THE WARPED TENSOR PRODUCT OF FROBENIUS ALGEBRAS

ROHAN DAS

ABSTRACT. Frobenius algebras were first studied in the 1930s due to their importance to the repre-
sentation theory of finite groups. Recently, they have returned to popularity because commutative
Frobenius algebras correspond exactly to two-dimensional Topological Quantum Field Theories,
which combine the principles of classical field theory, special relativity, and quantum mechanics. In
this paper, we introduce the warped tensor product and use it to build new symmetric monoidal
structures on Frobenius algebras.

1. INTRODUCTION

Frobenius Algebras. Frobenius algebras were first studied in the 1930s; roughly speaking, they
are vector spaces equipped with multiplication, a multiplicative identity, and a pairing, which we
more concretely define in Section 2. Their initial applications were in the representation of finite
groups, partly because group algebras are Frobenius. Around a decade later, Nakayama discovered
a duality theory in [Nak39] and [Nak41] that widely expanded the applications of Frobenius alge-
bras to topics such as homological algebra, algebraic geometry, combinatorics, and number theory.
More recently, they have been of particular interest because commutative Frobenius algebras are
equivalent to two dimensional Topological Quantum Field Theories (TQFTs).

TQFTs. We first loosely describe TQFTs over vector spaces. A d-manifold is a surface that locally
resembles the Euclidean space R? everywhere, and cobordisms are (d + 1)-manifolds that link some
d-manifolds, called the inboundary, to some others, called the outboundary. For example, shown
below is a cobordism; its inboundary is one circle and its outboundary is the disjoint union of two
circles.

(1.1)

Then, a TQFT associates d-manifolds to vector spaces and cobordisms up to diffeomorphism (a
topological equivalence) to linear maps. The choices of vector spaces must respect the multiplicative
structures: for manifolds-M; and Ms sent to Vi and V5, the disjoint union is sent to the tensor
product V; ® V5. Note that the cobordism in Diagram 1.1 is the gluing of the following cobordisms,
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where the right cobordism is itself a disjoint union of smaller cobordisms. Like for the d-manifolds,
the disjoint union of cobordisms must be given by the tensor product of the corresponding linear
maps. Additionally, the gluing of cobordisms should correspond to function composition.

TQFTs were first axiomatically defined by Atiyah in [Ati88]. Atiyah’s definition associated
manifolds to modules rather than vector spaces, and cobordisms to module elements rather than
linear maps. These choices are subject to additional axioms that better illustrate the connection
to physics; we briefly touch on this here and discuss the physics applications in more detail later
in this section. For now, two of the axioms require topological properties to be respected by the
choices, relating to relativistic invariance, while another two axioms give linear and multiplicative
structures, reflecting a quantum nature of the theory.

Higher dimensional TQFTs are extremely complicated. Their classification was conjectured by
the cobordism hypothesis in [BD95], suggesting an equivalence between TQFTs and underlying
categories formed by discarding noninvertible morphisms. A proof of the cobordism hypothesis has
been sketched in [Lur09]. However, lower dimensional TQFTs are both well understood and more
applicable.

For the case of two dimensional TQFTs, two key simplifications can be made. First, the only
2-manifolds are the circle, line, half-line, and unit interval, and the circle is the only one relevant to
the TQFT consideration. Therefore when assigning vector spaces to surfaces, one choice of V' for
the circle uniquely determines everything else (e.g. the disjoint union of 2 circles would be V @ V).
All that remains is to pick linear maps for the cobordisms. Second, diffeomorphism becomes a
much easier condition: any two cobordisms with the same inboundary, outboundary, and genus
(number of holes) are diffeomorphic. In fact, this reformulation of diffeomorphism is equivalent to
the relations on commutative Frobenius algebras, hence the correspondence between them.

Applications of TQFTs. Like other quantum field theories, TQFTs unify classical field theory
with the principles of special relativity and quantum mechanics. One key difference from other
such theories is that TQFTs are not very interesting in the typical consideration, flat Minkowski
spacetime, so instead we often consider them over Riemann surfaces. One particular similar con-
cept is the Conformal Field Theory (CFT), axiomatically defined in [Seg88]. The relationship is
detailed in [Dij89]. Essentially, they differ in which topological structure they preserve; while CFTs
additionally preserve a complex structure, TQFTSs preserve the more natural geometric concept of
orientation.

While they are primarily used by physicists, TQFTs also have a wide range of applications in
pure mathematics. Just to name a few, the properties preserved by the deformations of classical
objects can be understood via their (quantum) symmetries, TQFTs produce invariants of closed
manifolds, and three-dimensional TQFTs relate closely to knot invariants, especially the Jones
polynomial.

Generalizations to categories. Because Atiyah’s axioms define TQFTs from a module’s ele-
ments, they do not easily generalize to TQFTSs over a general monoidal category. However, we
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use a more modern definition which has been described earlier. It can be formalized as follows:
let Cobg_l denote the monoidal category of cobordisms up to diffeomorphism, with multiplica-
tion given by the disjoint union, and let Vect; denote the monoidal category of vector spaces
with multiplication given by the tensor product. Then a TQFT is a symmetric monoidal functor
Cobgf1 — Vecty. It is easy to generalize this definition to a general monoidal category C: a TQFT
is a monoidal functor Cobi1 — €. The exact conditions required of € used in this way varies;
it is usually symmetric or braided, often rigid, and frequently a tensor category. In this work, we
require that C is symmetric monoidal, as defined in Section 2.

This also gives an alternative realization of the connection to quantum relativity: as described
in [Koc04], the closed manifolds model space, the cobordisms model space-time, and the target
objects of € model state spaces. Again, the algebraic characterization of these topological objects
preserves their physical meaning. For example, the disjoint union is sent to the tensor product,
both of which represent the (combined) state space of two independent systems.

