observe that the inclusion of system parameters Θ allows for the model to train these
parameters as well in inverse fashion. Note the weights are chosen such that each loss
function has same order of contribution to the total loss function.

Now that the loss function is set up, we want to optimize the parameters: both θ,Θ of
the neural networks and the system dynamics respectively. To minimize the loss function,
we use a gradient-based optimizer such as Adam [18]:

θ∗,Θ∗ = argmin
θ,Θ

L(θ,Θ).

This method yields both a PINN prediction solution (using the trained model) as well as
an inferred solution from the trained system parameters.

4.2.1. Warm-Starting. In this methodology, we employ warm-starting PINNs (WS-PINNs)
and transfer learning to achieve better convergence of results in a our high dimensional
system. Training of WS-PINNs models are divided into two stages. Initially, a DNN is
trained only on our synthetic observable data without considering the constraints form the
underlying ODE system. This is the ’warm-up’ stage for the data which helps the network
converges more quickly since physics-based additional loss terms do not need to be computed
while simultaneously approximating a solution. For low resolution data, iterations of data
warm-up prevent PINN overfitting. In the case of high resolution data (as is our synthetic),
too many iterations of warm-up may compromise the PINN resolution required to elucidate
the hidden dynamics. In this work, we use warm the data on the order of magnitude of 104

iterations. Once the warm-up stage is complete, we transfer the model to be trained now
with the additional loss functions. Here, the model tunes to the physics of the system to
improve accuracy and generalization.

4.3. Implementation and Results of SBINNs for Notch Model. To apply the SBINN
methodology to the Notch model, we use the Python open source library DeepXDE [21] with
a TensorFlow computational backend.

After obtaining a set of data for training, we begin by employing a transfer learning ap-
proach to ensure that our eventual SBINN has weights closer to the solution in the loss
landscape. For this paper, we train this model to predict only the structurally and prac-
tically identifiable parameters kfDllN, kpR2, kdegNotch, kdegDll4, θ, kdegNotch, and kdegpR2.
The transfer learning model is a parallel FNN that utilizes independent sub-networks for
each network output. The architecture consists of 8 layers: an input layer, 6 hidden layers
with 128 neurons each, and an output layer with 22 neurons corresponding to the desired
predicted outputs. The swish activation function is employed to mitigate the dying ReLU
problem during early training stages. Additionally, L2 regularization is applied to the data,
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with a regularization parameter λ = 10−8, considering the scale of the data. The regular-
ization parameter is kept small, as proper training will be conducted after the completion of
this base model.

Data-driven techniques are utilized to shape the feature and output transformations. Prior
to passing the input data x⃗ to the model, it undergoes a transformation defined by f(x⃗) =
ln
(
x⃗+ 1

e

)
. The logistic function allows for increased differentiation of smaller numbers. For

the output transformation, we select a value b from the training data for Dll4c1 to implement
a hard constraint based on the initial conditions. Before outputting the model’s vector y⃗, it
is flattened and transformed using o(t, x⃗) = b + tanh

(
t

500

)
(abs(x⃗) − (1 + b)), where abs(x⃗)

returns the component-wise absolute value of a tensor, as the values of interest cannot be
negative. The tanh function is employed to avoid a significant jump at time t = 1, ensuring
that early time points are not overemphasized.

Finally, the weights are initialized according to the Glorot normal distribution [13]. The
model is then trained first in the warm-starting phase and then transferred to the physically
constrained phase. The results of training these variables are presented in Appendix A, and
we show the ones with data here. We can see that the model fits relatively well in Fig. 6.
The loss curves are displayed in Fig. 10 indicating promising results as to the convergence
of the system after the initial warm-up phase.
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Figure 6. Forecasts of (A) Hesc1, (B) NICDc1, (C) Notch1c1, (D) pR2c1, and
(E) R2c1 predicted by the SBINN model.

Parameter extraction has not yet reached desired precision. Due to the large magnitude of
the system in question, as compared to previously successful parameter identification tasks
[7], we conclude that our methods here are not yet adequate to tackle the larger problem.
We are actively pursuing such a solution expanding upon this outlined methodology.

Practical Identifiability

Practical identifiability concerns the quality of the training data. After training, the in-
ferred parameters may have infinite confidence intervals. Practical identifiability specifically
determines the sensitivity of the parameter values to noise in the data and is performed a
posteriori.

