
Minimum and Approximate Minimum k-Cuts in Hypergraphs

Chris Bao, Joshua Wang, William Zhao

January 25, 2025

Abstract
The minimum cut problem and its generalizations are important to combinatorial optimiza-

tion and have numerous applications in network reliability, circuit design, and clustering. Our
work considers the minimum k-way cut problem in hypergraphs, which asks for a k-way parti-
tion of the vertex set that minimizes the number of crossing hyperedges. We begin by extending
the work of Kogan and Krauthgamer (2014), using the randomized contraction technique in-
troduced by Karger and Stein (1995), to bound the number of approximate minimum k-way
cuts in low-rank hypergraphs. Next, we consider the branching contraction algorithm of Fox et
al. (2019) as applied to the minimum k-way cut problem in unweighted hypergraphs. Under a
conjectural bound on the scaled proportions of small hyperedges, we improve the running time
to Õ(mnk + n4k−3). Finally, we generalize the near-linear time (2 + ε)-approximation algorithm
of Quanrud (2019) for the graph k-way cut problem, achieving an approximation ratio of r(1+ε)
for hypergraphs of rank r. As a component, we provide an algorithm for finding a minimum
hypertree with improved runtime compared to the prior result of Bäıou and Barahona (2023).

1 Introduction

The minimum cut problem for a weighted graph G = (V, E, w) asks us to find a minimum weight
cut, or subset of edges such that removing these edges disconnects the graph. Some of its numerous
applications include network reliability [16], the traveling salesman problem [21], and compiler
optimization of parallel computations [6]. In addition to minimum cuts, it is often useful to consider
cuts with values close to the minimum, called approximate minimum cuts. Approximate minimum
cuts have natural applications in network reliability, where one wants to find all likely failure modes
instead of only the absolute most probable [25].

Various ways of solving the minimum cut problem in a graph are known. One of the first
approaches utilizes the duality between the s-t minimum cut and maximum flow problems; by
solving the s − t maximum flow problem for every possible t, a minimum cut can be computed.
The celebrated work of Karger [16] introduced the technique of randomized contraction, providing
a fast algorithm for computing minimum cuts which does not depend on the duality with maximum
flow. Karger [16]’s method also provides a significant improvement for combinatorial aspects of the
problem (in particular, counting the numbers of minimum or approximate minimum cuts). It has
influenced decades of follow-up research using similar and generalized techniques.

Tree packing is an alternative method for computing minimum cuts. Its first prominent use was
by Karger [17], who used a duality between minimum cut and maximum spanning tree packing
to provide a near-linear time algorithm for the minimum cut problem. Later, linear programming
relaxations for tree packing were shown to have bounded integrality gap, resulting in fast linear
programming-based approximation algorithms [7].

Another generalization of the minimum cut problem is the minimum k-cut problem. Here, we
are asked to find a minimum weight k-cut, or subset of edges such that their removal partitions the

1

graph into at least k connected components. Via a reduction to the maximum clique problem, it
can be shown that the minimum k-cut problem with k as input is NP-complete [14]. Therefore, we
consider k to be constant. Under this assumption, the first polynomial-time algorithm was given
by Goldschmidt and Hochbaum [14], with a running time of nO(k2). Subsequently, randomized
contraction and tree packing were applied to the problem; randomized contraction-based algorithms
have achieved nearly optimal running time under certain hardness conjectures, while a tree packing
approach leads to fast approximation algorithms [15, 7].

Our work concerns a further generalization: the minimum k-cut problem in hypergraphs. A
hypergraph is a generalization of a graph in which hyperedges may be arbitrary subsets of the vertices
instead of pairs. Hypergraphs can represent many combinatorial problems (for instance, the 3-SAT
problem can be represented as a 3-uniform hypergraph). Furthermore, hypergraphs naturally
model communication networks where one node influences many others; therefore, minimum and
approximate minimum cuts in hypergraphs are relevant to network reliability [4].

1.1 Outline

In Section 2, we first extend the linear-programming approach of Kogan and Krauthgamer [20]
by proving a bound on the minimum k-cut size in low-rank hypergraphs, proving Theorem 1.16.
Next, we roughly defend the exponential dependence on r in Theorem 1.16. We end by opening
discussion on multicriteria minimum cuts and generalizations with Theorem 1.17.

In Section 3, we consider the branching contraction algorithm of Fox et al. [10] for the exact
minimum k-cut problem in hypergraphs, deriving a recursive bound for its expected running time.
In Theorem 1.18, we then show that Fox et al. [10]’s running time can be improved in the case of
unweighted or close-to-unweighted hypergraphs assuming Conjecture 3.2, which bounds the scaled
proportions of small hyperedges.

In Section 4, we develop an alternative characterization of hyperforests as well as a faster check
of whether a given set of hyperedges forms a hyperforest, proving Theorem 1.20. We show that
multiplicative weight updates can be used to obtain a (1 + ϵ)-approximate solution to a linear
programming relaxation for hypergraph minimum k-cut, and present an algorithm which rounds
a (1 + ϵ)-approximate solution to the linear programming relaxation to an r(1 + ϵ)-approximate
minimum k-cut, proving Theorem 1.19.

1.2 Definitions

We begin by defining the setting of our work.
Definition 1.1 (Hypergraph). A weighted hypergraph is a triple H = (V, E, w), where w : E → R+
and E ⊆ 2V . Throughout, we let |V | = n and |E| = m. Each element of V is called a vertex, and
each element of E is called a hyperedge. The rank or size of a hyperedge e is |e|; a hypergraph
is rank-r if all its edges have rank at most r. A graph, denoted by G = (V, E, w), is a rank-2
hypergraph.
Definition 1.2 (k-cut). Given a weighted hypergraph H = (V, E, w), a k-cut or k-way cut is a
tuple C = (V1, V2, . . . , Vk) that partitions V . We say a hyperedge e crosses C if e is not contained
in some Vi. The value of C is the sum of the weights of hyperedges crossing C:

δH(C) =
∑
{w(e) | e ∈ E, e ⊆ Vi∀i ∈ [k]}.

We refer to 2-cuts simply as cuts. Note that the cut and k-cut definition also holds in graphs
G = (V, E, w). It is also useful to think of a k-cut as a set of hyperedges whose removal splits H
into at least k connected components.

2

Definition 1.3 (Minimum k-cut). A minimum k-cut C is a k-cut in graph G or hypergraph H
with minimal value; this value is denoted λk. An α-approximate minimum k-cut is a k-cut with
value at most αλk.
Definition 1.4 (k-cut-set). A k-cut-set is the set of hyperedges crossed by a given k-cut; note that
one k-cut-set may correspond to multiple k-cuts in a hypergraph (although this correspondence is
bijective for graphs). We can define minimum and α-approximate minimum k-cut-sets similarly.
Definition 1.5 (Hyperedge contraction). Given a hypergraph H = (V, E, w) and e ∈ E, the
contracted hypergraph H/e is obtained by identifying all vertices in e with a single new “metavertex”
ve and removing hyperedges with rank 1. Furthermore, duplicate hyperedges are combined with
their weights added. We say that a k-cut C survives the contraction of a hyperedge e if e does not
cross C. An example of a contraction is shown in Figure 1.

v1

v2

ve

Figure 1: Performing the contraction H/{v1, v2}.

There are many different definitions of acyclity in hypergraphs found in the literature. We use
the following definition of a hyperforest.
Definition 1.6 (Hyperforest). Let H = (V, E, w) be a hypergraph. If F is a multiset of hyperedges
and X ⊆ V , then let F [X] be the multiset of hyperedges in F contained in X. If |F [X]| ≤ |X| − 1
for all nonempty X, then F is called a hyperforest. If additionally |F | is maximal, then F is called
a hypertree.
Definition 1.7 (Lagrangian Relaxation). Given a linear program (P) of the form

max(c⊺x) subject to A1x ≤ b1, A2x ≤ b2 (P)

and a vector λ with positive components, the following linear program (R) is a Lagrangian relaxation
of (P):

max(c⊺x + λ⊺(b2 −A2x)) subject to A1x ≤ b1. (R)
Lagrangian relaxations are useful for bounding and iterating towards optimal solutions. The

Multiplicative Weight Update method, discussed in Section 1.5, relies on Lagrangian relaxations to
quickly compute approximate solutions to linear programs.
Definition 1.8 (Approximation Algorithm). For a minimization problem, an α-approximation
algorithm (α ≥ 1) returns a solution with value at most α times that of the optimum solution. For
a maximization problem, an α-approximation algorithm (α ≤ 1) returns a solution with value at
least α times that of the optimum solution.

3

1.3 Randomized Contraction

The randomized contraction technique is based on the contraction operation, as defined in Sec-
tion 1.2. Note that k-cuts which survive a contraction (i.e., do not cross the contracted edge)
retain their structure and value. Furthermore, it is highly likely that a given minimum k-cut will
survive contraction by a randomly selected hyperedge. Using these facts, Karger [16] devised the
following randomized algorithm for computing an exact minimum cut in a graph G = (V, E, w):

Contract(G):
if |V (G)| > 2:

choose a random edge e ∈ E(G) proportionally to its weight
return Contract(G/e)

else:
return the cut among the two remaining vertices

Karger’s algorithm and other similar algorithms based on the randomized contraction technique
give a lower-bound probability of outputting a given minimum cut which bounds both the runtime
and the number of minimum cuts. For instance, Karger [16] showed a lower bound on the probability
that Contract outputs any given minimum cut. This immediately results in an upper bound on
the number of minimum cuts in a graph.

Theorem 1.1 (Karger [16]). A particular minimum cut in G is produced by the Contract pro-
cedure with probability at least

(n
2
)−1. As a result, the number of minimum cuts in G is at most(n

2
)

= O(n2).

This method was applied to the enumeration α-approximate minimum cuts and exact minimum
k-cuts in graphs by Karger and Stein [19]; they found upper bounds of O(n2α) and O(n2k−2) respec-
tively. In Section 2, we briefly discuss how these results can be combined to cover α-approximate
minimum k-cuts. All of these bounds are tight (or nearly so) for cycle graphs G = Cn.

The randomized contraction technique was first extended to weighted hypergraphs by Kogan
and Krauthgamer [20]. They were able to bound the number of α-approximate minimum cuts in
low-rank hypergraphs:

Theorem 1.2 (Kogan and Krauthgamer [20]). The number of α-approximate minimum cuts in a
rank-r weighted hypergraph H = (V, E, w) is O(2αrn2α).