Finally, just like TQFTs, Frobenius algebras can be defined over monoidal categories. The defi-
nitions are entirely analogous, and by default Frobenius algebras are assumed to be over monoidal
categories, not always a field.

Twisted tensor products. The other items of interest are twisted tensor products, which were
first studied in [CSV95]. They aim to extend the algebraic realization of the product of two
topological spaces to noncommutative differential geometry.

Twisted tensor products were also extended to Frobenius algebras in [0024], and many impor-
tant Frobenius algebras were recovered from the twisted tensor products. For example, given a finite
group G acting on a finite group H by ¢ : G — Aut(H), the twisting map 7: g®@ h — ¢(g9)(h) ® g
recovers the group algebra k(H X, G) and its Frobenius structure as kG @, kH.

Motivation. To expand on how TQFTs model spacetime, moving from left to right along a cobor-
dism represents moving forward in time, while moving along a surface in the cobordism corresponds
to moving within space. However, TQFTs inherently have commutativity: paths that differ in ori-
entation, or even different orderings of multiple paths, would be considered the same. Therefore,
we seek to add noncommutativity through new multiplicative structures on them.

The typical means of adding noncommutativity is the twisted tensor product. However, since
that twists the algebra, an operation that lacks a clear topological meaning, we instead consider
modifications of the twisted tensor product. As explained in Section 3.1, the dual construction of the
twisted tensor product (the cotwisted tensor product) never builds nontrivial structures. Therefore,
we define the warped tensor product, a close modification of the twisted tensor product, and classify
when it preserves the Frobenius property. Ultimately, we use the warped tensor product to build
nontrivial symmetric monoidal structures on Frobenius algebras, and since these structures preserve
commutativity (of algebras, separate from the geometric commutativity we seek to remove), they
also hold over two-dimensional TQFTs.

We mainly focus on Frobenius algebras from here, but even though TQFTs will rarely be explic-
itly mentioned, they are central to and motivate this work. While we talk in terms of Frobenius
algebras, we define and build my constructions in a way such that most properties that hold
for Frobenius algebras automatically also hold for commutative Frobenius algebras, and therefore
TQFTs.

Main Results. First, we classify exactly when the warped tensor product of two Frobenius alge-
bras is Frobenius. This result is proved throughout Section 3. For vector spaces, the conditions
translate to the warp being multiplication by a central, invertible element of the tensor product
A® B.
The terminology used in the below theorems, as well as the rest of the paper, is detailed in
Section 2, and the notation is explained in Section 1.1.
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Theorem 1.1. Let (A,Va,n4,84) and (B,Vp,nB,B5) be Frobenius algebras over a symmetric
monoidal category €, with copairings aa and ap, respectively. Let v : B A — A® B be a
morphism in C with a two-sided inverse. Then the warped tensor product A ®. B is Frobenius if
and only if the warp decomposes as

v:BA 22 AB = AB1 Y ABAB Y AB,

for a morphism ¢ : 1 — A ® B accompanied by another morphism ¢* : 1 — A ® B that makes the
following diagrams commute.

1 _“Y" . ABAB AB Y, ABAB B . ABAB
(12 @M k2 [0 k2 }ml 2
ABAB —Y 3 AB ABAB —Y AB ABAB —Yy AB

Necessity follows from Lemmas 3.1, 3.2, and 3.4. Sufficiency follows from Lemmas 3.11 and 3.12.

Using the results of Theorem 1.1, we define new symmetric monoidal structures on the category
Frobe of Frobenius algebras over €, which are closed on the full subcategory cFrobe of commutative
Frobenius algebras.

Theorem 1.2. Let v be a collection of morphisms 4 : 1 — A in C that is warpable, as defined in
Definition 4.4, and let

=S 11vYa,B

Tap:AB — ABl —— ABAB Y% AB.
Consider the class of warps

YAB : BA 22 AB—>AB

Let X denote the warped tensor product A ®., B, and let o, X, p, and T denote the associativity,
unit, and commutativity constraints of €. Let I be the unit object 1 with Frobenius form e = id.
Then (Frobe,X, I, o, A, p,7) and (cFrobe,X, I, a, A, p, T) are symmetric monoidal categories if and
only if for all A, B,C € Frobe:

1®Ypc)Yaprec = (YTap®@1)Yuxpe; Yra=Yar=1, YTap=7Tpa.

The proof is given in Section 4.2.

Outline. In Section 2, we establish key definitions for Frobenius algebras that we use throughout
this paper. In Section 3, we define the warped tensor product and prove the statement of Theorem
1.1. In Section 4, we discuss implications of Theorem 1.1: first, we explore important properties
of Frobenius algebras that are preserved by the warped tensor product; then, we apply Theorem
1.1 to endow the category of Frobenius algebras, as well as its full subcategory of commutative
Frobenius algebras, with new symmetric monoidal structures, proving Theorem 1.2; finally, we give
a family of solutions to the constraints given in Theorem 1.2.

1.1. Notation. This paper will use the following notational conventions. Unless otherwise stated,
C is a symmetric monoidal category with a bifunctor ® (called the [standard] tensor product), unit
object 1, suppressed associativity constraints, unit constraints simply denoted =2, and commutavity
constraints ¢. In Sections 4.2 and 4.3, all constraints are suppressed. Except for in-line math,
tensor products ® are indicated by concatenation to save space. In particular, when we say AB in
a diagram, we refer to A® B. For an object A € G, the identity morphism is denoted as 14 : A — A,
although the subscript is omitted in diagrams to save space.
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For some multitensor X ® - - - ® X,,, we use g, to denote the map that sends X, to position X
by using the braiding o without changing the order of the rest of the objects. We explicitly define
Taa+1 = (1) Do (1)1 and

g = 0610 0b-2p-1 00 0aat1 < b
ab — .
Oppt1 O O0pg1hp420 - 00q-14a a>Db

Also, if a map is called invertible, it has a two-sided inverse. Lastly, Frobe denotes the category of
Frobenius algebras over a symmetric monoidal category €, while cFrobe denotes the full subcategory
of commutative Frobenius algebras. If something is called a Frobenius algebra without further
context, it is a Frobenius algebra over C.