Definition 3. Fisher Information is the measure of the amount of information that an
observable random variable X carries about an unknown parameter Θ upon which the prob-
ability of X depends:

I(θ) = −E

[
∂2

∂θ2
log f(X; θ)

∣∣∣∣ θ

]
,

given probability density function f(X; θ). The Fisher Information Matrix (FIM) is given
as: [

I(θ)
]
i,j

= E

[(
∂

∂θi
log f(X; θ)

)(
∂

∂θj
log f(X; θ)

) ∣∣∣∣ θ

]
.

FIM can be used in two analyses: first is determine the correlation matrix of parameters
and the second is to determine null eigenvalues (those with zero eigenvector) of the FIM.

The correlation matrix, R, is calculated from the FIM matrix, called FIM, as:

Rij =
FIM−1

ij

FIM−1
ii

.

|Rij| ≈ 1 indicates high correlation between two parameters and and indicates that the
parameters are not individually identifiable between each other.
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Next, we compute null eigenvalues and eigenvectors of FIM. If the value of a component
and all other components are approximately zero, the associated parameter has little to no
effect on state variables and is therefore practically unidentifiable from the dataset.

4.4. Sensitivity. Sensitivity is another method of practical identifiability analysis that de-
termines the impact of uncertainty in the inputs of a model on quantities of interest. In
this study, we consider the impact of artificial noise in the observable data on the param-
eter specification to understand how well a parameter is able to converge. There are two
classifications of sensitivity analysis methods: local and global.

The most common local sensitivity analysis method is One-at-a-time (OAT) analysis.
Local sensitivity for some parameter θk for a model f(x, θ) is generally approximated via ∂f

∂θk
already at the pre-determined solution using stanard OAT methods.

However, when we are in midst of training and only have access to a range of possible
parameter solutions, global sensitivity must be employed. We use variance decompositions
of the parameter estimates (using ANOVA or the likes) and calculate Sobol coefficients [31].
The higher the coefficient, the more a parameter is impacted by noise in input data and
thereby it has a higher ability to train.

We propose two ideas for employing sensitivity, not only as a posteriori measure, but as
an integrated portion of the pipeline. First is to vary the learning rate of various parameters
in accordance to their Sobol coefficient in order to accelerate training of certain parameters
while preventing non-convergence of others. The second is to halt training of certain param-
eters once convergence has been achieved in order to devote computational power to slower
parameters.

4.5. Practical Identifiability Analysis of Notch Results. We implement Practical
Identifiability in Julia and generate the FIM and correlation matrix. The parameter in Fig. 7
are enumerated starging from 0: kfdllN, kpR2, kdpR2, krdllN, Km, kcat, kdegNICD, kdegNotch,
kdegDll4, kpDll, teta, kdegHes1, KpHes, tetaHe, koncis, kdegJag, krjagNotch, krcis, kfjagNotch, KpJag,
tetaJag, kdegpR2, kdegiR2, Gs, kformNotch, kp

Figure 7. Correlation matrix of parameters from FIM.
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From the correlation matrix, we see that there exist certain pairs of parameters that are
correlated (e.g koncis, kdegjag). This allows us to infer that if a parameter fit to the assumed
value (via other literature and knowledge of the system), then the paired value can be
inferred to fit as well. For the general practical identifiability of the system, we consider the
Eigenvalue analysis of the FIM, Fig. 8.

Figure 8. Null eigenvector analysis. (A) Eienvalues of the FIM, (B)
Eigenvector for first null eigenvalue, (C), Eigenvector for second null eigen-
value.

From the upper graph of Fig. 8, we observe only two null eigenvalues. From there, we
determine the eigenvectors as the left and right figures. KformNotch may not be identifiable
according to Eigenvector Analysis 0. Due to the large component in the eigenvector, we
can infer the sensitivity is smaller. Furthermore, KdegNICD may also not be identifiable,
but other components are also quite large so it is hard to confirm. For the purpose of this
analysis, we take KformNotch as the practically non-identifiable prediction. Indeed, thus far,
we have not been able to train to recover this parameter.
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5. Conclusion

Solving the inverse problem of the Notch model, we recover parameter governing the
neurogenesis processes. This information has the potential to identify key factors influenc-
ing neurogenesis, such as gene expression patterns or signaling pathways, which can guide
experimental design and lead to targeted interventions.