By considering nonuniform randomized contraction (in which the probability of selecting a
hyperedge depends on its size as well as its weight), Chandrasekaran et al. [5] showed that Karger
and Stein [19]’s O(n2k−2) bound on the number of exact minimum k-cuts (and thus k-cut-sets) a
graph also holds for hypergraphs.

Theorem 1.3 (Chandrasekaran et al. [5]). The number of minimum k-cut-sets in a hypergraph is
O(n2k−2).

We now turn our attention to the time complexity of various contraction algorithms. Using the
fact that Karger’s Algorithm outputs any minimum k-cut with probability Ω(1/n2k−2), we can find
a minimum k-cut with high probability by running O(n2k−2 log(n)) iterations of Contract and
outputting the smallest k-cut found. Because Contract can be implemented with running time
O(n2), this approach gives an Õ(n2k) Monte Carlo algorithm for finding a minimum k-cut [16].

4

While Karger’s Algorithm provides tight bounds on the number of minimum k-cuts, its running
time is not optimal. A major improvement was accomplished by Karger and Stein [19], who
introduced the recursive contraction technique. Their key insight is that later contractions in
Karger’s Algorithm are much more likely to destroy a given minimum k-cut; therefore, recursively
branching at certain points makes it more likely that earlier contractions will not be wasted. The
Karger-Stein algorithm for finding minimum k-cuts in a graph G = (V, E, w) is outlined below:

RecursiveContract(G):
if |V (G)| < k k

√
2:

randomly contract G to k vertices
return the resulting k−cut

else:
randomly contract G to |V (G)|/ k

√
2 vertices

return argmin(RecursiveContract(G), RecursiveContract(G))

The factor of k
√

2 is chosen so that any given minimum k-cut survives to the next branching
step with probability at least 1/2. Using this fact, Karger and Stein [19] showed the the probability
of outputting a minimum k-cut is greatly improved to Ω(1/ log(n)). Therefore, the Karger-Stein
algorithm consists of O(log2(n)) iterations of RecursiveContract. Karger and Stein [19] gave
a bound on its running time:

Theorem 1.4 (Karger and Stein [19]). For a graph G = (V, E, w), the Karger-Stein algorithm
finds a minimum k-cut with high probability in time Õ(n2k−2).

Recently, an improved analysis showed that the running time of the Karger-Stein algorithm is
optimal under certain hardness conjectures.

Theorem 1.5 (Gupta et al. [15]). For a graph G = (V, E, w), the Karger-Stein algorithm finds
a minimum k-cut with high probability in time Õ(nk). Via a reduction to the (k − 1)-Maximum-
Clique problem, it is conjectured that the optimal time complexity is Ω(n(1−o(1))k).

The recursive contraction technique was generalized to hypergraphs by the branching contraction
algorithm of Fox et al. [10]. Here, branching occurs randomly, rather than at the fixed numbers of
vertices of the Karger-Stein algorithm. In particular, there is a chance to create a recursive branch
every time a hyperedge is selected for contraction; the branching probability is higher for larger
hyperedges, which are more likely to destroy a given minimum k-cut. The branching contraction
algorithm is currently the fastest known for the minimum k-cut problem in weighted hypergraphs.

Theorem 1.6 (Gupta et al. [15]). For a hypergraph H = (V, E, w), the branching contraction
algorithm finds a minimum k-cut with high probability in running time Õ(mn2k−2).

We review the branching contraction algorithm in greater detail in Section 3.

1.4 Tree Packing

Another approach to the minimum k-cut problem, entirely distinct from randomized contraction,
is the tree packing duality. In a weighted graph, the fractional tree packing number is the maxi-
mum number of (potentially fractional) spanning trees that can be packed into the graph without
exceeding the capacity of any edge. It is also the optimum value of the following linear program:

maximize
∑
T

yT

5

subject to
∑
T ∋e

yT ≤ we, e ∈ E

0 ≤ yT , T spanning tree.

The dual program of the above linear program is a linear programming relaxation for the minimum
cut problem, as any cut intersects each spanning tree at least once:

minimize
∑
e∈E

wexe

subject to
∑
e∈T

xe ≥ 1, T spanning tree

xe ≥ 0, e ∈ E.

Using a variant of this duality, Karger [17] obtained a near-linear time minimum cut algorithm and
better upper bounds for the number of α-approximate minimum cuts.

Theorem 1.7 (Karger [17]). There exists a randomized algorithm that computes a minimum cut
of a graph with high probability in O(m log3 n) time, as well as a randomized algorithm that finds
all minimum cuts of a graph with high probability in O(n2 log n) time.

Theorem 1.8 (Karger [17]). The number of α-approximate minimum cuts in a graph is O(n⌊2α⌋).

Naor and Rabani [22] generalized the minimum cut LP relaxation to the minimum k-cut problem
and connected it to a variant of fractional tree packing. Chekuri et al. [8] further analyzed the LP
relaxation of minimum k-cut, showing it has a duality gap of at most 2. They also bounded the
number of α-approximate minimum k-cuts using tree packing.

Theorem 1.9 (Chekuri et al. [8]). The number of α-approximate minimum k-cuts in a graph is
O(n⌊2α(k−1)⌋).

This bound is sharp, as the cycle graph Cn gives a lower bound of Ω(n⌊2α(k−1)⌋); it improves
on the randomized contraction bound through the floor function in the exponent.

Hyperforests form a family of independent sets of a matroid, known as the hypergraphic matroid.
Furthermore, Frank et al. [11] proved that hypertrees are bases of this hypergraphic matroid. Thus,
hypertrees are useful for generalizing tree packing to hypergraphs. Bäıou and Barahona [2] used
hypertree packing to obtain a combinatorial r-approximation algorithm for minimum k-cut in
hypergraphs of rank r.

Theorem 1.10 (Bäıou and Barahona [2]). There exists a deterministic algorithm that computes
an r-approximation to the minimum k-cut in O(kn2p1+o(1)) time for rank-r hypergraphs, where p
denotes the sum of the sizes of all hyperedges.

Hypertree packing also bounds the number of α-approximate minimum k-cuts; this bound can
be compared with our result in Section 2.

Theorem 1.11 (Bäıou and Barahona [2]). The number of α-approximate minimum k-cuts is
O(n⌊rα(k−1)⌋) in a rank-r hypergraph.

6

1.5 Multiplicative Weight Update

The following problem is a classic application of multiplicative weight update algorithms, which
were first proposed in game theory in the 1950s [1]. On each turn, one attempts to answer a
true-false question, aided by n experts. There is immediate feedback given on whether the answer
selected is correct. The goal is to perform roughly the same as the best expert. Give each expert
a weight, initialized as 1. For each turn, follow the weighted majority (ties are broken arbitrarily),
and multiply the weight of each expert that gives an incorrect answer by (1−ϵ). Then the following
theorem bounds the number of mistakes made by our algorithm:

Theorem 1.12 (see [1]). Let M(t) be the number of mistakes our algorithm makes after t turns,
and let m(t) be the least number of mistakes made by any expert. Then M(t) ≤ 2(1+ϵ)m(t)+ 2 log n

ϵ
at any time t.

These types of algorithms are called multiplicative weight update algorithms (MWU algorithms).
Later, Plotkin, Shmoys, and Tardos [23] applied MWU to efficiently compute (1− ϵ)-approximate
solutions to fractional packing problems of the form

max(c⊺x) subject to Ax ≤ b, x ≥ 0,

where the entries of A, b, c are all nonnegative. Key to their algorithm is the Lagrangian relaxation

max(c⊺y) subject to w⊺Ay ≤ w⊺b, y ≥ 0,

where w represents dual variables that are multiplicatively updated. Their running time depends
on the width of the problem, or the maximum extent to which any constraint could be violated.
Garg and Koenemann [12] later developed width-independent MWU, removing the dependence on
the width. Chekuri and Quanrud [7]’s simplified implementation is outlined as follows:

Width-Independent MWU(A, b, c, ϵ):
w(0) ← 1/c (component−wise)
x← 0
t← 0
while t < 1

j ← arg max ci/⟨w(t), Aei⟩ //⟨v, w⟩ denotes dot product
y ← ⟨w(t), b⟩ · ej/⟨w(t), Aej⟩ //ej is indicator vector
//The optimal solution to the Lagrangian relaxation has only one nonzero value
δ ← min(min{ϵ/(ln m/ϵ) · ci/⟨ei, Ay⟩}, 1− t) //m is the number of components of c
x← x + δy

w
(t+δ)
i ← w

(t)
i exp(δ · log m/ϵ · ⟨ei, Ay⟩/ci) for all i

//w reflects how close each constraint is to being exceeded
t← t + δ

return x

Theorem 1.13 (Chekuri and Quanrud [7]). If ϵ < 1/2, then this algorithm terminates in O(m/ϵ2 ·
log m) iterations. Furthermore, x/(1 + O(ϵ)) is a (1−O(ϵ))-approximate optimum solution to the
initial packing LP.

They applied the width-independent MWU technique to develop a (1− ϵ)-approximation algo-
rithm for fractional base packing in matroids.

7

Theorem 1.14 (Chekuri and Quanrud [7]). Let M be a matroid with n elements and rank k,
with an independence oracle with running time Q. Then, there is an algorithm that computes a
(1− ϵ)-approximation for fractionally packing disjoint bases of M with running time Õ(nkQ/ϵ2).

Quanrud [24] improved the running time for the special case of tree packing in graphs. By
combining MWU with a rounding algorithm, they obtained a near-linear (2 + ϵ)-approximation
algorithm for the minimum k-cut problem in graphs.

Theorem 1.15. There exists a deterministic algorithm computing an (2 + ϵ)-approximation to
minimum k-cut in O(m log3 n/ϵ2) time for graphs.

1.6 Our Contributions

The remainder of the paper is organized as follows. In Section 2, we generalize Kogan and
Krauthgamer [20]’s approach to α-approximate minimum k-cuts, giving a bound which improves
on the results of Bäıou and Barahona [2].

Theorem 1.16. In an rank-r hypergraph H with n vertices, there are at most

O

(
kα(k−1)r

k! n2α(k−1)
)

α-approximate k-cuts.

We also consider multicriteria minimum cuts, which use a combination of different edge cost
criteria; we find that generalizations to hypergraphs and k-cuts are possible.