2. PRELIMINARIES

In this section, we introduce definitions and useful information about Frobenius algebras; every-
thing presented here is already known.

2.1. Frobenius Algebras. Within this subsection, € denotes a symmetric monoidal category with
unit object 1. First, we present the definition of an algebra over a category.

Definition 2.1. An associative unital C-algebra is a tuple (A,V4,nm4), where A € € is an
object, and V4 : A® A — A and n4 : 1 — A are morphisms in € such that the following diagrams
commute, indicating left-unitality, right-unitality, and associativity.

14 "L A4 A1 T4 A4 AAA YA A4
(2.1) \‘ lvA \‘ lvA llVA lvA
- - ..
A A AA YA, 4

Throughout this paper, when we refer to an algebra, it is assumed to be associative unital.
To define a Frobenius algebra, also consider a pairing.

Definition 2.2. Let (A,V4,n4) be a C-algebra. A pairing is a morphism 54 : A® A — 1. It is
associative if the following diagram commutes,

AAA YA 44
(2-2) J/lVA lﬂA
AA —PA g

and it is nondegenerate if for some copairing a4 : 1 - A ® A, the following diagram commutes.

A—= 514 %Y 444

E

(2‘3) Al ! 184
llaA
AAA Pal A

Definition 2.3. A Frobenius algebra over C is a tuple (A, V4,74, 84) such that
(A,V4,n4) is a C-algebra and (4 is an associative, nondegenerate pairing.

The default multiplicative structure on Frobenius algebras is given by the standard tensor prod-
uct.
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Definition 2.4. Consider Frobenius algebras (A, V 4,714, 64) and (B, Vg, np, fB), with copairings
a4 and ap, respectively. Then the standard tensor product is (A® B, V,, 7y, B5) with copairing
Qa, as given below.

V,: ABAB %% AABB YAYE, A,
ne: 1= 11 M5 AR,

B, : ABAB 725 AABB 4%, 11 2, 1,
a1 5511 24%By AABB 7% ABAB.

Here, the subscript of ¢ is used because this is the trivial case of the warped tensor product.
We also use the following standard result, given as Example 3.2.31 in [Koc04].

Proposition 2.1. The category of Frobenius algebras with the standard tensor product is a sym-
metric monoidal category.

A notable corollary, which will be useful in Section 3, is that the standard tensor product of
Frobenius algebras is a Frobenius algebra.

Finally, we state a pair of useful standard results. These are given for example in Section 2.3 in
[Koc04], as the equivalence to another of the main definitions of Frobenius algebras (in terms of a
counit).

Proposition 2.2. Let (A, V 4,14, 84) be a Frobenius algebra with copairing aa. Then the following
diagrams commute, and we use the blue arrow to denote these equivalent paths.

_oal 444 A aa
(2.4) @N iw,q llN lﬁA
AAA YAy AA P23

The latter diagram also gives a nice way to express [54.

Proposition 2.3. Let (A,Va,n4,84) be a Frobenius algebra. Then the following diagram com-
mutes.

AA YA, 4

25 )
( ) %l/}
1

3. WARPED TENSOR PRODUCTS

In this section, we define the warped tensor product and prove Theorem 1.1.

3.1. Motivation. An alternative, prominent definition of Frobenius algebras thinks of them as
an algebra and coalgebra with the Frobenius associativity relation. A natural attempt to create
new monoidal structures would be to apply the cotwisted tensor product, the dual notion of the
well studied twisted tensor product. This would preserve the vector space, multiplication, unit,
and counit, while it would twist the coproduct. However, as proved in [Koc04], the four preserved
structures uniquely determine the coproduct, so the cotwisted tensor product would never work in
the nontrivial case.
Therefore, we define a new concept: the warped tensor product.



Definition 3.1 (Warped Tensor Product). Let (A,V 4,m4,54) and (B, Vg, np, 55) be Frobenius
algebras with copairings a4 and ap, respectively. Let v: B® A — A® B be a morphism in € with
a two-sided inverse; call this the warp. Define V., n,, 8, ay as

V. : ABAB 2 AABB YAV,

1511 M8, AR,

57 ABAB 2212, aApp 2478, 11 =1,

11511 2498, qopp 178, Apap.
Denote by A ®. B the tuple (A ® B,V,1ny, ). Call this the warped tensor product.
First, we show the necessity of the conditions given in Theorem 1.1.

3.2. Necessity. Let (A,V4,n4,84) and (B,Vp,np,Bp) be Frobenius algebras with copairings
ay and ap, respectively. Let v: B® A — A ® B be a morphism in € with a two-sided inverse.
Suppose that A®, B is a Frobenius algebra with copairing a.,. Then 3, is associative, and satisfies
the nondegeneracy relation with a.

Lemma 3.1. Suppose 3y is an associative pairing. Then for some morphism ¢ :1 — A® B in C,

~:BA 22 AB 2 A1B 1Y%, aaBB YAYE, 4B,
Proof. Since 3, is an associative pairing, the following diagram commutes.

