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Abstract. Let G be a finite p-group and k be an algebraically closed field of characteristic p. Dave Benson
has conjectured that when p = 2, if V is an odd-dimensional indecomposable representation for a finite 2-
group G, then all non-trivial summands of the tensor product V ⊗V ∗ have even dimension. It is known that
the analogous result for general p is false. In this paper, we investigate the class of graded representations V
which have dimension coprime to p and for which V ⊗ V ∗ has a non-trivial summand of dimension coprime
to p, for a graded group scheme closely related to Z/prZ×Z/psZ, for two nonnegative integers r and s. We
produce an infinite family of such representations.

1. Introduction

In modular representation theory of finite groups, that is, the study of representations of a finite group G
whose order is divisible by a prime p over a field of characteristic p, many seemingly easy-to-state questions
about the decompositions of tensor products remain unsolved. One such fundamental question that has
generated much research interest is the following.

Question 1.1. For what finite-dimensional indecomposable G-representations V does V ⊗ V ∗ break down
into a direct sum of the trivial representation k and indecomposable representations of dimension divisible
by p?

By the Benson–Carlson Theorem [BC86, Theorem 2.1], the trivial representation k appears as a direct
summand of V ⊗ W , with V and W indecomposable, if and only if W ∼= V ∗ and the dimension of V is
not divisible by p. In this case the multiplicity of k in the decomposition of V ⊗ V ∗ is 1. We adopt the
terminology of [Ben20]: when V has dimension non-divisible by p, we say that V is a p′ representation, and
when V ⊗V ∗ breaks down into a direct sum of k and representations of dimension divisible by p we call V p′-
invertible. By the Benson–Carlson Theorem, Question 1.1 can now be restated as: which p′-representations
are p′-invertible?

This question can be restated in yet another way in the language of semisimplifications of tensor categories.
The semisimplification of a tensor category (see [EO22]) is a semisimple tensor category, where simple
objects correspond to those indecomposable objects of the original category whose dimension (considered
as an element of k) is nonzero. Therefore, Question 1.1 can be restated as: what are the tensor-invertible
representations of the semisimplification of G-representations? Since semisimplifications of categories of
representations for finite groups have recently been an important tool for studying general symmetric tensor
categories [CEO23,BEO23], this question is pressing.

Based on extensive evidence via computer algebra systems, Dave Benson has made a striking conjecture
for the answer to Question 1.1 in characteristic 2, see [Ben20, Conjecture 1.1]:

Conjecture 1.2 (Benson’s Conjecture). If G is a finite 2-group, k a field of characteristic 2, and V an
odd-dimensional representation of G, then all indecomposable summands of V ⊗V ∗ have dimension divisible
by 2. That is, every 2′-representation is 2’-invertible.

In fact, this is a weak version of Benson’s Conjecture; he also gives a strong version of the conjecture,
which is that all summands of V ⊗ V ∗ have dimension divisible by 4.

One useful consequence of Conjecture 1.2 would be that all tensor powers of a 2′-representation V would
have a unique 2′-summand [FH91]. In this case, Benson has further conjectures on the growth of the
dimension of these 2′-summands [CV, Conjecture 1.0.2], which has been verified in a few small examples [CV,
Theorem 1.0.3]. Alternative growth functions related to either the number of indecomposable summands
in a tensor power or the dimensions of non-projective summands in tensor powers have also received recent
attention [BS20,Upa21,Upa22,CHU22,COT23,CEO].
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For p > 2, however, there is not even a conjectural description of the p′-invertible representations. The
naive extension of Benson’s Conjecture– that all p′-representations are p′-invertible– fails in even very low-
dimensional examples starting with p = 3. In this paper, we study Question 1.1 for cyclic graded represen-
tations of a finite group scheme αp(r, s) which is closely related to Z/prZ× Z/psZ, which has generators x
and y. Given a cyclic representation V , we draw a graded diagram for V with rows and columns as below
in Section 2.

Theorem 1.3. Let Vh be the cyclic module of dimension h generated in degree (0, 0) for αp(r, s) such that x
acts by 0. Let pow(h) be the smallest number such that h ≤ ppow(h). If Vh is not p′-invertible, then neither
is V , where V satisfies either

(1) every column of V is equal to either 0 or h modulo ppow(h);
(2) every row of V is equal to either 0 or h modulo ppow(h).