We invite the community to continue our research in forecasting and estimating the param-
eters of the Notch model using the SBINN and employing other machine learning techniques
to improve accuracy. We are considering methods such as: additionally sensitivity-based
methods, regularization, and adding artificial constraints that have proven to increase train-
ing accuracy and efficiency in other contexts.

While the current SBINN architecture has shown promise in modeling neurogenesis, it is
important to explore modern architectures, such as Physically Informed Transformers (PIN-
Nformers) [40] and Kolmogorov-Arnold Networks (KANs) [20], to enhance the modeling
capabilities. PINNformers, which combine physics-informed neural networks with trans-
former architectures, have shown potential for modeling sequential time-based data. This
type of work has been considered in [30], where they specifically evaluated the performance
and output of KANs against PINNs. They utilize a new architecture to solve these prob-
lems. However, KANs currently face challenges in training speed due to CUDA not being
optimized to train them in parallel compared to the current state-of-the-art MLPs. Combin-
ing different architectures and techniques could lead to a more comprehensive and accurate
modeling approach for neurogenesis.

Consequently, interdisciplinary collaboration between computational modelers and neuro-
scientists is crucial to advance our understanding of neurogenesis. Close collaboration allows
for a better understanding of the biological problem at hand and ensures that computa-
tional models are grounded in experimental evidence. Neuroscientists can provide valuable
insights into the relevant biological processes, help identify key questions to address, and
guide the selection of appropriate modeling approaches. In turn, computational models can
generate testable hypotheses and guide the experimental design, leading to a more targeted
and efficient biological research process.

Acknowledgements

Alex Huang, Kartik Ramachandrula, Agniv Sarkar, and Lu Lu kindly thank the MIT
PRIMES program under which this research was conducted. We also thank the Emergent
Ventures fund for their generous grant.



AUGMENTED SYSTEMS-BIOLOGY INFORMED NEURAL NETWORKS FOR NOTCH PATHWAY 19

References

[1] Jessica L Ables, Joshua J Breunig, Amelia J Eisch, and Pasko Rakic. Not(ch) just development: Notch
signalling in the adult brain. Nature Reviews Neuroscience, 5:269–283, 5 2011.

[2] Eva Balsa-Canto, Antonio A Alonso, and Julio R Banga. An iterative identification procedure for
dynamic modeling of biochemical networks. BMC systems biology, 4:1–18, 2010.

[3] Liliana Borcea, Thorsten Hohage, and Barbara Kaltenbacher. Computational inverse problems for par-
tial differential equations. Oberwolfach Reports, 17(4):1903–1954, 2020.

[4] Daipeng Chen, Zary Forghany, Xinxin Liu, Haijiang Wang, Roeland M.H. Merks, and David A. Baker.
A new model of notch signaling: Control of notch receptor 2 cis-inhibition via notch ligand dimers.
bioRxiv, 5 2022.

[5] Oana-Teodora Chis, Julio R Banga, and Eva Balsa-Canto. Genssi: a software toolbox for structural
identifiability analysis of biological models. Bioinformatics, 27:2610–2611, November 2011.

[6] Oana-Teodora Chis, Julio R Banga, and Eva Balsa-Canto. Structural identifiability of systems biology
models: a critical comparison of methods. PLoS ONE, 6(11):e27755, November 2011.

[7] Daneker, Mitchell and Zhang, Zhen and Karniadakis, George Em, and Lu, Lu. Systems biology: Iden-
tifiability analysis and parameter identification via systems-biology informed neural networks, 2022.

[8] Ruiwen Dong, Christian Goodbrake, Heather A Harrington, and Gleb Pogudin. Differential elimination
for dynamical models via projections with applications to structural identifiability, 2022.

[9] Franz Oswald et al. p300 acts as a transcriptional coactivator for mammalian notch-1. Molecular and
Cellular Biology, 21:7761–7774, 11 2001.

[10] Benjamin Fan, Edward Qiao, Anran Jiao, Zhouzhou Gu, Wenhao Li, and Lu Lu. Deep learning for
solving and estimating dynamic macro-finance models. Computational Economics, pages 1–37, 2024.

[11] GarethW Fearnley, Gina A Smith, Izma Abdul-Zani, Nadira Yuldasheva, Nadeem AMughal, Shervanthi
Homer-Vanniasinkam, Mark T Kearney, Ian C Zachary, Darren C Tomlinson, Michael A Harrison, et al.
Vegf-a isoforms program differential vegfr2 signal transduction, trafficking and proteolysis. Biology open,
5(5):571–583, 2016.