ABAB 023 AABB —YAY, ABB

111 1
NBT/A 11nal

ABABAB %24 AABBAB AYE{' ABAB
\LU45 1v1
1111 ABAABB AABB
lllVAVB BaBB
ABAB — ™ aapp —P4Ps 4

Combining this with its flipped diagram (the bottom-left portion in the diagram below, which
commutes analogously), the following diagram commutes.

Vave AB
ABAB -2, AABB “AYAl ApaAB o2 qapp 174l
lg%m J/l'yl J/lﬂBlvB
AABB AABB AABB ABAB ABAB
Il BaBB

ABAB -, AABB babs A ABB

Focus on the clockwise and counterclockwise paths given in the below diagram.

ABAB %24 AABB YAYE A 1Al qpap Y AABB

(3.1) J,Ml LBAﬁB
AABB BaBs

171




Define ¢ : 1 -+ A® B by
1511181 pA L AB.
Intermediately, observe that the following diagram commutes by associativity and left-nondegeneracy.

AA A a444 AN 444

\LVA lllVA llﬁA

oAl oaaq Ay

1

An analogous but flipped condition holds on B with right-nondegeneracy.
Thus, adding copairings to Diagram 3.1, the following diagram commutes, concluding the proof.

BA o12 y AB — ™' . AABB

wlag

AABABB -2 AAABBB “A“VFYAABBB|vAvs

illwll lIBAB 1

AABBB 184851

Now, we prove additional requirements using that + has an inverse 4.

Lemma 3.2. Let (A,Va,n4) and (B,Vp,np) be Frobenius algebras, and let p : 1 — A® B be a
morphism in C. Define

~:BA 22 AR 2 A1B 298, q4app YAVE, 4B,

Then v has a two-sided inverse y~' if and only if for some morphism ¢ : 1 — B ® A in C, the
following diagram commutes (which we call the “inverse condition”).

P 1pl

1 s AB s ABAB
o -
(3.2) BlA ane AAlBQ;
b fre

AB M1y aaBB YAVEL 4p

Furthermore, the inverse is given by

(3.3) v 1 AB S ALB 2218, ABAB %% AABB YAVE, AB 72 BA.

Proof. First, suppose 7 has a two-sided inverse v~ 1.
Define

-1
p:1 51121, gAY 5 AB.

Then the following diagram commutes.



J,WA B

7 AB NANB
b,l 11
BA i AB
o012 VAV
11

AB —— AABB
Define

vl AB S A1B 1425 ABAB 72 AABB YAVE, AB 72 BA.
Then the following diagram commutes, so y o 7y, ! is the identity on A ® B.

—1
Yo

e T

AB %' ABAB — %%  AABB —YAYE , AB « 72X B4

lnwn lhm
1 1
TATES AAABBBYAMYE AABB
llv AVgl \LVAVB Y

AABB —YAVE , AR

Using the standard argument, by associativity of composition,

Yl=(toy) oyt =7to(yoyy ) =7

Next, the following diagram commutes, giving the final condition.

P

143/_\

" BA 15 AB

1pl
"t ABAB
i023
NANB \ 012 1
BA AABB
0'12/
~ VAVB

AB
Now, suppose that for some morphism ¢ : 1 -+ B ® A in €, Diagram 3.2 commutes. Define
vo' AB 2 A1B 4215, ABAB 2% AABB YAVE, AB 72, BA.

The commutativity of the same diagram we used for v o 7, Lin the proof of the other direction
again implies that v o~y !is the identity, so Yo !'is an inverse on one side.

Also, vy Lo~ is the identity due to the commutativity of the following diagram, so Yo s indeed
a two-sided inverse.
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BA -2, Ap — M, qapp —VAVE L 4B

1111 Lol

AABABBYAMYE ABAB

Therefore, if for some ¢ : 1 - A ® B, Diagram 3.2 commutes, then v has a two sided inverse

~

L. AB 2 A1B 4918, ABAB 72, AABB YAVE, AB 912, B4

We pivot to the nondegeneracy relations. We must first make a simplification.

Lemma 3.3. Consider Frobenius algebras (A,V a,n4,B4) and (B,Vp,np,Bs), and lety: BRA —
A® B be a warp given by 1 as before. Let v~' be the inverse, given by ¢ as before. Then the
following diagram commutes.

AB

ay11

BAAB

AABB ABABAB
11911

AAABBB

palll

ABBB V5, app M85, appp o . appp 175

118,

AB

Proof. In the following commutative diagram, the clockwise outer path is (14 ® 1p ® ) o (ay ®
14 ® 1p), so we conclude.
10



AB
ell

BAAB

012

ABAB M5\ A A ABBBAB —%"y AAABBABE YA AABBAABBB

023 WBH J/lllVBlll i111v3111 111V 511111
A/DBBI Ap\ AAABBAB —"*— AAABABB ~-* AAABAABBB
1111 046
AAABBB ABBAB —%* _ ABABB AAAAABBBB

alll 111911 11¢ 41111
ABBB — M2 , ABBBB ABAABBB AAABBBB
11Vp J/lllVB 024 1641Vl
ABB — 125, ABBB AAABBBB — A8l ABBB
723 6411V g 1185
ABBB W ___ , AB

Now, we show that the nondegeneracy relations imply conditions indicating a form of centrality;
these will be revisited in Definition 3.2.

Lemma 3.4. Let (A,V4,n4,84) and (B,Vg,np,Bg) be Frobenius algebras, and let v,y 1, ¢, v
be given as before. Suppose that A @~ B is a Frobenius algebra with copairing c., (on both sides).
Then the following diagrams commudte.