Theorem 1.17. In an rank-r hypergraph H with n vertices, there are at most

O

(
kα(k−1)r

k! n2α(k−1)+t−1
)

α-approximate parametric minimum k-cuts.

In Section 3, we examine Fox et al. [10]’s branching contraction algorithm for hypergraph
minimum k-cut in the case of unweighted or close-to-unweighted hypergraphs. Given a conjectural
bound on the scaled proportions of small hyperedges (i.e., those with sizes at most k), we show
that the running time can be improved:

Theorem 1.18. Assume Conjecture 3.2 and that k ≥ 4. Then, for a λ-balanced hypergraph H =
(V, E, w) (one in which the maximum ratio of weights is at most λ), the branching contraction
algorithm of Fox et al. [10] has running time O(mnk + λn4k−3).

In Section 4, we consider the hypertree packing LP using the MWU framework, generalizing
Quanrud’s [24] algorithm to derive a faster r(1+ϵ)-approximation algorithm for the minimum k-cut
in hypergraphs.

Theorem 1.19. There exists a deterministic algorithm computing an r(1 + ϵ)-approximation to
minimum k-cut in

O(mn2r log n/ϵ2)
time for hypergraphs, where r is the rank of the hypergraph.

As an ingredient, we improve Bäıou and Barahona’s [3] O(mrn1+o(1)) time minimum hypertree
algorithm, achieving a faster running time.

Theorem 1.20. A minimum hypertree can be computed in O(mnr) time.

8

2 Randomized Contraction Bounds for Approximate Minimum
k-Cuts

2.1 Approximate Minimum k-Cuts in Hypergraphs

Karger [16] first provided an approach to find the number of minimum and α-approximate minimum
cuts. We briefly present an extension of their analysis, applied to α-approximate k-cuts in graphs,
a simpler version of the hypergraph case in Theorem 2.3. This demonstrates the key idea of
Theorem 2.3.

Theorem 2.1. The number of α-approximate minimum k-cuts in a graph is at most

S(2α(k − 1), k)
(

n

2α(k − 1)

)
= O((kn)2α(k−1)/k!),

where S(n, k) denotes the Stirling number of the second kind.

Proof. Consider the following algorithm, an extension of Karger’s Contract algorithm.
GraphContract(G, α, k):

if G has more than 2α(k − 1) vertices (contraction phase):
choose a random edge e ∈ E(G)
return GraphContract(G/e, α, k)

else (enumeration phase):
randomly partition the remaining vertices into k nonempty groups
return the corresponding k−cut

The algorithm undergoes two stages: first, the contraction phase, until G has at most 2α(k−1)
vertices, followed by the enumeration phase, where a single randomly selected k-cut is output. Note
that a k-cut C remains an α-approximate minimum k-cut as long as it survives contraction. Now,
we claim that a particular α-approximate k-cut C survives the contraction phase with probability at
least

(n
2α(k−1)

)−1, and is chosen by the enumeration phase with probability at least Ω(k! ·k−2α(k−1)).
Theorem 2.1 would then follow.

When G has n vertices, the probability that C survives a single random edge contraction is

Pr(C survives contracting e) = 1− |C|
m

= 1− αλ

m
,

where λ is the minimum cut value. We now show a lower bound on this probability by upper-
bounding λ

m . Consider a k-cut C ′ as follows. Randomly select k−1 vertices v1, v2, . . . , vk−1 to form
k − 1 singleton parts of C ′. Then, let V \ Vk−1 be the last part of C ′, where Vk−1 = ⋃k−1

i=1 {vi}, as
in Figure 2.

For each edge in the graph, the probability that it crosses the k-cut is 1 − (n−k+1
2)

(n
2)

. Thus,
by linearity of expectation, the expected value of C ′ is m times the aforementioned probability.
Therefore,

λ

m
≤ 1−

(n−k+1
2
)(n

2
) .

However,

1−
(n−k+1

2
)(n

2
) = 1− (n− k + 1)(n− k)

n(n− 1) = (k − 1)(2n− k)
n(n− 1) ≤ 2(k − 1)

n
.

9

V \ Vk−1

v1

v2 v3

v4

Figure 2: A valid k-cut C ′ where k = 5.

Therefore, it holds that

Pr(C survives contracting e) = 1− αλ

m
≥ 1− 2α(k − 1)

n
.

Recall that contracting an edge in G reduces the size of the vertex set of G by 1. Thus, the
probability that C survives the entire contraction phase is at least

(
1− 2α(k − 1)

n

)(
1− 2α(k − 1)

n− 1

)
· · ·
(

1− 2α(k − 1)
2α(k − 1) + 1

)
=
(

n

2α(k − 1)

)−1

= Ω(n−2α(k−1)).

Next, we analyze the enumeration phase, which occurs when G has at most 2α(k − 1) vertices
remaining. A simple asymptotic bound on the total number of k-cuts in G follows by assigning
each vertex one of k partitions. Thus, we bound the the number of k-cuts by O(k2α(k−1)). We
improve on this bound by noting that the order of the k partitions does not matter, and thus we
may divide by k!. Therefore, the total number of k-cuts in G is O(k2α(k−1)/k!). In other words,
the number of ways to put most 2α(k − 1) distinct vertices into k indistinct groups is at most
S(2α(k − 1), k) = O(k2α(k−1)/k!), where the asymptotic expression is given by [9].

For weighted graphs, we choose edges to contract with probability proportional to their weight.

Corollary 2.2. The number of α-approximate minimum k-cuts in a weighted graph is at most

S(2α(k − 1), k)
(

n

2α(k − 1)

)
= O((kn)2α(k−1)/k!),

where S(n, k) denotes the Stirling number of the second kind.

Recall that Chekuri et al. [8] utilized tree packing to bound the number of α-approximate k-cuts
by O

(
⌊2α(k−1)⌋+1
1−{2α(k−1)}(kn)⌊2α(k−1)⌋

)
which has similar, but slightly better polynomial dependence on

n, in comparison to Theorem 2.1. However, for particular values of α and k, the constant term
could potentially be unbounded.

We move on to considering k-cuts in hypergraphs. Kogan and Krauthgamer [20] obtained an
O(n2α) polynomial bound on the number of α-approximate minimum cuts for r-rank hypergraphs
using linear programming. In what follows, we build on their work by proving an inequality
relating degrees of vertices and the minimum k-cut size in the hypergraph, thus extending Kogan
and Krauthgamer [20]analysis to k-cuts.

10

Theorem 2.3. In a rank-r hypergraph H with n vertices, there are at most

S(α(k − 1)r, k)1 + α(k − 1)r
2α(k − 1) + 1

(
n− α(k − 1)(r − 2)

2α(k − 1)

)
= O

(
kα(k−1)r

k! n2α(k−1)
)

α-approximate k-cuts, where S(n, k) denotes the Stirling number of the second kind. When k = 2,
the above reduces to the result of Kogan and Krauthgamer [20], as S(αr, 2) = 2αr−1 − 1.

Proof. We use an algorithm similar to GraphContract(G, α, k) described in Theorem 2.1, but
now, we contract hyperedges uniformly at random. Define λ as the minimum k-cut size in H, and
let C be a particular α-approximate minimum k-cut.

HypergraphContract(H, α, r, k):
if G has more than α(k − 1)r vertices (contraction phase):

choose a random hyperedge e ∈ E(H)
return HypergraphContract(H/e, α, r, k)

else (enumeration phase):
for all remaining k−cuts C

return C if |C| ≤ αλ

The algorithm undergoes two stages: first, the contraction phase, until H has at most α(k−1)r
vertices, followed by the enumeration phase, where a remaining α-approximate minimum k-cuts is
output.

As before, if an α-approximate minimum k-cut survives an edge contraction, then its size is
unchanged, and it remains an α-approximate minimum k-cut. Furthermore, the rank of H is still
at most r. That justifies the recursive call HypergraphContract(H/e, α, r, k).

We first consider the probability that C in H survives the contraction phase. Let this probability
be q(C, H), and define qn to be the minimum value of q(C, H) over all α-approximate minimum
k-cuts C in hypergraphs H with n vertices. Following Kogan and Krauthgamer [20], we claim that

qn ≥ Qn := 2α(k − 1) + 1
1 + α(k − 1)r

(
n− α(k − 1)(r − 2)

2α(k − 1)

)−1

.

We show this by induction. Note that once we reach a hypergraph with at most α(k − 1)r
vertices remaining, we are guaranteed to find any of the remaining α(k − 1)r cuts, so qt = 1 for
t ≤ α(k − 1)r. In particular, qt ≥ Qt for these values.

Let pi = Pr(|e| = i) be the probability of selecting a hyperedge of rank i. Also, let yi = Pr(|e| =
i, e ∈ C) be the probability of selecting an edge in C and with rank i. Note that the hypergraph
has t− |e|+ 1 vertices after contracting a hyperedge e, so that by induction,

q(C, Q) ≥
r∑

i=2
(pi − yi)qt−i+1,

which implies that

qt ≥
r∑

i=2
(pi − yi)qt−i+1.

We show a lower bound on the above expression that holds for any real values of pi and yi that
satisfy some set of conditions (not just pi and yi that correspond to some specific hypergraph). We
derive the relations 0 ≤ y ≤ p and ∑r

i=2 pi = 1. Lastly, we consider a bound based on the size of

11

the minimum cut. Let wi be the total sum of edge weights for edges of size i, and let W be the
sum of all edge weights in the hypergraph. Then, as the size of C is at most αλ,

r∑
i=2

yi = Pr(e ∈ C) ≤ αλ

W
.

Next, we show that
λ ≤ k − 1

t

∑
v∈V

deg(v).

As in Figure 2, consider the k−1 vertices Vk−1 = {v1, v2, . . . , vk−1} and the k-cut C ′ defined by the
singleton parts {{v1}, {v2}, . . . , {vk−1}, V \ Vk−1}. Consider summing the edge weights of all edges
passing through vi for i = 1, 2, . . . , k − 1, with multiplicity. By noting that every edge in the cut
must be accounted for (at least once) in this sum, we conclude that the size of this cut is at most
the sum of degrees over all vi. Choosing Vk−1 to be the k− 1 vertices of least degree, we have that

λ ≤ |C ′| ≤
∑

v∈Vk−1

deg(v) ≤ k − 1
t

∑
v∈V

deg(v).