Based on computational evidence collected using the computer algebra system Magma, the only cyclic
p’-representations of αp(r, s) appear to be those appearing in Theorem 1.3.

Question 1.4. If V is a cyclic p’-representation for αp(r, s) not satisfying the conditions of Theorem 1.3,
is V p′-invertible?

2. Background

Let k denote an algebraically closed field of characteristic p. We denote G := Z/prZ × Z/psZ. The
generating set of G is given by {g, h}, where gp

r

= hps

= 1 and gh = hg (g and h commute). Let g′ and h′

denote the corresponding vectors of g and h in the group algebra kG, and define x := g′ − 1 and y := h′ − 1.
Note that x and y are both nilpotent because

xpr

= (g − 1)p
r

= gp
r

− 1 = 1− 1 = 0,

and the analogous relation holds for y. Thus, it is sufficient to define the values that x and y map to fully
define a map from kG, as g′ and h′ form a generating set for kG.

We define αp(r, s) to be the group algebra of Z/prZ× Z/psZ as an algebra, with an alternative comulti-
plication given by

x 7→ x⊗ 1 + 1⊗ x, y 7→ y ⊗ 1 + 1⊗ y.

This alternative definition of comultiplication (for a description of the canonical structure of a cocommu-
tative Hopf algebra on kG, refer to [EGH+11, Section 4.4] or [Kas94, Section 3.3]) provides αp(r, s) with the
structure of a Hopf algebra, or the coordinate ring of a group scheme ( [Kas94]). To achieve a Z2 grading,
we define the degree of x to be (1, 0) and the degree of y to be (0, 1), respectively, with x and y as elements
of αp(r, s) as before. This grading gives αp(r, s) the structure of a graded Hopf algebra, allowing us to form
graded diagrams of these modules.

To formally define these graded diagrams, consistent with the notation used in [CV] for the more general
notion of a monomial diagram, consider a partition λ = (λ1, . . . , λn) for which λ1 ≥ λ2 ≥ · · · ≥ λn > 0.
The representation corresponding to such a partition that we consider has basis elements vi,j such that
0 ≤ i ≤ n − 1 and 0 ≤ j ≤ λi+1. In such a representation, the x action applied to the basis element vi,j
yields vi+1,j , and similarly the y action applied to vi,j yields vi,j+1. If vi+1,j or vi,j+1 do not exist in these
respective cases, we say that the basis element vi,j is sent to 0.

It is important to note that for this to be a valid representation, there must be at most ps values of j
for each i such that vi,j exists, and similarly, at most pr values of i for each j for which vi,j exists. We can
further pictorially depict the grading of these representations with graded diagrams. For all i and j for which
vi,j is a basis element, if we draw in the grid box, or cell, in degree (i, j), we can produce such a graded
diagram.

Example 2.1. For G := Z/5Z × Z/25Z, the graded diagram corresponding to the partition [6, 3, 2, 2] is
shown below. As can be seen from the diagram, there are basis vectors in vi,j for (i, j) ∈ S for

S := {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (3, 0), (3, 1)}.
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Throughout this paper, we often refer to the rows and columns within the graded diagrams corresponding
to the representations mentioned above. Row a refers to the group of cells corresponding to vi,j with j = a.
Similarly, column b refers to the group of cells corresponding to vi,j for which i = b.

3. Classifying certain maps between tensor products

Let V be a cyclic representation of αp(r, s) generated in degree (0,0). Let W be the cyclic representation
of αp(r, s) of dimension n +m + 1 generated in degree −n, where n and m are positive integers, such that
x acts by 0. In this section, we classify the G-representation homomorphisms V → V ⊗ W , which will be
useful in the following section.

Since V is cyclic, any graded map f is determined by the collection (a0, ..., an) ∈ kn+1, where

f(v00) = a0v0,0 ⊗ w0,0 + a1v0,1 ⊗ w0,−1 + ...+ anv0,n ⊗ w0,−n.

Lemma 3.1. Let f be as above. Then

f(vij) =a0

(
j∑

k=0

(
j

k

)
vi,k ⊗ w0,j−k

)

+ a1

(
j∑

k=0

(
j

k

)
vi,k+1 ⊗ w0,j−k−1

)
+ ...

+ an

(
j∑

k=0

(
j

k

)
vi,k+n ⊗ w0,j−k−n

)
.