B Y. ABB _ W . A4B

(3.4) y llVB / lvu

ABB Y2, AB

Proof. Assuming the nondegeneracy relation on A®, B, the counterclockwise path given in Lemma
3.3 is the identity. For clarity in describing approach, let x = 14 ® 15 denote this counterclockwise
path. We first consider the composition

x1:B 5 1B Y12 ABB 72, BAB 125 BAB 72, ABB 14VE, 4B,

We aim to derive an intermediate result, with which we can simplify y.
Due to the associativity of multiplication and the Frobenius associativity relation, the following

diagram commutes.
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BAB —' , BBAABB -7+ BAABB "Y1 BAAABBB ALY

BABB
Lolypl H1Vg 012035
BBAAABB %4 BpABB —%*, BABBB ~72°%, ABBBB —V2', ABBB
1Vpll 1Vl
11AEB1
ABBB —r1 . ABB ABBBB
1Ap1
\ 1Vpll
ABBB
034
ABBB

Furthermore, because the following diagram commutes,

BB —%2, pB -2£., ppR

fai//g;///» I

BBB 712 » BBB

the following rectangle also commutes.

BABB 25, pABBB
012034 034
ABBB BABBB
11A51 1185
ABBBB BAB
1VpEll 012
ABBB ABB
034 1Vp

ABBB —P5 B
Overlaying this at the right of the prior diagram, the clockwise path is

BAB 22X, BAB 22, ABB 14VE, AB.

The following diagram commutes, essentially reordering the counterclockwise path in the overlaid
diagram.

12



Loleypl

BAB ., BBAAABB "2 BBABB
1p11 024
BBAAB BABBB
024 g12
BAABB ABBBB
013 035
AABBB ™™ AAABBBB %5 AAABBBB Y ABBBB
VVAVBl lVA11VBl J/VAlvBll V1V311
ABB — "™ AABBB — 7  AABBB A", ABBB

The counterclockwise path in the above diagram is much easier to work with, especially because

part of it is related to the inverse conditions given in Diagram 3.2 by commutativity of the following
diagram.

P 012 1l

1 AB BA —/—— BBAA
J/@ l024
BA BAAB
012 Jg13
Ag i >AAgB

Collecting our progress so far, in the following diagram, which commutes by unitality and the
inverse conditions given by Diagram 3.2, the clockwise path is x1.

111

B—2Y  BAB — 22 s ABB —"— AABBB
wm VaVsl
ABB ABB
11Agp 1411
ABBB AABBB
023 723 035
ABBB AABBB
11N VaVis
h 118 1Ap1
AB +—"2  ABBB <% ABBB +-Z— ABB

Since x is just the identity by nondegeneracy, x1 is given by

B2 1B Y5, AR 14VE, 4B,

Therefore, the commutativity of the above diagram implies the commutativity of the following
diagram.

AB e y AABB
ilwl 11Vp
111A 1118g
AABB —=% AABBB -Z**s AABBB —"2s AAB

13



Now that we have this intermediate result, we can simplify x due to the commutativity of the
following diagram (where x is the counterclockwise path).

AB
pll
BAAB
013
AABB —YAVE . 4B W1 AABB
11911 191 11V
AAABBBVAMYE uaBB MAE AABBB —%%, AABBB %5, AAB |VaVs
palll lVAll lVAlll lVAlll lVAl

ABBB Ve, app 128, ABBR % , ABBB -5 . AB

Let ¥’ denote the clockwise path here; it is also the identity, but this distinction improves clarity.
We now consider the composition

Yo A 144 ABA 22 AAB X aaB YAE AR,

The following diagram commutes by associativity of multiplication and the inverse conditions given
in Diagram 3.2.

A
Pl
ABA 1, ABABA
023 023
AAB AABBA YAVEL ABA
1pll 053 023
ABAAB AAABB Y25, qap 1 44ABB YAYE AAB
024 111% 1VaVpB lVAl

AAABB NAVE qap M aaaBB AVE qap VAl L oup

The counterclockwise path here is y2. As before, since x’ is the identity, 2 is given by

Yo A S 14 M ABA 72, aAB YAB, A

Therefore, the following diagram commutes.

¥ AAB

s e

ABA 22, AAB —2—

14



This is almost the desired condition; to finish, note that the following diagram commutes by
naturality.

— AAB

(3.5) f“///ﬂ k“

ABA 22, AAB

Combining these, we finally reach the first of the two conditions claimed in Diagram 3.4. The other
follows analogously; in particular, it is recovered by reversing the order of tensor products in each
object and morphism in the above proof, and swapping A with B. (|

So far, we have shown that a form of inverse and centrality conditions are necessary. These are
not the same as the ones given in Theorem 1.1, but as demonstrated in the next subsection, these
are enough to imply the desired conditions.

3.3. Centrality Conditions. Let Frobenius algebras (A, V 4,7m4,84) and (B, Vg, np, Bp) be Frobe-
nius algebras with copairings a4 and ap, respectively. Let ¢ : 1 - A® B and ¢ : 1 — B® A be
morphisms in €, and consider v and v~! given by

~:BA D2 AR 2 A1B 298, q4app YAVE, 4B,

and
1. AB 5 A1B 2%15, ABAB 2%, AABB YAY2, AB 72, BA,
The conditions forced by the nondegeneracy relations as in the prior subsection essentially say
that ¢ and ¢ are central, and this allows for the simplification of many previous diagrams and

operations. In this regard, it inconvenient that ¢ maps to B ® A instead of A ® B; accordingly,
define

¢ 1% BAZ2 AB.
First, the centrality conditions should be restated and related to what we have shown is necessary.