Thus,
r∑

i=2
yi ≤

α(k − 1)
tW

∑
v∈V

deg(v) = α(k − 1)
t

r∑
i=2

i
wi

W
= α(k − 1)

t

r∑
i=2

ipi.

Thus, we write the following LP over real values pi and yi:

minimize
r∑

i=2
(pi − yi)Qt−i+1

subject to 0 ≤ yi ≤ pi ∀i = 2, 3, . . . , r
r∑

i=2
pi = 1

r∑
i=2

yi ≤
α(k − 1)

t

r∑
i=2

ipi,

We can improve the last bound to equality for any optimal set of values for p, y. Note that
during the contraction phase, we have t > α(k − 1)r, so that

r∑
i=2

yi ≤
α(k − 1)

t

r∑
i=2

ipi ≤
α(k − 1)r

t

r∑
i=2

pi <
r∑

i=2
pi.

Thus, there must exist some i for which yi < pi. We may increase the value of yi, which decreases
the value of the objective function without violating any conditions until equality is satisfied in the
final condition. Thus, it suffices to analyze the following LP:

minimize
r∑

i=2
(pi − yi)Qt−i+1

subject to 0 ≤ yi ≤ pi ∀i = 2, 3, . . . , r
r∑

i=2
pi = 1

12

r∑
i=2

yi = α(k − 1)
t

r∑
i=2

ipi.

We wish to show that the minimum value of the objective function is at least Qt. Note that we
have 2n− 2 variables, 2n− 2 inequalities, and 2 equalities. Thus, in any extreme point, 2n− 4 of
the inequalities are tight. Based on this, we split into four cases.

• Case 1: 0 < yi = pi, 0 < yj = pj . This case is impossible since ∑r
i=2 yi = ∑r

i=2 pi.

• Case 2: 0 = yi < pi, 0 = yj < pj . This case is impossible since ∑r
i=2 yi = 0 < α(k−1)

t

∑r
i=2 ipi.

• Case 3: 0 = yi < pi, 0 < yj = pj . The minimum of the LP is

min
i

t− α(k − 1)r
t + α(k − 1)i− α(k − 1)rQt−i+1.

first, suppose that t− i + 1 > α(k − 1)r. It suffices to show that

t− α(k − 1)r
t + α(k − 1)i− α(k − 1)rQt−i+1 ≥ Qt,

or that
Qt−i+1

Qt
≥ 1 + α(k − 1)i

t− α(k − 1)r .

For shorthand, let x = t− α(k − 1)r. Then,

Qt−i+1
Qt

=
(x+2α(k−1)

2α(k−1)
)

(x+2α(k−1)−(i−1)
2α(k−1)

) = (x + 2α(k − 1)) · · · (x + 1)
x · · · (x− i + 2)

= (x + 2α(k − 1)) · · · (x + 2α(k − 1)− i + 2)
x · · · (x− i + 2)

=
(

1 + 2α(k − 1)
x

)
· · ·
(

1 + 2α(k − 1)
x− i + 2

)
≥
(

1 + 2α(k − 1)
x

)i−1

≥ 1 + 2α(k − 1)(i− 1)
x

≥ 1 + α(k − 1)i
t− α(k − 1)r ,

as needed. Next, suppose that t− i + 1 ≤ α(k − 1)r, so Qt−i+1 = 1. Then, we need to show
that the optimal value of the linear program satisfies

t− α(k − 1)r
t + α(k − 1)i− α(k − 1)r ≥ Qt = 2α(k − 1) + 1

1 + α(k − 1)r

(
t− α(k − 1)(r − 2)

2α(k − 1)

)−1

.

This follows from t− α(k − 1)(r − 2) > 2α(k − 1), which implies that(
t− α(k − 1)(r − 2)

2α(k − 1)

)−1

≤
(

2α(k − 1) + 1
2α(k − 1)

)−1

= 1
2α(k − 1) + 1

and from the optimal value of the linear program being

1− α(k − 1)i
t + α(k − 1)i− α(k − 1)r ≥

1
1 + α(k − 1)i ≥

1
1 + α(k − 1)r .

13

• Case 4: 0 < yi < pi. Note that

1− α(k − 1)
t

i ≥ t− α(k − 1)r
t + α(k − 1)i− α(k − 1)r = 1− α(k − 1)i

t + α(k − 1)i− α(k − 1)r ,

which is equivalent to the true statement α(k − 1)r ≥ α(k − 1)i, so this case reduces to case
3.

Lastly, as in Theorem 2.1, the enumeration phase produces at most S(α(k − 1)r, k) cuts total.
Because S(α(k − 1)r, k) = O(kα(k−1)r/k!), the theorem follows.

Bäıou and Barahona [2] generalized the tree packing approach of Chekuri et al. [8] and applied it
to α-approximate minimum k-cuts in r-rank hypergraphs. Their analysis, when completed, achieves
a O((kn)⌊rα(k−1)⌋) upper bound (see Appendix A). Thus, for r > 2, the upper bound shown by
randomized contraction is an improvement over previous results (we compared the r = 2 case,
where H is a simple weighted graph, of our contraction method to Chekuri et al. [8]’s tree packing
method in a comment below Theorem 2.1). We discuss the algorithm of Bäıou and Barahona [2]
in greater detail in Section 4.

2.1.1 A demonstration of the exponential kr dependence

Note that, ignoring the exponential dependence on r, the polynomial dependence on n of this result
is very similar to that of the graph case. We roughly show that the exponential dependence on
r is necessary by presenting a variation of the argument used by Kogan and Krauthgamer [20].
Consider a hypergraph H, shown in Figure 3, consisting of a central vertex vc attached to l + 1
edges E1 = {e, e1, e2, . . . , el} each of rank r and weight 1, where we take r > k. We suppose that
the only intersection between any two hyperedges in E1 is exactly {vc}. Next, add the l hyperedges
E2 = {e1 \ vc, e2 \ vc, . . . , el \ vc} = {e′

1, e′
2, . . . , e′

l}, each with weight α− 1.

vc e

e1

e2

e3

e4

Figure 3: The hypergraph H with (r, l) = (3, 4)

Henceforth, we represent a k-cut C by stating its k vertex partitions {V1, . . . , Vk}. The minimum
cut value λ must be at least 1, since any k-cut must cross some hyperedge in E1. In fact, λ is
exactly 1, since we can choose V2, V3, . . . , Vk to be singleton parts in e, and V1 to encompass the
remaining vertices. Now, select an edge e′

i ∈ E2. We may set all the vertices of H outside of e′
i to

14

be in V1, and then partition the vertices in e′
i into the groups V1, V2, . . . , Vk. Notice that the value

of this k-cut is exactly α. For large r, the number of ways to do such a partition will approach
kr/k!, as discussed in Theorem 2.1. Thus, the kr expression indeed is required.

2.2 Enumerating a multicriteria minimum cut

Karger [18] studied parametric minimum cuts for graphs:

Definition 2.1 (Parametric Minimum Cut). Consider a hypergraph H = (V, E) and let c1, c2, . . . , ct :
E → Z+ be t hyperedge cost criteria. A cut C is a parametric minimum cut if there exist posi-
tive multiplicative coefficients µ1, . . . , µt ∈ R+ such that C is a minimum cut in the hypergraph
H ′ = (V, E, wµ) with the weight function

wµ(e) =
t∑

i=1
µici(e).

This definition easily extends to α-approximate minimum cuts and minimum k-cuts.

We use the interleaving argument of Karger [18] to show the following theorem, which generalizes
their Corollary 4.5.

Theorem 2.4. The number of α-approximate parametric minimum k-cuts in a rank-r hypergraph
is:

O

(
kα(k−1)r

k! n2α(k−1)+t−1
)

.

Proof. Consider a random interleaving of contractions, where we select an i ∈ [t], and then randomly
contract an edge with probability proportional to ct. As in [18], it suffices to find the number of
interleavings. As contractions are commutative, we only need to select the number of times mi

we contract using the weights ci, for each i. Following the algorithm in Theorem 2.3, we need
to contract at most n − 2α(k − 1) times, and therefore, the number of interleavings is at most(n−2α(k−1)+t−1

t−1
)

= O(nt−1) (the well known “stars and bars” theorem [26]). The claimed result
follows by multiplying this factor by the result from Theorem 2.3.

3 Branching Contraction for Unweighted Hypergraph k-Cut

As with many variants of the minimum-cut problem, generalizations of the Karger-Stein recur-
sive contraction algorithm prove to be simple and efficient for the minimum k-cut problem in
hypergraphs. Currently, the fastest known algorithm for this problem is the branching contraction
algorithm of Fox et al. [10]. For a weighted hypergraph H = (V, E, w), it returns a minimum k-cut
with high probability in expected time Õ(mn2k−2).

The key difference between the branching contraction algorithm and the classical Karger-Stein
algorithm for graph k-cut is the random creation of branches. While Karger-Stein branches at fixed
numbers of vertices (decreasing the number of vertices by a factor of k

√
2 each time), Fox et al. [10]

choose to branch randomly based on the size of the contracted hyperedge. In particular, the branch
probability zn(e) is given by

zn(e) = 1−
(n−|e|

k−1
)(n−1

k−1
) .

15

In this context, a “branch” consists of copying the hypergraph and making a recursive call before
contracting; a recursive call will always be made on the contracted hypergraph. The intuition
behind this step is that the number of new minimum k-cuts found by the branch and the number
killed by the contraction are equal in expectation. Thus, the algorithm’s execution on a hypergraph
H may be organized into a “contraction tree”, with H as the root and the children of a given node
being the hypergraphs obtained by contractions of that node, as shown in Figure 4.

H

H/e1 H/e2 H/e3

Figure 4: One possible contraction tree for H.

For future reference, we outline the algorithm BranchingContract below. It takes hyper-
graph H = (V, E, w) as input and returns k-cut S. During recursive calls, S contains the edges
which are guaranteed to belong to the final k-cut. BranchingContract depends on subroutine
Contract(H, e), which copies H to new hypergraph H ′ and returns the ordered pair (H, H ′/e).