Proof. We have

f(vi,j) = f(xiyjv0,0)

= xiyjf(v0,0)

= xiyj(a0v0,0 ⊗ w0,0 + a1v0,1 ⊗ w0,−1 + ...+ anv0,n ⊗ w0,−n)

= (x⊗ 1 + 1⊗ x)i(y ⊗ 1 + 1⊗ y)j(a0v0,0 ⊗ w0,0 + a1v0,1 ⊗ w0,−1 + ...+ anv0,n ⊗ w0,−n)

= (y ⊗ 1 + 1⊗ y)j(a0vi,0 ⊗ w0,0 + a1vi,1 ⊗ w0,−1 + ...+ anvi,n ⊗ w0,−n)

=

(
j∑

k=0

(
j

k

)
yk ⊗ yj−k

)
(a0vi,0 ⊗ w0,0 + a1vi,1 ⊗ w0,−1 + ...+ anvi,n ⊗ w0,−n).

The last line then yields the claimed formula. □
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Corollary 3.2. Maps V → V ⊗ W are in bijection with solutions (a0, ..., an) in kn+1 to the system of
equations

0 = a0

(
j

1

)
+ a1

(
j

2

)
+ ...+ an

(
j

n+ 1

)
= a0

(
j

2

)
+ a1

(
j

3

)
+ ...+ an

(
j

n+ 2

)
...

= a0

(
j

min{j,m}

)
+ a1

(
j

min{j,m}+ 1

)
+ ...+ an

(
j

min{j,m}+ n

)
over all pairs (i, j) where vi,j = 0 and vi,j−1 6= 0.

Proposition 3.3. Let f and g be the maps V → V ⊗W corresponding to (a0, ..., an) and (b0, ..., bn) ∈ kn+1

as in Corollary 3.2, respectively. Denote by f̂ the map W → V ⊗ V ∗ and g the map V ⊗ V ∗ → W the maps
corresponding to g and f as in [EGNO15, Proposition 2.10.8]. Then g ◦ f̂ 6= 0 if and only if bn 6= 0, and∑

i,j

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))
=
∑
j

length(j)

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))
6= 0,

where length(j) is the length of the row at height j.

Proof. We have the formulas
f̂ = (idV ∗⊗V ⊗ evW ) ◦ (idV ∗ ⊗f ⊗ idW ) ◦ (coevV ⊗ idW ),

g = (evV ⊗ idW ) ◦ (idV ∗ ⊗g),

where we use implicitly that W ∼= W ∗ and that the tensor product commutes up to natural isomorphism.
The composition g ◦ f̂ is nonzero if and only if it sends w0,−n to something nonzero. The proof then follows
from a direct computation.

□

4. Proof of the main theorem

In this section, we state and prove our main theorem concerning general p-groups. We first state our
theorem below.

Theorem 4.1. For an arbitrary integer u, define pow(u) to be the unique integer value for which ppow(u)−1 <
u ≤ ppow(u). If V2n+1 is a direct summand of Vh ⊗ V ∗

h , then V2n+1 is a summand of V ⊗ V ∗, where V is a
cyclic module, all columns are either 0 or h modulo pg, where g = max(pow(h), pow(2n+ 1)).

Proof. If V2n+1 is a summand of Vh ⊗ V ∗
h , by Corollary 3.2 and Proposition 3.3, there must exist some

solution (a0, a1, . . . , an) which satisfy

0 = a0

(
2n

1

)
+ a1

(
2n

2

)
+ ...+ an

(
2n

n+ 1

)
= a0

(
2n

2

)
+ a1

(
2n

3

)
+ ...+ an

(
2n

n+ 2

)
...

= a0

(
2n

n

)
+ a1

(
2n

n+ 1

)
+ ...+ an

(
2n

2n

)
,

and likewise for (b0, b1, . . . , bn). For V2n+1 to be a direct summand of V ⊗ V ∗, the same set of equations
must hold, with the only difference being in the values of j for which there exist i such that vi,j = 0 and
vi,j−1 6= 0. For Vh ⊗ V ∗

h , the only such j was j = 2n+ 1. However, for V ⊗ V ∗, all j which are congruent to
0 or h modulo pg must satisfy this system of equations.