[12] Jason E Fish, Manuel Cantu Gutierrez, Lan T Dang, Nadiya Khyzha, Zhiqi Chen, Shawn Veitch,
Henry S Cheng, Melvin Khor, Lina Antounians, Makon-Sébastien Njock, Emilie Boudreau, Alexan-
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Appendix A. Figures

Here, the inferred solution is the solution obtained after the forward pass of a model solver.
PINN prediction is the forward pass of our model. Reference solution is generated from our
data, and inferred solution is the solution that the final neural approximation of the system.

Figure 9. Predictions for other parameters which describe the system.
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Figure 9. Predictions for other parameters which describe the system.
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Figure 9. Predictions for other parameters which describe the system.

The loss curve during the training process of the transfer learning model is illustrated in
Fig. 10. After completing the transfer learning phase, we proceeded to train our final SBINN
model. The architecture of this model is the same as the transfer learning model, though this
time with the added loss from the ODE residuals. The training process of the final SBINN
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model yielded promising results. The loss curve during training of the SBINN is presented
in Fig. 10.

Figure 10. Loss Curves During the training of the transfer learning model
(left) and during the training of the SBINN (right).

Appendix B. Notch Model Parameters, Observables, and State Variables

The Notch model has five observables, 22 state variables, and 26 parameters. As Notch
is a singaling pathway, half of the state variables correspond to cell one (c1) while the other
half correspond to cell two (c2) indicated by subscript.
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Observability State Variable Description

✓ pR2 Production rate of R2 non-long terminal repeat retrotrans-
posons

✓ R2 Steady-state concentration of R2

✓ Notch1 Concentration of the Neurogenic locus notch homolog pro-
tein 1 (NOTCH1) receptor

✓ Hes Expression level of the Hes gene

✓ NICD Total concentration of NICD

✗ Dll4 Concentration of the DLL4 (Delta-like 4) ligand [12]

✗ Dll4Notch1 Complex formed by DLL4 ligand and NOTCH1 receptor

✗ Jagged1 Concentration of Jagged1 [17]

✗ JagNotch Complex formed by Jagged ligand and Notch receptor

✗ Notchjagc2 Activation level of Notch receptor on cell 1 by Jagged ligand
from cell 2

✗ V Volume of cell

Table 6. Observables and non-observable state variables of the
Notch model. There are 11 distinct species, and each occur in both of
the cells of the signaling pathway. The species are differentiated by subscript
in subsequent equations.
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Name Value Units Definition

kfdllN
0.0001 [29] mmol−1s−1 Forward binding rate constant for the Delta-like (Dll) ligand binding onto the

Notch receptor (N)

kpR2
0.3874 [38] mmol−1s−1 Production rate constant for the R2 DNA element

kdpR2
0.001 [38] s−1 Degradation rate constant for R2

krdllN 0.019 [29] s−1 Reverse binding rate constant describing the dissociation of the Delta-Notch

complex

Km 0.045 [25] mmol Michaelis constant, representing the substrate concentration at which the
reaction is half its maximum rate

kcat 0.2386 [25] s−1 Catalytic rate constant, representing the maximal number of molecules of

substrate converted to product per active site per unit time

kdegNICD
0.002677 [4] s−1 Degradation rate of the Notch Intracellular Domain (NICD)

kdegNotch
0.001995 [4] s−1 Degradation rate of Notch receptors on the cell membrane

kdegDll4
0.0001 s−1 Degradation rate of the Delta-like 4 (Dll4) ligand

kpDll
0.0161 mmol Production rate of the Dll protein

teta 2.3607 mmols−1 Threshold concentration for Notch signaling activation

kdegHes1
0.8 s−1 Degradation rate of hairy and enhancer of split-1 (HES1), a transcriptional

target of NICD

kpHes
0.04996 mmol Production rate of Hes1

tetaHe 100.0019 mmols−1 Threshold for HES1 activation, indicating the concentration required to ini-

tiate Hes transcription

koncis 8.4 · 10−4 [4] mmol−1s−1 Binding rate constant for cis-interactions between ligands and receptors on

the same cell

kdegJag 1.82 · 10−5 [4] s−1 Degradation rate of the Jagged ligand on the cell membrane

kfjagNotch
0.019 [29] s−1 Forward binding rate constant for Jagged binding to Notch receptors in trans-

interactions

krcis 0.033238524 [4] s−1 Reverse binding rate constant for cis-interactions

kpJag
0.1 mmol Production rate of the Jagged ligand

tetaJag 0.4999 mmols−1 Threshold for Jagged-Notch signaling, signifying the concentration required

for signal transduction

kdegpR2
0.0009 [38] s−1 Degradation rate of mRNA

kdegiR2
5.06 · 10−4 [32] mmol−1s−1 Degradation rate of the immediate cytosolic protein iR2