BranchingContract(H, S, k):
move edges of size at least n− k + 2 from E to S
if E = ∅:

return S
select e ∈ E with probability proportional to w(e)
(H, H ′/e) = Contract(H, e)
with probability zn(e):

return arg min(BranchingContract(H, S, k),
BranchingContract(H ′/e, S, k))

else:
return BranchingContract(H ′/e, S, k)

We call any edge of size at least n−k +2 a k-cover edge. k-cover edges are removed from E and
added to S because they are guaranteed to cross any k-cut in the hypergraph; through repeated
contraction, all edges will eventually become singletons or k-cover edges, guaranteeing termination.
Thus, at any point in the algorithm we consider the hypergraph H to have edge sizes in the set
G = {2, . . . , n− k + 1}.

Definition 3.1. A hypergraph H = (V, E, w) is λ-balanced for λ ≥ 1 if max
e1,e2∈E

w(e1)
w(e2) ≤ λ. Note

that a 1-balanced hypergraph is essentially unweighted.

We will examine the performance of the branching contraction algorithm on λ-balanced hyper-
graphs. For the remainder of this section, fix some λ-balanced hypergraph H0 = (V0, E0, w0) with

16

|V0| = n0 and |E0| = m0. We will use H = (V, E, w) with |V | = n and |E| = m to denote a hyper-
graph obtained by a sequence of contractions from H0; note that H is not necessarily λ-balanced
because duplicate edges are combined after contractions.

Let yi for i ∈ G be the proportion by weight of size-i edges in H, and define Yi similarly for
H0. First, we will show the following lemma about the expected structure of the contraction tree:

Lemma 3.1. The expected number of children of H in the contraction tree with n− i + 1 vertices
is yiC(H), where

C(H) =
(

n− 1
k − 1

)/∑
i∈G

yi

(
n− i

k − 1

)
is the expected number of children of H.

Proof. Using the fact the edges are selected by weight, the probability of not branching is:

Pr[no branch] =
∑
i∈G

yi Pr[no branch | size i contracted]

=
∑
i∈G

yi(1− zn(i))

= 1(n−1
k−1
) ∑

i∈G

yi

(
n− i

k − 1

)
.

Our expression for C(H) then follows as the expected value of a geometric distribution. We finish
by using the fact that each contracted edge is selected at random proportionally to its weight.

We conjecture the following bound a scaled proportion of small hyperedges (with size at most
k) in the intermediate hypergraphs obtained during the algorithm’s execution:

Conjecture 3.2. For a hypergraph H derived from H0 through a sequence of contractions, we have
the following: ∑

i≤k

(k − i + 1)yi

(
n− i

k − 1

)
∑
i∈G

yi

(
n− i

k − 1

) m = O(λn2k−1
0).

Let an effective bound be Aλn2k−1
0 .

We note that the conjecture holds for the original λ-balanced hypergraph H0. Assuming that
the minimum edge weight in H0 is 1, we have the bounds myi ≤ λ

(n0
i

)
for i ∈ G. Thus:

∑
i≤k

(k − i + 1)yi

(
n0 − i

k − 1

)
∑
i∈G

yi

(
n0 − i

k − 1

) m ≤
∑
i≤k

(k − i + 1)
(

n0
i

)(
n0 − i

k − 1

)
= O(λn2k−1

0).

Furthermore, the conjecture is supported by computational experiments on certain families of
random hypergraphs.

Now, we will derive a recurrence for the running time of BranchingContract. Fox et al.
[10] provide an implementation of Contract running in time O(m(n − |e| + 1)), where e is the

17

size of the contracted edge. For the purposes of computing the running time, assume that this
time contribution can be uniformly bounded by m(n− |e|+ 1). Let T (H) be the expected runtime
of BranchingContract on hypergraph H, given that H may be obtained from H0 through a
series of contractions. Then, using the result of Lemma 3.1 on the expected number of children
with contracted edge size i, we have:

T (H) =
∑
i∈G

yiC(H) (m(n− i + 1) + E (T (H/e) | |e| = i)) .

Let T (m, n) be the maximum of T (H) over the possible H with at most m edges and at most n
vertices. Noting that T (m, n) is increasing in m, we have:

T (m, n) ≤
∑
i∈G

yiC(H)(m(n− i + 1) + T (m, n− i + 1)).

Now we are ready to bound the running time.

Theorem 3.3. Assuming Conjecture 3.2 and that k ≥ 4, we have T (H0) = O(m0nk
0 + λn4k−3

0).

Proof. It suffices to show the following claim by inducting on n:

T (m, n) ≤
(

mn + Bλn2k−1
0

((
n− 1
k − 1

)
− n

))(
n

k − 1

)
−mn,

where B is a constant. For the base case, take n ≤ k2 + k; then, both m and n can be bounded by
functions of k, so a sufficiently large B will work.

Now, assume that n > k2 + k and that the inductive hypothesis holds for all n′ < n. Then, we
have:

T (m, n) ≤ C(H)
∑
i∈G

yi(m(n− i + 1) + T (m, n− i + 1))

≤ C(H)
∑
i∈G

yi

(
m(n− i + 1)

(
n− i + 1

k − 1

)
+ Bλn2k−1

0

((
n− i

k − 1

)
− n

)(
n− i + 1

k − 1

))
.

For the second term in the sum, we have:

Bλn2k−1
0

((
n− i

k − 1

)
− n

)(
n− i + 1

k − 1

)
≤ Bλn2k−1

0

((
n− i

k − 1

)(
n− i + 1

k − 1

)
− n · n− i + 1

n− i− k + 2

(
n− i

k − 1

))

≤ Bλn2k−1
0

((
n− 1
k − 1

)
− n · n− 1

n− k

)(
n− i

k − 1

)

≤ Bλn2k−1
0

((
n− 1
k − 1

)
− n− 1

)(
n− i

k − 1

)
.

Because i ≥ 2 and k ≥ 2. For the first term in the sum, note that:

(n− i + 1)
(

n− i + 1
k − 1

)
= (n− i + 1)2

n− i− k + 2

(
n− i

k − 1

)
.

Let f(i) = (n− i + 1)2

n− i− k + 2. Then, we have the following:

18

• f(2) = (n− 1)2

n− k
= (k − 1)n

n− k
+ n

(
1− 1

n

)
≤ (k − 1)n

n− k
+ n

(
1− 1(n

k−1
)).

• f(k + 1) = (n− k)2

n− 2k + 1 = n

(
1− n− k2

n(n− 2k + 1)

)
≤ n

(
1− k

n2

)
≤ n

(
1− 1(n

k−1
)).

Assume k ≥ 4. Then, the last inequality holds because(
n

k − 1

)
≥ n(n− 1)(n− 2)

(k − 1)(k − 2)(k − 3) ≥
n2

k

k2 + k − 2
(k − 2)(k − 3) ≥

n2

k
.

• f(n− k + 1) = k2 ≤ n

(
1− 1

k + 1

)
≤ n

(
1− 1(n

k−1
)).

• f ′′(i) = 2(k − 1)2

(n− k − i + 2)3 , which is positive for i ∈ G. Thus, f is convex.

Putting this together, we find f(i) ≤ max(k − i + 1, 0)n
n− k

+ n

(
1− 1(n

k−1
)). Thus, we have:

T (m, n) ≤ C(H)

∑
i>k

myi

(
1− 1(n

k−1
))n

(
n− i

k − 1

)
+
∑
i≤k

myi ·
(k − i + 1)n

n− k

(
n− i

k − 1

)

+
∑
i∈G

yiBλn2k−1
0

((
n− 1
k − 1

)
− n− 1

)(
n− i

k − 1

))

=
(

n

k − 1

)(
mn

(
1− 1(n

k−1
))

∑
i>k

(
n− i

k − 1

)
∑
i∈G

yi

(
n− i

k − 1

) + m
n

n− k

∑
i≤k

(k − i + 1)yi

(
n− i

k − 1

)
∑
i∈G

yi

(
n− i

k − 1

)

+ Bλn2k−1
0

((
n− 1
k − 1

)
− n− 1

))
.

Using Conjecture 3.2:

T (m, n) ≤
(

n

k − 1

)(
mn + n

n− k
·Aλn2k−1

0 + Bλn2k−1
0

((
n− 1
k − 1

)
− n− 1

))
−mn

≤
(

n

k − 1

)(
mn + A

(
1 + 1

k

)
λn2k−1

0 + Bλn2k−1
0

((
n− 1
k − 1

)
− n− 1

))
−mn.

Assuming that B ≥ A(1 + 1/k) completes the induction step. Thus, we find the desired bound for
T (m, n).

Corollary 3.4. Assuming Conjecture 3.2 and that k ≥ 4, for unweighted H0 we have T (H0) =
O(m0nk

0 + n4k−3
0).

Remark 3.5. By using the induction hypothesis T (m, n) ≤ m

((
n− 1
k − 1

)
− n

)(
n

k − 1

)
, we may

complete the induction without the use of Conjecture 3.2 (or the assumption of λ-balance), recov-
ering the O(mn2k−2) time complexity shown by Fox et al. [10].

19

4 Hypergraph k-cut Approximation

Quanrud [24] obtained a deterministic (2 + ϵ)-approximation algorithm for the minimum k-cut
problem in a graph, with a near-linear running time independent of k. Our generalization to
hypergraphs obtains a similar deterministic running time independent of k and an approximation
factor of r(1 + ϵ), where r is the rank of the hypergraph. For low rank hypergraphs, this improves
on the (k − 1)-approximation algorithm of Zhao et al. [28].

Bäıou and Barahona [2] studied the following LP relaxation (L) for the hypergraph k-cut prob-
lem, where T is the set of all hypertrees of H:

minimize
∑
e∈E

wexe

subject to
∑
e∈T

xe≥ |T |+ k − n, T ∈ T

xe ∈ [0, 1], e ∈ E.

Note that they only considered the case of a connected hypergraph (one with no trivial cut), where
|T |, the size of a hypertree, is n−1 for any T ∈ T . They obtained an r-approximation algorithm for
minimum k-cut based on combinatorial methods using max-flow. Their algorithm’s running time
is O(kn2p1+o(1)), where p is the sum of the sizes of all hyperedges. For comparison, we obtain an
r(1 + ϵ)-approximation algorithm by using the MWU framework. Our algorithm’s running time is
O(mn2r log2 n/ϵ2). As part of our algorithm, we compute a minimum hypertree in O(mnr) time.
This improves on Bäıou and Barahona’s previous running time of O(mrn1+o(1)). We derive their
running times in appendix B.

4.1 Setting up a Linear Programming Relaxation

We define the following linear program (C), where F is the set of all hyperforests of H:

minimize
∑
e∈E

wexe

subject to
∑
e∈F

xe≥ |F |+ k − n, F ∈ F

0 ≤ xe, e ∈ E.