Definition 3.2. Let (A,V,n4,64) and (B, Vg,ns,6s) be Frobenius algebras, and let ¢ : 1 —
A® B and ¢ : 1 - B® A be morphisms in €. Call the commutativity of the following two diagrams
the condensed centrality conditions,

AB —Y , ABAB AB —, ABAB
lwll lva, Lo’ 11 lvm,
ABAB —" 4 AB ABAB —Y" s AB

and call the commutativity of the following four diagrams the decomposed centrality condi-
tions.

_ ¥l . ABB _ W, AAB
e e
AB
B;—ﬂL»ABB AA—E;»AAB
O
1VB vA1
ABB VB, AB AAB YA, BA

Lemma 3.5. The two decomposed centrality conditions relating to v are equivalent to the condensed
centrality condition for 1, and the same holds for ¢'.
15



Proof. We prove this for 1; the result follows analogously for ¢'.

First, assume the condensed centrality condition. We show that the decomposed centrality
condition for A holds, and it follows analogously for B.

Due to the condensed centrality condition and unitality, the following diagram commutes.

A i y AAB
1Inp ilnB

w1 AB — y ABAB |va
P11 lV»y

ABA 25 apAB — Y , AB

N
AAB

Recalling that Diagram 3.5 commutes, this implies the decomposed centrality condition on A.
Now, assume the decomposed centrality conditions for ¢. The condensed centrality condition
holds by the commutativity of the following diagram.

AB
P11
ABAB 22, AABB
119 031 o10 \LVAVB
AABB YAYE, AB
042
7t |ABAB /G o
J23
AABB

0

Throughout the rest of the section, assume the condensed centrality condition for ¢, because the
two decomposed conditions follow due to Lemma 3.4.
Now, we rewrite the inverse relations on ¢ and ¢.

Lemma 3.6. Let (A,Va,na,84) and (B,V g,ng,B) be Frobenius algebras, and let v, ¢, and ¢’
be defined as before. Suppose that the condensed centrality condition on ¢ holds. Then the inverse
relations on ¢ and @ in Diagram 3.2 imply to the commutativity of the following diagram.

1Y  ABAB

[ e

ABAB —Y 3 AB

Proof. By the decomposed centrality conditions on v, the following diagram commutes.
16



BA —22 5 AB — Y . ABAB —%*, AABB -%*, AABB

|11 /M v %
VaVg AV B

AABB » AB

Similarly, the following diagram also commutes.
1 023
©
BA —72 5 AB —Y1, ABAB -\ AABB -Z', AABB

|11 /M v %
VaVg AV B

AABB » AB

The inverse relations on ¥ and ¢ in Diagram 3.2 state that the counterclockwise paths are just
1 — 11 ™" AB, so the following diagram commutes, concluding the proof.

/

1% s AB ™, ABAB
l
AB
lwu

ABAB » AB

NANB v,

0

Using the new inverse relations from the above result, the centrality condition on ¢’ can be
recovered.

Lemma 3.7. Consider Frobenius algebras (A,V a,ma,84) and (B,Vp,nB,BB), and let 1, ¢, and
¢ be defined as before. Suppose that the condensed centrality condition on 1 holds. Then the
condensed centrality condition on ¢' holds.

Proof. The condensed centrality condition on ¢’ follows by essentially multiplying the centrality
condition on v by ¢’ on both sides and using associativity, explicitly given by the commutativity
of the following diagram.

nangll
AB — 2 ABAB MY ApABAB Y ABAB
AB
11nans W 11’
ABABAB ABAB
¢ v,
P11 v v

s ABAB —— % AB
17



O

By now, we have fully shown that the inverse and centrality conditions as formulated in Theorem
1.1 are necessary. In the remainder of this subsection, we reformulate key maps assuming the inverse
and centrality conditions but not necessarily that A @, B is a Frobenius algebra. This will vastly
simplify the proof of sufficiency, and it will also help to better understand what the possibilities for
A ®, B look like.

Lemma 3.8. Consider Frobenius algebras (A,V a,ma,B4) and (B,Vp,ns,B8), and let v, v, 1,
©, and ¢’ be defined as before. Suppose that the condensed centrality condition on v holds. Then
the warp is given by

v:BA 2% AB 2 AB1 1Y ABAB Y AB,

and its inverse is given by

L. AB = AB1 2429, ApAB Y2 AB 22 BA.

Proof. To reformulate ~, first note that the following diagram commutes by the decomposed cen-
trality conditions on .

_ Y . ABAB

W/ [

AABB 2%, AABB |V,

wB \LVAVB
AB

Because v is the counterclockwise path precomposed with o192, we conclude.
The proof for y~! is similar: the following diagram commutes by the decomposed centrality
conditions on ¢’, and y~! is the counterclockwise path composed with ojs.

—— ABAB

l“" 1/ [

AABB -2 AABB |V,

XAVB \LVAVB
AB

Note that due to the condensed centrality conditions, it is equivalent to say

v
~:BA 22 AB 2 14B A% ApAB 2, AB,
and similar for y~1.
With this new formulation of v and 4~ !, the pairing and the copairing can also be rewritten. To
do this, we use that the standard tensor product (A ® B,V,, s, 5s) is a Frobenius algebra with
copairing oy, as stated in Proposition 2.1. By definition, V, is the same as V., and 7, is the same

as 7y. This will help in reformulating 3, and a., which is done below.

Lemma 3.9. Consider Frobenius algebras (A,V a,ma,B4) and (B,V p,np,Bp) with copairings o
and ap, respectively. Let : 1 — A®B and ¢’ : 1 — A® B be morphisms in € as before, satisfying
18



1

the inverse and centrality conditions. Define v and v~ as before, or equivalently as in Lemma 5.8.