If j ≡ 0 (mod pg), it can be seen that
(
j
l

)
, for 1 ≤ l ≤ 2n, are all ≡ 0 (mod p), as if we expand these

binomial coefficients, there will always be more factors of p in the numerator than in the denominator.
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More specifically, upon expansion, the numerator and denominator will both be products of l consecutive
s(s − 1) · · · (s − l + 1), for s = j and s = l, respectively. For such products of consecutive elements, having
s ≡ 0 (mod pg) will achieve the maximum number of factors of p in the product, and the inverse holds as
well: if s is not a multiple of pg, this maximum number of factors of p will not be achieved. Since

(
j
l

)
= 0

for all 1 ≤ l ≤ 2n, the system does not yield any restrictions on the values of a0, a1, . . . , an, b0, b1, . . . , bn.
There must exist at least one j for which j ≡ 2n + 1 (mod pg), as otherwise the dimension of V would

be ≡ 0 (mod pg). In the case when j ≡ 2n + 1 (mod pg), it can be seen by Lucas’s Theorem that all
the binomial coefficients

(
j
l

)
will be equivalent to

(
2n+1

l

)
modulo p. Let the base p expansion of 2n + 1 be

expressed as

βg−1p
g−1 + βg−2p

g−2 + · · ·+ β1p+ β0.

Then, since j ≡ 2n+ 1 (mod pg), we can express j as

βep
e + βe−1p

e−1 + · · ·+ βgp
g + (βg−1p

g−1 + βg−2p
g−2 + · · ·+ β1p+ β0).

In addition, denote the base p expansion of l, where l < 2n+ 1, by

γg−1p
g−1 + γg−2p

g−2 + · · ·+ γ1p+ γ0.

By Lucas’s Theorem (see [Me�, Theorem 2.1]), it follows that
(
2n+1

l

)
≡
∏g−1

i=0

(
βi

γi

)
(mod p). Analogously, we

have that

(
j

l

)
≡

e∏
i=0

(
βi

γi

)
=

g−1∏
i=0

(
βi

γi

)
·

 e∏
i=g

(
βi

γi

) =

g−1∏
i=0

(
βi

γi

)
·

 e∏
i=g

(
βi

0

) =

g−1∏
i=0

(
βi

γi

)
.

Hence, we have that
(
2n+1

l

)
≡
(
j
l

)
for 1 ≤ l ≤ 2n, and it follows that a tuple (a0, a1, . . . , an) in kn+1 is a

solution to the system corresponding to a map from V2n+1 → V2n+1 ⊗W if and only if it is a solution to the
system corresponding to a map from V → V ⊗W .

We further show that a pair of solutions (a0, a1, . . . , an), (b0, b1, . . . , bn) will satisfy bn 6= 0 and make the
expression

∑
i,j

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))
=
∑
j

length(j)

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))
nonzero in the case of Vh if and only if it does so for all V of the described form.

The bn 6= 0 condition clearly satisfies the if and only if criteria, as the value of bn is the same for both
cases. In the case of Vh, the expression above that we desire to be nonzero simplifies to

h−1∑
j=0

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))
= a0

(
h

n+ 1

)
+ a1

(
h

n+ 2

)
+ · · ·+ an

(
h

2n+ 1

)
by the Hockey Stick Identity (see [Wes21, Theorem 1.2.3]. For the remainder of this proof, we use c to denote
the sum above.

In the case of V, note that the length(j) value will be equal among many terms in this sum. Because all
the column heights are equivalent to 0 or h modulo pg, we can consider the summands in this expression
ranging between two adjacent column heights. If we denote those two adjacent heights by j1 and j2, then
we are considering the expression

length([j1, j2 − 1])

j2−1∑
j=j1

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))
,

where we have factored out the constant length(j) term from row j1 to row j2 − 1, inclusive, as these rows
are all of the same length. If j1 ≡ j2 (mod pg), whether it be that they are both equivalent to 0 or both
equivalent to 2n+ 1 modulo pg, then it can be seen that this expression evaluates to 0 because
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j2−1∑
j=j1

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))

=
j2 − j1
pg

·
pg−1∑
j=0

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))

=
j2 − j1
pg

·

 n∑
i=0

pg−1∑
j=0

ai

(
j

n+ i

)
=

j2 − j1
pg

·

(
n∑

i=0

ai

(
pg

n+ i

))
= 0.