We show that (C) is equivalent to (L) in the following sense:

Lemma 4.1. Any feasible solution x to (L) is also a feasible solution to (C). Furthermore, if x is
a feasible solution to (C), then x′ = min(x, 1) (taken component-wise) is a feasible solution to (L).

Proof. Suppose x is a feasible solution to (L). If F is a hyperforest, then extend F to a hypertree,
which can always be done by the greedy property of the hypergraphic matroid. Then∑

e∈F

xe =
∑
e∈T

xe −
∑

e∈T \F

xe ≥ |T |+ k − n− |T \ F | = |F |+ k − n,

where the inequality follows from the constraints of (L). Conversely, suppose x is a feasible solution
to (C). Let T be a hypertree, and let T ′ be the set of hypjeredges for which xe ̸= x′

e. Then∑
e∈T

x′
e =

∑
e∈T ′

1 +
∑

e∈T \T ′

xe ≥ |T ′|+ |T \ T ′|+ k − n = |T |+ k − n,

where the inequality follows from the constraints of (C). Hence, x′ is feasible in (L).

20

Let (P) be the dual of (C), as below:

maximize
∑
F

(|F |+ k − n)yF

subject to
∑
F ∋e

yF ≤ we, e ∈ E

0 ≤ yF , F ∈ F .

As (P) has polynomially many constraints, we apply the width-independent MWU framework in
the next subsection to compute a (1 − ϵ)-approximate solution to (P), and therefore a (1 + ϵ)-
approximate solution to (C).

4.2 Computing an Approximate Solution

For simplicity, we compute a (1−O(ϵ))-approximate solution to (P). For each hyperedge e, maintain
ce that satisfies

log(cewe) = log n

ϵ

∑
F ∋e yF

we

as well as c′
e that satisfies ce ≤ (1 + ϵ)c′

e. We remark that c′ can be thought of as the multiplicative
weights, as they are only ever updated multiplicatively by factors of (1 + ϵ). Start with a feasible
solution y = 0, which gives c′

e = ce = 1
we

. At each iteration, compute a (1 + O(ϵ))-approximate
solution z to the following Lagrangian relaxation (R):

maximize
∑

F ∈F
(|F |+ k − n)zF

subject to
∑
e∈E

c′
e

∑
F ∋e

zF ≤
∑
e∈E

c′
ewe.

Add δz to y, where δ is chosen such that exactly one element of c′ increases by a factor of 1 + ϵ.
Finally, update c and c′ accordingly. At the end of the iterations, a (1−O(ϵ))-approximate solution
to (P) can be computed given y and w (see [7] for more details). We give the algorithm below:

Width−Independent MWU, H = (V, E, w):
for hyperedges e:

ce ← 1
we

c′
e ← 1

we

for hyperforests F :
yF ← 0 (implicitly)

for each iteration:
compute z, a (1 + O(ϵ)) solution to (R)
choose minimum δ so that there is at least one c′ increase
y ← y + δz
for each hyperedge e update each ce accordingly
for each hyperedge e:

if c′
e(1 + ϵ) < ce: c′

e ← c′
e(1 + ϵ)

First, we bound the total number of iterations.

Lemma 4.2. There are at most O
(

m log n
ϵ2

)
iterations.

21

Proof. For a fixed e, log(cewe) ≤ O(log n
ϵ), so ce ≤ nO(1/ϵ), which implies c′

e can be increased by a
1+ϵ factor at most O(log n

ϵ2) times. Since there are m different c′ values and each iteration increases
at least one of them, the lemma follows.

The remainder of this section is dedicated to analyzing the running time of each iteration.

4.2.1 Greedy Algorithm and Binary Search

An optimum solution to (R) is easily computed via the greedy algorithm.

Lemma 4.3. Let F ∈ F maximize
|F |+ k − n∑

e∈F c′
e

.

Then, for some γ, letting zF = γ and all other components 0 maximizes (R). Additionally, F
consists of the l hyperedges of the minimum hypertree that have minimum weight, for some l.

Proof. Let
s(F) = |F |+ k − n∑

e∈F c′
e

.

Substitute z′
F = zF

∑
e∈F c′

e into (R), resulting in the following LP:

maximize
∑

F ∈F
s(F)z′

F

subject to
∑

F ∈F
z′

F ≤
∑
e∈E

c′
ewe.

The optimum solution has z′
F nonzero for F maximizing s(F), and zero for all other F . Thus, the

optimum solution to (R) has zF nonzero for F maximizing s(F), and zero for all other F . Now
suppose that such F contains l hyperedges. Then, by the greedy algorithm for the hypergraphic
matroid, these l hyperedges must be the l hyperedges of the minimum hypertree that have minimum
weight.

Lemma 4.4. A data structure can be maintained in O(log m) time per iteration such that the sum
of the weights of the first l hyperedges of the minimum hypertree can be queried in O(log n) time.

Proof. Define

L =
{(

e,
(1 + ϵ)i

we

)
: e ∈ E, i ∈

{
0, 1, 2, . . . , O

(log n

ϵ2

)}}
.

Let B be a segment tree over L, which can be built in O
(

m log n
ϵ2

)
time. When (e, c′

e) is part of the
minimum hypertree, mark the corresponding node on B, and unmark the node when (e, c′

e) is no
longer part of the minimum spanning hypertree. For each node b, let Lb denote the subtree rooted
at b. We keep track of the size of b and the sum of the edge weights. This can be maintained in
O(log m) time per weight update. For a given l, the first l hyperedges of the minimum hypertree
correspond to the marked nodes over some interval. This interval can be decomposed into O(log n)
subtrees. Hence, the lemma holds.

Instead of checking all possible values of l individually, we can use binary search:

Lemma 4.5. A solution to (R) with respect to c′ can be computed in O(log k) = O(log n) queries
of the sum of the weights of the first l hyperedges of the minimum hypertree.

22

Proof. Let e1, e2, . . . , en−1 be the hyperedges of the minimum hypertree, in increasing order of
weight. Define

f(i) = i∑n−k+i
j=1 c′

ej

.

It suffices to find i ∈ [k − 1] maximizing f(i). We have

f(i + 1)− f(i) = i + 1∑n−k+i+1
j=1 c′

ej

− i∑n−k+i
j=1 c′

ej

=
(i + 1)∑n−k+i

j=1 c′
ej
− i

∑n−k+i+1
j=1 c′

ej(∑n−k+i+1
j=1 c′

ej

) (∑n−k+i
j=1 c′

ej

) =
∑n−k+i

j=1 c′
ej
− ic′

ei+1(∑n−k+i+1
j=1 c′

ej

) (∑n−k+i
j=1 c′

ej

) .

The denominator is positive. Since c′
ej

is increasing, if f(i + 1)− f(i) ≤ 0 then f(j + 1)− f(j) ≤ 0
for all j ≥ i. Hence, the maximum of f can be found by binary search, evaluating O(log k) values
of f .

Each value takes O(log n) time to evaluate (we account for the amortized time separately), so
we can compute a solution in O(log k log n) = O(log2 n) time. Overall, the time per iteration to
solve (R), not including maintaining the minimum hypertree with respect to w, is O(log m+log2 n).

4.3 Minimum Hypertree

To compute the minimum hypertree, it suffices to use the greedy algorithm, i.e. repeatedly adding
the minimum weight hyperedge that preserves the hyperforest condition. The current state of
the art for checking if a given set of hyperedges forms a hyperforest is Bäıou [3] O(rn1+o(1)) time
algorithm based off s-t max flow, resulting in an O(mrn1+o(1)) time minimum hypertree algorithm.
We give a more detailed running time analysis in appendix B. Because this specific definition of
hyperforest is uncommon in the literature, there is no other research the authors are currently
aware of. We improve the running times for computing a minimum hypertree to O(mnr).
Lemma 4.6. Let e1, . . . , eh be hyperedges in H = (E, V, w). Assume that e1, . . . , eh−1 form a
hyperforest. Then e1, e2, . . . , eh form a hyperforest if and only if it is possible to find distinct
vertices v1, . . . , vh+1 such that vi ∈ ei for 1 ≤ i ≤ h and vh+1 ∈ eh.

Proof. First, suppose that there exist distinct v1, . . . , vh+1 such that vi ∈ ei for i ∈ [h] and vh+1 ∈ eh.
Let F = {e1, . . . , eh}. We show that |F [X]| ≤ |X| − 1 for every nonempty X ⊆ V . Let X ⊆ V be
nonempty. We have the following two cases.

• Suppose that eh ̸⊆ X. Since e1, . . . , eh−1 form a hyperforest of H, it follows that |F [X]| =
|(F − {eh})[X] ≤ |X| − 1.

• Suppose that eh ⊆ X. Then vk, vk+1 ∈ eh ⊆ X. For each i ∈ [h− 1] with ei ∈ F [X], we have
vi ∈ ei ⊆ X. Since v1, . . . , vh−1 are distinct, the function (F − {eh})[X] → X − {vh, vh+1}
defined by ei → vi is injective. Hence (F − {eh})[X] ≤ |X − {vh, vh+1}| = |X| − 2. Since
eh ⊆ X, it follows that |F [X]| = |(F − {eh})[X]|+ 1 ≤ (|X| − 2) + 1 = |X| − 1.

Second, suppose that e1, . . . , eh form a hyperforest. Let eh+1 := eh. Let F = {e1, . . . , eh},
and F ′ = {e1, . . . , eh+1} where F and F ′ are multisets. For each S ⊆ F ′, let V (S) denote the
union of all hyperedges in S. By Hall’s Marriage Theorem, it suffices to show |S| ≤ |V (S)| for all
S ⊆ F ′. Let S ⊆ F ′. Since F is a hyperforest, we have |F [V (S)]| ≤ |V (S)| − 1. Hence, |F ′[V (S)]| ≤
|F [V (S)]|+ 1 ≤ |V (S)|. Since S ⊆ F ′, it follows that |S| ≤ |F ′[V (S)]| ≤ |V (S)|. This completes the
proof.