Then the pairing - is given by

B,: ABAB = ABABL “12M415%, A ABAB 420, ABAB P2y 1,

and the copairing o, is given by
~ / \%
a1 %% ABAB = ABABL 41214158, ApABAR “A12Y0 ABAB.
Proof. For 3., we will use the equivalent formulations of v given in Lemma 3.8

The following diagram commutes by the associativity of 8, and the centrality conditions on ).
Because the clockwise path is 3, it gives the desired reformulation.

ABAB — % s AABB Y. AABABB -%* AAABBB

1111
llllN 023 L lwf,vm

ABABAB —%%4 ABAABB —°* AAABBB ~YAVEL AABB

056

045 / \LIVA 1Vp lﬂAﬁB
ABAUBB —%, AAABBB “WAWNE qapp — PaPs 4

w)vB o923 Bo

11V ABAB

For ., we will use the original formulation of v~! given in Equation 3.3. Because Diagram 2.4
commutes for Frobenius algebras, the following diagram commutes.

1% aApB MY AABABB

\L &) Sy \L wt
Qo 035
1V AV

ABAB AB AAABBB ~“2*58" AABB
Ay
lllllw*

ABABAB —°%*5s ABAABB 2YAVE ABARB

m} 0_341\ llvy'

ABAABB

023

0

Again, the 1 factor can be placed on the left here. This does not immediately follow from the
centrality conditions, so a proof is included in Lemma 3.10 in Section 3.4.

So far, we have proved that if the warped tensor product of two Frobenius algebras is Frobenius,
then all of the conditions listed in Theorem 1.1 are necessary. The map ¢’ used so far corresponds
to ¥* in the theorem.

3.4. Sufficiency. We now show that the conditions given in Theorem 1.1 sufficient for the warped
tensor product of two Frobenius algebras to be Frobenius.

Consider Frobenius algebras (A,V a,7m4,084) and (B,Vp,np, 8p) with copairings a4 and ap,
respectively. Let C' denote A ® B. Let ¢ : 1 — C and ¥* : 1 — C be morphisms in € satisfying
the centrality and inverse conditions as in Theorem 1.1. Define v and y~! as in Lemma 3.8.

The tuple (C, V,,n,) is the standard tensor product of (A, V4,n4) and (B, Vp,ng). Since the
tensor product of algebras is an algebra, A ®, B indeed has an algebra structure. Therefore, to be
a Frobenius algebra, only the associativity and nondegeneracy of the pairing 3, must be satisfied.

19



Recall from Lemma 3.9 that the pairing and copairing are given by

B,:cC 5 o1t coo €Y oo Py

and

L1125 00 S oc1 229 coo 120 o,
and recall that the 1 factor can be placed on the other side without changing anything (as formally
stated below).

Lemma 3.10. The following two diagmms commudte.

cc 2, coco P oo 1 o cC
iwn lnw

elele. B - coo
lvvl llv7
cc b , 1 cc Y cco L oo

Proof. Recall from Proposition 2.1 that (C,V,,ny, ,) is a Frobenius algebra with copairing a,-.
Let A, and €, be as given by Proposition 2.4. Then using the associativity of the pairing and the
definition of the pairing given in Proposition 2.3, the following diagram commutes, giving the first
result.

cc 1Y , ccc o,

cc

Using Diagram 2.4, the following diagram commutes, giving the other result.

1 o cc
\ iplll

o c 1%, ccc
la& fv”

cc 2 coo Y8 oo

O
Finally, we show these conditions are sufficient to guarantee that A ®, B is a Frobenius algebra.

Lemma 3.11. The pairing B is associative, so the following diagram commutes.

ccc X oo

[

cc—> 1
Proof. Because 3, is an associative pairing and V, is an associative multiplication, the following

diagram commutes, concluding.
20



ccc Y, co Y co

cco
o T / 1v,
l 7 1V41 \
ccoo cc

lnw 11V, /v
Al \ 1v,
ceco

ceco

Y /
V41

O

Lemma 3.12. The pairing B, is nondegenerate with copairing o, so the following two diagrams
commute.

\l \i

Proof. By the associativity of V., and the inverse and centrality conditions, the following diagram
commutes.

c 2 coo Y cocco
1¢'11 1V,1
~ 1V71 ~
cccc 4 coc
1,11 19111 1911
11V,1
cccce 25 coce
1V,11 1V,1
1v,1
cccc —24 coc
18+
C

The clockwise path is (1¢ ® ;) o (oy ® 1¢), while by unitality, the counterclockwise path is
(1c®Bs)o(ae®1¢). Since S5, is nondegenerate with copairing a, this shows the first nondegeneracy
relation.

The second diagram follows analogously — in particular, by flipping the order of the tensor
products in each object and morphism in the diagram, since due to Lemma 3.10, the clockwise
path is still (8, ® 1¢) o (1¢ ® ax). O

Therefore, the conditions listed in Theorem 1.1 are sufficient to ensure that the warped tensor

product of Frobenius algebras is Frobenius, concluding the proof.

4. IMPLICATIONS OF THEOREM 1.1
In this section, we discuss important consequences of Theorem 1.1.
4.1. Properties preserved by warps. We state the definitions of important properties of Frobe-

nius algebras and classify when the warped tensor product preserves them.
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Throughout this subsection, let (4, V 4,m4,54) and (B, Vg, ng, 55) be Frobenius algebras. Call
the standard tensor product (A ® B, V4,15, 8s). Let v = Y oo be a warp satisfying the conditions
in Theorem 1.2, where

T:AB 2 14AB Y ABAB Yo, AB.

Call the warped tensor product’s pairing 3, and let 045 denote the braiding on (AB)(AB).

First consider commutativity. The proof itself is less interesting; since this is a property of
algebras, it is essentially the same as for the standard tensor product. However, preservation of
commutativity is the most important, because it shows that the new symmetric monoidal structures
are closed over commutative Frobenius algebras, which are equivalent to TQFTs.