Gs 0.01495 mmol Concentration of gamma secretase, an integral membrane protein

kformNotch
0.001 mmols−1 Rate constant for Notch receptor formation on the cell membrane

kp 1 mmol A general production rate

Table 7. The initial estimates of the 26 parameters in the Notch
model, with units and definitions included for concreteness. Parameters with-
out citations were fit by conventional numerical methods.

Appendix C. Notch Model Equations

Here we provide details on the ODE system governing the Notch signaling pathway. The
rate of change of the species (state variables) are given as functions of other state variables
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as shown here:
d[Dl4c1 ]

dt
= −

(
kf ·Dl4c1 ·Notch1c2 + kr ·Dll1Notch1c2

)
−

(
kf ·Dl4c1 ·Notch1c1 + kr ·Dll4Notch1c1

)
d[Notch1c1 ]

dt
= −

(
kf ·Dl4c2 ·Notch1c1 + kr ·Dll4Notch1c1

)
−

(
kf ·Dl1c2 ·Notch1c1 + kr ·Dll1Notch1c1

)
d[Dl4Notch1c1

]

dt
=

Gs · kcat ·Dl4c1 ·Notch1c1
Km +Dl4Notch1c1

−
tetAhe ·Hes1c1c2
Kp +NICDc1c2

d[NICDc1 ]

dt
= −

tetAhe ·Hes1c1c2
Kp +NICDc1c2

d[Jagged1c1 ]

dt
= −kdegJag · Jagged1c1 −

(
koncis · Jagged1c1 ·Notch1c1 + koncis · JagNotchc1

)
d[JagNotchc1

]

dt
= koncis · Jagged1c1 ·Notch1c1 + koncis · JagNotchc1

d[Notchjag2c1
]

dt
= kf · JagNotchjagc1c1

·Notch1c2 + kr · JagNotchjagc1c1

−
(
kf ·Dl1c2 ·Notch1c1 + kr ·Dll1Notch1c1

)
d[pR2c1 ]

dt
= kp ·R2

2 · V − kdp ·R2 · pR2c1 − kdegpR2 · pR2c2

d[Vc1 ]

dt
= kp ·R2

2 · V − kdp ·R2 · pR2c1

d[Dl4c2 ]

dt
= −

(
kf ·Dl4c2 ·Notch1c1 + kr ·Dll4Notch1c1

)
−

(
kf ·Dl4c1 ·Notch1c2 + kr ·Dll4Notch1c2

)
d[Notch1c2 ]

dt
= −

(
kf ·Dl4c2 ·Notch1c2 + kr ·Dll4Notch1c2

)
−

(
kf ·Dl1c2 ·Notch1c1 + kr ·Dll1Notch1c1

)
d[Dl4Notch1c2

]

dt
=

Gs · kcat ·Dl4c2 ·Notch1c2
Km +Dl4Notch1c2

−
tetAhe ·NICDc2c2

Kp +NICDc2c2

d[NICDc2 ]

dt
=

tetAhe ·NICDc2c2

Kp +NICDc2c2

− kcat ·Dl4c2 ·Notch1c2

d[Jagged1c2 ]

dt
= −kdegJag · Jagged1c2 −

(
koncis · Jagged1c2 ·Notch1c2 + koncis · JagNotchc2

)
d[JagNotchjagc1c2

]

dt
= kf · JagNotchjagc1c2

·Notch1c2 + kr · JagNotchjagc1c2

−
(
kf ·Dl1c1 ·Notch1c2 + kr ·Dll1Notch1c2

)
d[pR2c2 ]

dt
= kp ·R2

2 · V − kdp ·R2 · pR2c2 − kdegpR2 · pR2c1

d[Vc2 ]

dt
= kp ·R2

2 · V − kdp ·R2 · pR2c2
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