23

Theorem 4.7. The minimum hypertree can be computed in O(mnr) time.
Proof. Given that e1, . . . , eh−1 form a hyperforest, as well as a matching ei → vi for i ∈ [h− 1], the
condition in the above lemma can be checked with BFS in O(nr) time by reducing it to a matching
problem and searching for augmenting paths. This is run O(m) times, for a total running time of
O(mnr). We give the algorithm below:
MinimumHypertree(H = (V, E, w)) :

T = {}
sort all hyperedges by weights w
For hyperedges e in order of increasing weights:

Check with BFS if it is possible to assign two distinct vertices to e
(changing vertices assigned to other hyperedges if necessary)
if this is possible: T ← T ∪ {e}

remove one of the two vertices assigned to e
else: proceed to the next hyperedge
\\recall a hypertree may contain multiple copies of the same hyperedge

return T

It is inefficient to recompute the minimum hypertree every iteration. Instead, as MWU only
ever increases the c′ values, we use Chekuri and Quanrud’s [7] Dynamic Minimum Weight Base
algorithm:
Lemma 4.8 (Chekuri and Quanrud [7]). For a matroid M = (N, I, w) of rank k, the minimum
weight base can be maintained in O(kQ) amortized time per update to w, with O(nkQ) initialization
time, where n is the number of elements of M , and Q is the running time of an independence oracle.

In the case of a hypergraphic matroid (E,F , w) over a hypergraph, the rank is n− 1, and our
algorithm above provides Q = O(nr) (as it suffices to check if F ∪ e is a hyperforest given F is a
hyperforest), so the minimum hypertree can be maintained in O(n2r) amortized time per weight
update. The initialization of their data structure requires O(mn2r) time. Thus, the overall running
time to compute a (1 + ϵ)-approximate solution to (L) is O(mn2r log n/ϵ2).

4.4 Rounding to a k-cut

Given a (1 + ϵ)-approximate solution x to (L), we construct an integral solution with objective
value at most r times the objective value of x, where r is the rank of the hypergraph, which we
can find during the initial minimum hypertree computation. This integral solution represents an
r(1 + ϵ)-approximate k-cut.

If F is a hypertree in hypergraph H, say a greedy component of F is a connected component
induced by a prefix of F , and a greedy cut is a cut induced by a greedy component of F . Quanrud’s
greedy-cuts algorithm [24] generalizes to hypergraphs:
GreedyCuts(H = (V, E, w), x) :

let r be the rank (size of maximal hyperedge) of H
let E′ = {e ∈ E : xe ≥ 1

r}
if E′ is a k−cut: return E′

remove all hyperedges in E′ from H, leaving l components
let F be a minimum hypertree of H
return the union of E′ and the k − l minimum weight greedy cuts of F

24

A straightforward implementation, directly computing all greedy cuts, achieves a running time of
O(mn). Hence, the overall time of our algorithm is O(mn2r log n/ϵ2).

We now prove this algorithm’s approximation properties. We start with the following lemma,
which follows from generalizing the Goemans and Williamson primal-dual algorithm [13] to hyper-
graphs:

Lemma 4.9 (Takeshita et al. [27]). Let T be a minimum hypertree in a hypergraph H = (V, E, x)
of rank r. Let C be the family of greedy cuts induced by T . Then there exists y : C → R satisfying
the following properties:

• ∑
C∈C,C∋e

yC ≤ xe for each e ∈ E (1)

• ∑
C∈C,C∋e

yC = xe for each e ∈ T (2)

•

r
∑
C∈C

yC ≥
∑
e∈T

xe. (3)

Lemma 4.10. GreedyCuts returns a k-cut of cost at most r
∑

e cexe.

Proof. Let y be as in the above lemma. Since xe ≤ 1
r for all e ∈ E′, then yC ≤ 1

r for all greedy cuts
C. Since x is a feasible solution to (L),

r
∑

yC ≥
∑
e∈F

xe ≥ k − 1.

Let C1, C2, · · · , Ck−1 be the k − 1 minimum greedy cuts. The sum of the values of these greedy
cuts is an optimal value of the following minimization problem:

minimize
∑
C∈C

y′
C · cost(C)

subject to
∑
F ∋e

yF ≤ we, F ∈ F

0 ≤ y′
C ≤ 1, C ∈ C

support y′ ⊆ support y.

Since ry is a feasible solution to this problem, it follows that

k−1∑
i=1

cost(Ci) ≤ r
∑
C∈C

yC · cost(C) = r
∑

e∈E′

we

∑
C∋e

yC ≤ r
∑

e∈E′

wexe,

as desired.

Our algorithm is most of interest for low-rank hypergraphs.

25

5 Conclusion and Future Directions

In Section 2, we generalized the work of Kogan and Krauthgamer [20] from the cut case to the
k-cut case, when considering α-approximate minimum cuts in low-rank hypergraphs. We also
briefly touched on a graph construction achieving the exponential kr dependence as well as a
variation of multicriteria cuts relevant to Theorem 2.3. It is natural to ask whether there exists
a low-rank hypergraph construction which better demonstrates a lower bound on the number of
α-approximate minimum k-cuts. Furthermore, there exist other variants of multicriteria cuts which
have unsatisfactory α-approximate extensions. Another future direction includes addressing these
questions.

In Section 3, we showed that the running time of Fox et al. [10]’s branching contraction algorithm
can be improved in the case of unweighted or close-to-unweighted hypergraphs under a conjectural
bound on the scaled proportions of small hyperedges. In our efforts to show this conjecture, we
found that the contraction operation typically causes the distribution of hyperedge weights to
approach that of a complete hypergraph (as measured by KL divergence in computational testing);
this extends the fact that complete hypergraphs are a fixed point under contraction. Such behavior,
if established rigorously, could be helpful in understanding the performance of contraction-based
algorithms for hypergraphs.

In Section 4, we provided a faster algorithm for computing a r(1 + ϵ)-approximate minimum k
cut. It is known that obtaining an approximation ratio of 2− ϵ in graphs is NP-hard. It is natural
to ask whether obtaining an approximation ratio better than r(1 − ϵ) is also NP-hard in the case
of a hypergraph. Additionally, in the MWU algorithm, maintaining the minimum hypertree is the
bottleneck. Thus, it is also natural to ask whether the minimum hypertree can be maintained in
less than O(n2r) time per weight update, which is the running time of Chekuri and Quanrud [7]’s
general dynamic minimum weight base algorithm.

Finally, it is instructive to compare the randomized contraction and tree packing approaches.
Randomized contraction typically gives algorithms for finding exact minimum k-cuts, while tree
packing tends towards fast approximation algorithms. However, both give bounds on the numbers
of approximate minimum k-cuts; comparing our randomized contraction bound of O(krαn2α(k−1))
to Bäıou and Barahona [2]’s tree packing bound of O(n⌊rα(k−1)⌋), it can be seen that randomized
contraction gives a better polynomial dependence on n.

Tree packing allows one to derive bounds with a floor function in the exponent; considering the
number of α-approximate minimum cuts in a graph, Karger [17]’s tree packing approach gave a
tight O(n⌊2α⌋) bound, improving on the O(n2α) bound given by randomized contraction. Thus, it
would be interesting to investigate if tree packing can be used to similarly improve our randomized
contraction-based bound.

Acknowledgements

We kindly thank our mentor, Yuchong Pan, for his leadership and guidance. We are grateful to
the PRIMES program for making this research possible.

References

[1] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-algorithm
and applications. Theory of Computing, 8(6):121–164, 2012. doi: 10.4086/toc.2012.v008a006.
URL https://theoryofcomputing.org/articles/v008a006.

26

https://theoryofcomputing.org/articles/v008a006

[2] M. Bäıou and F. Barahona. Packing hypertrees and the k-cut problem in hypergraphs. In D. E.
Simos, V. A. Rasskazova, F. Archetti, I. S. Kotsireas, and P. M. Pardalos, editors, Learning
and Intelligent Optimization, pages 521–534, Cham, 2022. Springer International Publishing.
ISBN 978-3-031-24866-5.

[3] M. Bäıou and F. Barahona. On some algorithmic aspects of hypergraphic matroids. Discrete
Math., 346(2), Feb 2023. ISSN 0012-365X. doi: 10.1016/j.disc.2022.113222. URL https:
//doi.org/10.1016/j.disc.2022.113222.

[4] R. Cen, J. Li, and D. Panigrahi. Hypergraph unreliability in quasi-polynomial time. In
Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024,
page 1700–1711, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400703836. doi: 10.1145/3618260.3649753. URL https://doi.org/10.1145/3618260.
3649753.

[5] K. Chandrasekaran, C. Xu, and X. Yu. Hypergraph k-cut in randomized polynomial time.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’18, page 1426–1438, USA, 2018. Society for Industrial and Applied Mathematics. ISBN
9781611975031.

[6] S. Chatterjee, J. R. Gilbert, R. Schreiber, and T. J. Sheffler. Array distribution in data-parallel
programs. In K. Pingali, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors, Lan-
guages and Compilers for Parallel Computing, pages 76–91, Berlin, Heidelberg, 1995. Springer
Berlin Heidelberg. ISBN 978-3-540-49134-7.

[7] C. Chekuri and K. Quanrud. Near-linear time approximation schemes for some implicit
fractional packing problems. In Proceedings of the 2017 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 801–820, 2017. doi: 10.1137/1.9781611974782.51. URL
https://epubs.siam.org/doi/abs/10.1137/1.9781611974782.51.

[8] C. Chekuri, K. Quanrud, and C. Xu. Lp relaxation and tree packing for minimum k-cut.
SIAM Journal on Discrete Mathematics, 34(2):1334–1353, 2020. doi: 10.1137/19M1299359.
URL https://doi.org/10.1137/19M1299359.

[9] DLMF 26.8.42. NIST Digital Library of Mathematical Functions 26.8.42. https://dlmf.
nist.gov/26.8#E42, Release 1.2.0 of 2024-03-15. URL https://dlmf.nist.gov/. F. W. J.
Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R.
Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

[10] K. Fox, D. Panigrahi, and F. Zhang. Minimum cut and minimum k-cut in hypergraphs
via branching contractions. In Proceedings of the 2019 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 881–896, 2019. doi: 10.1137/1.9781611975482.54. URL
https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.54.

[11] A. Frank, T. Király, and M. Kriesell. On decomposing a hypergraph into k connected
sub-hypergraphs. Discrete Applied Mathematics, 131(2):373–383, 2003. ISSN 0166-218X.
doi: 10.1016/S0166-218X(02)00463-8. URL https://www.sciencedirect.com/science/
article/pii/S0166218X02004638. Submodularity.