Definition 4.1. A Frobenius algebra (A, V4,n4,£4) is commutative if the following diagram
commutes.

A A 225 A A
%l“
A

Proposition 4.1. If Frobenius algebras A and B (as written earlier) are commutative, then A®~ B
15 commutative.

Proof. Since multiplication is the same as for the standard tensor product, the proof works the same
way. Because the following diagram commutes (where the counterclockwise path is V), A®, B is
commutative.

OAB

ABAB -2y BABA 25 ABAB

l0'23 l0'23

AABB 22, AABB -2 AABB

VaVp lVAV Vo
VaVp
AB

The next property is symmetry, a generaliztion of commutativity.
Definition 4.2. A Frobenius algebra (A4,V 4,14, 54) is symmetric if the following diagram com-
mutes.

A A 22 Ao A
klﬁfx
1

Proposition 4.2. If Frobenius algebras A and B are symmetric, then A ®. B is symmelric.

Proof. As with commutativity, the standard tensor product of two symmetric Frobenius algebras is
symmetric. The proof is standard and similar as before, so we omit it. Then, the the result follows
because the following diagram commutes.
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ABAB 245, ABAB

lrn lllT

ABAB 225, ABAB

.y F’

Definition 4.3. A Frobenius algebra (A4, V4,n4,54) is special if 4 0 (na ®n4) = 1.

Proposition 4.3. Let e, = B, 0 (1 ®1ny). If Frobenius algebras A and B are special, then A @y B
is special if and only if €, o = 1.

Proof. Again, we omit the proof that the standard tensor product A ®, B is special. The following
diagram commutes (where the clockwise path is 8, o (7, ® 15)), so A ® B is special.

ey ABAB MY ABABAB

AN

AB — Y, ABAB

)

AB —< 1
t

The condltlon €, 01 = 1 can not be simplified much further; in particular, if g has €, o g # 0,
then ¢ = - 01/) would have ey o = 1.

4.2. New symmetric monoidal structures. We ask when the warped tensor product forms a
symmetric monoidal structure. If we instead were to consider a general monoidal structure, the
condition Baxp = Bpxa would be omitted, so T 4 p = T 4 would no longer be necessary. In the
family of examples provided in Section 4.3, = would not involve the trivial twisting map o anymore,
so it would denote equivalence up to associativity and unitality.

We introduce terminology to describe classes ¢4 p that create valid warps.

Definition 4.4 (Warpable Classes). A class of morphisms ¢4 p : 1 - A ® B is warpable if
defining

11948

Yup=AB = AB1 —22 ABAB Y% AB,

there exists a class of morphisms ¢} 5 : 1 — A ® B such that the below diagrams commute.

AB — y ABAB 1 %" . ABAB
iwn lvg wa‘ lvg
ABAB —Y° , AB ABAB —Y° 5 AB

In the above diagrams, v is short for ¥4 p, and ¥* similarly.

Now, consider some warpable class 14 g and the corresponding T 4 g.
As before, suppress the isomorphism constraints of € as a monoidal category with ®.

Question 4.4. When does X respect the suppressed constraints? In other words, when are 8 g(Bxc) =
BiarBye, Brma = Ba, Barr = Ba, and Baxp = Bpxa?
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Recall that Saxp = ﬁA@B o (1 (= TA,B)-
Suppose some morphisms f,g: C — C satisfy fco (1® f) = Sc o (1 ® g). Then

f=Q0®Bc)o(ac® f)=(1&Bc)o(ac®@g) =g.
Clearly f = g implies the former condition. Therefore, oo (1 ® f) = fc o (1 ® g) if and only if
f=g

For the first condition,

Barsrey = Bagre) © (1 ® Y a pre) = Bagec) © (1 @ (TecYaBxc)),
and similarly
Barpme = Basp)oc © (1 ® (Ya,T axp,c))-

Then BA&(Bﬁc) = ﬂ(AgB)gC when T oY 4 Bxc = Y a,BY axB,c. Proceeding similarly for the other
conditions, the resulting conditions are:

YpcYaprc =TYapYawpco: Yra=1; Yar=1; Tap=Tpa.

This answers Question 4.4 and concludes the proof of Theorem 1.2.

4.3. A family of solutions. For two Frobenius algebras A and B, say that A = B if they can be
related solely by the suppressed isomorphism constraints. Define this for algebra in the same way.
Also, let F denote the forgetful functor F : Frobe — Alge. This functor essentially outputs the
same vector space, multiplication, and unit, forgetting the additional structure of the pairing.
Consider a collection of maps 64 : 1 — A satisfying the same conditions as ¥4 g, and let 6%
denote the “multiplicative inverses.” Then define

oa: A AL 10 44 YAy 4

~Y

Suppose that ¢4 = ¢p whenever F(A) = F(B). Then a family of working 1 is given by the
multiplication ¥4, p = 04eB0%0%.

This family is a concrete example of a new multiplicative structure on Frobenius algebras. While
there are not any clear special properties about this family in particular, it gives assurance that
although the conditions listed in Theorem 1.2 are still complicated, they have nontrivial solutions.

The condition that F(A) = F(B) is much more restrictive than that A = B, but is used here to
ensure that O gp = 0axp. As a future direction, we pose the question of whether such a condition
is necessary in general.

Question 4.5. Are there any classes of morphisms v inducing a symmetric monoidal structure
which detect the Frobenius structure? In other words, does there exist a warpable class ¥ which

~

satisfies the conditions in Theorem 1.2 such that for some Frobenius algebras A, B, and C, F(A) =
F(B) but Yac # VYpc?
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