[12] N. Garg and J. Koenemann. Faster and simpler algorithms for multicommodity flow and
other fractional packing problems. In Proceedings of the 39th Annual Symposium on Founda-

27

https://doi.org/10.1016/j.disc.2022.113222
https://doi.org/10.1016/j.disc.2022.113222
https://doi.org/10.1145/3618260.3649753
https://doi.org/10.1145/3618260.3649753
https://epubs.siam.org/doi/abs/10.1137/1.9781611974782.51
https://doi.org/10.1137/19M1299359
https://dlmf.nist.gov/26.8#E42
https://dlmf.nist.gov/26.8#E42
https://dlmf.nist.gov/
https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.54
https://www.sciencedirect.com/science/article/pii/S0166218X02004638
https://www.sciencedirect.com/science/article/pii/S0166218X02004638

tions of Computer Science, FOCS ’98, page 300, USA, 1998. IEEE Computer Society. ISBN
0818691727.

[13] M. X. Goemans and D. P. Williamson. A general approximation technique for con-
strained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995. doi: 10.1137/
S0097539793242618. URL https://doi.org/10.1137/S0097539793242618.

[14] O. Goldschmidt and D. Hochbaum. Polynomial algorithm for the k-cut problem. In [Pro-
ceedings 1988] 29th Annual Symposium on Foundations of Computer Science, pages 444–451,
1988. doi: 10.1109/SFCS.1988.21960. URL https://www.jstor.org/stable/3690374.

[15] A. Gupta, E. Lee, and J. Li. The karger-stein algorithm is optimal for k-cut. In Proceed-
ings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020,
page 473–484, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450369794. doi: 10.1145/3357713.3384285. URL https://doi.org/10.1145/3357713.
3384285.

[16] D. R. Karger. Global min-cuts in rnc and other ramifications of a simple mincut algorithm.
In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
21–30, 01 1993.

[17] D. R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, jan 2000. ISSN
0004-5411. doi: 10.1145/331605.331608. URL https://doi.org/10.1145/331605.331608.

[18] D. R. Karger. Enumerating parametric global minimum cuts by random interleaving. In
Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC
’16, page 542–555, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450341325. doi: 10.1145/2897518.2897578. URL https://doi.org/10.1145/2897518.
2897578.

[19] D. R. Karger and C. Stein. A new approach to the minimum cut problem. J. ACM, 43(4):
601–640, jul 1996. ISSN 0004-5411. doi: 10.1145/234533.234534. URL https://doi.org/10.
1145/234533.234534.

[20] D. Kogan and R. Krauthgamer. Sketching cuts in graphs and hypergraphs. In Proceedings of
the 2015 Conference on Innovations in Theoretical Computer Science, ITCS ’15, page 367–376,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450333337. doi:
10.1145/2688073.2688093. URL https://doi.org/10.1145/2688073.2688093.

[21] E. Lawler, J. Lenstra, A. Kan, and D. Shmoys. The Traveling Salesman Problem. A Wiley-
Interscience publication. John Wiley & Sons, Incorporated, 1985. ISBN 9780471904137. URL
https://books.google.com/books?id=guDj0AEACAAJ.

[22] J. Naor and Y. Rabani. Tree packing and approximating k-cuts. In Proceedings of the 12th An-
nual ACM-SIAM Symposium on Discrete Algorithms, Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 26–27, 2001. ISBN 0898714907. 2001 Operat-
ing Section Proceedings, American Gas Association ; Conference date: 30-04-2001 Through
01-05-2001.

[23] S. Plotkin, D. Shmoys, and E. Tardos. Fast approximation algorithms for fractional packing
and covering problems. In [1991] Proceedings 32nd Annual Symposium of Foundations of
Computer Science, pages 495–504, 1991. doi: 10.1109/SFCS.1991.185411.

28

https://doi.org/10.1137/S0097539793242618
https://www.jstor.org/stable/3690374
https://doi.org/10.1145/3357713.3384285
https://doi.org/10.1145/3357713.3384285
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/2897518.2897578
https://doi.org/10.1145/2897518.2897578
https://doi.org/10.1145/234533.234534
https://doi.org/10.1145/234533.234534
https://doi.org/10.1145/2688073.2688093
https://books.google.com/books?id=guDj0AEACAAJ

[24] K. Quanrud. Fast and Deterministic Approximations for k-Cut. In D. Achlioptas and
L. A. Végh, editors, Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques (APPROX/RANDOM 2019), volume 145 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 23:1–23:20, Dagstuhl, Germany, 2019. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-125-2. doi: 10.4230/LIPIcs.
APPROX-RANDOM.2019.23. URL https://drops.dagstuhl.de/entities/document/10.
4230/LIPIcs.APPROX-RANDOM.2019.23.

[25] A. Ramanathan and C. J. Colbourn. Counting almost minimum cutsets with reliabil-
ity applications. Math. Program., 39(3):253–261, 1987. doi: 10.1007/BF02592076. URL
https://doi.org/10.1007/BF02592076.

[26] R. Stanley. Enumerative Combinatorics: Volume 1, 2nd edition. Cambridge University Press,
2011. ISBN 9780511609589. doi: 10.1017/CBO9780511609589.

[27] K. Takeshita, T. Fujito, and T. Watanabe. Primal-dual approximation algorithms for some
hypergraph problems. Technical report, Hiroshima University Graduate School of Engineering,
1999.

[28] L. Zhao, H. Nagamochi, and T. Ibaraki. On generalized greedy splitting algorithms for multi-
way partition problems. Discrete Appl. Math., 143(1–3):130–143, Sept. 2004. ISSN 0166-218X.
doi: 10.1016/j.dam.2003.10.007. URL https://doi.org/10.1016/j.dam.2003.10.007.

A Completing the Hypertree Packing Argument of Bäıou and
Barahona

In what follows, we use the notation of Chekuri et al. [8] and Bäıou and Barahona [2]. We consider
the α-approximate minimum k-cut problem for a rank-r hypergraph H = (V, E, w).

Theorem A.1 (Bäıou and Barahona [2]). Let (ȳ, z̄) be an optimal solution of the dual LP for k-cut.
Let E′ be any set of hyperedges such that w(E′) ≤ αλ for some α ≥ 1, where λ is the minimum
k-cut value in H. For each hypertree T let lT = |E′ ∩ E(T)|. Let τ = ∑

T ȳT and pT = ȳT /τ . For
an integer h ≥ k − 1, let qh = ∑

T :lT ≤h pT . Then

qh ≥ 1−
rα(k − 1)

(
1− 1

n

)
h + 1 .

The following completion of the hypertree packing argument follows the argument from Chekuri
et al. [8] on tree packing in the graph case, but was left out of Bäıou and Barahona [2].

Theorem A.2. The number of α-approximate minimum k-cuts in a rank-r hypergraph is

O((kn)⌊αr(k−1)⌋).

Proof. Set h = ⌊αr(k − 1)⌋ and define qh as in Theorem A.1. Note that qh is the fraction of
hypertrees in the packing induced by (ȳ, z̄) that contain at most h hyperedges in A, the hyperedges
induced by some specific α-approximate k-cut. Consider a hypertree T . There are at most nh

subsets of the hyperedges of T with cardinality at most h, and each subset induces at most kh+1

distinct k-partitions of V . So, there are at most kh+1nh distinct k-cuts with at most h hyperedges

29

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.23
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.23
https://doi.org/10.1007/BF02592076
https://doi.org/10.1016/j.dam.2003.10.007

from T . It follows, by considering this bound on each hypertree in the packing, that there can be
no more than

kh+1nh/qh = O((kn)h) = O((kn)⌊αr(k−1)⌋)

α-approximate minimum k-cuts in H.

B The Running Time of Bäıou and Barahona’s Algorithms

Let the strength of a hypergraph be the minimum of

δH(C)
|C| − 1

over all cuts C. Bäıou and Barahona provide the algorithm for computing the strength:

Theorem B.1 (Bäıou and Barahona [3]). The strength of a hypergraph can be computed with n
applications of the push-preflow algorithm on a graph with O(m+n) vertices and O(p) edges, where
p denotes the sum of the sizes of all hyperedges.

In their algorithm each push-preflow application solves n instances of an s-t min cut problem,
so the following also holds:

Corollary B.2. Computing the strength of a hypergraph reduces to solving n2 instances of s-t max
flow on a graph with O(m + n) vertices and O(p) edges.

s-t max flow can be solved in O(|E|1+o(1)) time, so the strength of a hypergraph can be computed
in O(n2p1+o(1)) time. We now analyze the runtime of Algorithm 1 of Bäıou and Barahona [2]. Let
Pj be the final partition returned. The strength of each set in one of the Pis must be computed
for each i < j, which is | ∪i<j Pi| sets. Note that |Pi+1 − Pi| = |Pi+1| − |Pi|+ 1 ≤ 2(|Pi+1| − |Pi|).
Thus,

| ∪i Pi| = 1 +
j−2∑
i=0
|Pi+1 − Pi| ≤ 1 + 2|Pj−1| < 2k.

Thus, their runtime is as follows:

Theorem B.3. There exists an algorithm computing an r-approximation to minimum k-cut in
O(kn2p1+o(1)) time for hypergraphs of rank r.

Bäıou and Barahona also provide an algorithm for computing the minimum hypertree:

Theorem B.4 (Bäıou and Barahona [3]). In a rank r hypergraph, computing the minimum hy-
pertree reduces to solving m instances of s-t max flow on a graph with O(n) vertices and O(nr)
edges.

Each s-t max flow problem requires O(rn1+o(1)) time, so the total running time is O(mrn1+o(1)).

30

	Introduction
	Outline
	Definitions
	Randomized Contraction
	Tree Packing
	Multiplicative Weight Update
	Our Contributions

	Randomized Contraction Bounds for Approximate Minimum k-Cuts
	Approximate Minimum k-Cuts in Hypergraphs
	A demonstration of the exponential kr dependence

	Enumerating a multicriteria minimum cut

	Branching Contraction for Unweighted Hypergraph k-Cut
	Hypergraph k-cut Approximation
	Setting up a Linear Programming Relaxation
	Computing an Approximate Solution
	Greedy Algorithm and Binary Search

	Minimum Hypertree
	Rounding to a k-cut

	Conclusion and Future Directions
	Completing the Hypertree Packing Argument of Baïou and Barahona
	The Running Time of Baïou and Barahona's Algorithms