To see the final step, note that because g = max(pow(h), pow(2n+1)), we must have that g > pow(2n+1).
Note that pow is an increasing function, so this would also imply that g > pow(i) for i = n+1, n+2, . . . , 2n+1.
Thus, using analogous reasoning to when we were showing that

(
j
l

)
≡ 0 (mod p) for 1 ≤ l ≤ 2n when j ≡ 0

(mod pg) above, we have that
(

pg

n+i

)
≡ 0 for i = 0, 1, . . . , n, and the final step follows.

Suppose j1 ≡ 0 (mod pg) and j2 ≡ h (mod pg). If we let j1 = pgc1 and j2 = pgc2 + h, then the desired
expression evaluates to

length([j1, j2 − 1])

pgc2+h−1∑
j=pgc1

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))

= length([j1, j2 − 1])

pgc2−1∑
j=pgc1

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))

+ length([j1, j2 − 1])

pgc2+h−1∑
j=pgc2

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))

= length([j1, j2 − 1])

pgc2+h−1∑
j=pgc2

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))

= length([j1, j2 − 1])

h−1∑
j=0

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))
= c · length([j1, j2 − 1]).

In the last case if j1 ≡ h (mod pg) and j2 ≡ 0 (mod pg), let j1 = pgd1 + h and j2 = pgd2. In this case, the
desired expression evaluates to
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length([j1, j2 − 1])

pgd2−1∑
j=pgd1+h

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))

= length([j1, j2 − 1])

pgd2+h−1∑
j=pgd1+h

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))

− length([j1, j2 − 1])

pgd2+h−1∑
j=pgd2

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))

= − length([j1, j2 − 1])

pgd2+h−1∑
j=pgd2

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))

= − length([j1, j2 − 1])

h−1∑
j=0

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))
= −c · length([j1, j2 − 1]).

For row j, let lj denote the unique column for which the height of column l is j+1 and the height of column
l+1 is less than j +1. If column l+1 does not exist, assume its height is 0. Let rowlength(i), for column i,
denote the length of a row j for which lj = i. Note that such a row j does not necessarily always exist, but
in this proof we will only use it in contexts where it does exist. Furthermore, for column i, (where we start
counting from the left), let ji denote the height of the ith column.

Then from our work above, we have that

∑
j

length(j)

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))

=

 ∑
i with ji≡ji+1

0

+

 ∑
i with ji≡0,ji+1≡h

c · rowlength(i)

+

 ∑
i with ji≡h,ji+1≡0

−c · rowlength(j)


= c ·

 ∑
i with ji≡0,ji+1≡h

rowlength(i)−
∑

j with ji≡h,ji+1≡0

rowlength(i)

 .

Now we consider the expression
∑

j length(j) in which we sum all the row lengths. Using the same notation
as above, we can observe that

∑
j

length(j) =

 ∑
j with jl≡jl+1

length(j)

+

 ∑
j with jl≡0,jl+1≡h

length(j)

+

 ∑
j with jl≡h,jl+1≡0

length(j)

 .

Consider each of the three expressions in parentheses. With respect to the expression in the first parentheses,
for every row j with jl ≡ jl+1, there exist jl+1 − jl − 1 other adjacent rows which also appear in the sum all
with the same lj value and identical lengths as well. But this group of jl+1 − jl rows with equal lengths will
evaluate to 0 in this sum because pg|jl+1 − jl. Thus, the expression in the first parentheses evaluates to 0
by arranging all the rows in these aforementioned groups.

For the expression in the second parentheses, similar to the expression in the first parentheses, for every
row j with jl ≡ 0 and jl+1 ≡ h, there exist jl+1 − jl − 1 other adjacent rows in the sum with the same lj
value and identical lengths. If we let r denote this constant length and l the constant lj , then the sum of all
the lengths of these rows will be (jl+1 − jl) · r ≡ h · r. Note that the constant length of each of these groups
of rows corresponds uniquely to the value of rowlength(i) for i = l. This correspondence establishes that∑

j with jl≡0,jl+1≡h

length(j) ≡
∑

i with ji≡0,ji+1≡h

h · rowlength(i),
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where we iterate over columns instead of rows in the latter expression.
With respect to the expression in the third parentheses, similar to the expressions in the other two

parentheses, for every row j with jl ≡ h and jl+1 ≡ 0, there exist jl+1 − jl − 1 other adjacent rows in the
sum with identical lj value and length. Using the same notation as for the second parentheses, if we let
r denote this constant length and l the constant lj , then the sum of all the lengths of these rows will be
(jl+1 − jl) · r ≡ −h · r. Note that the constant length of each of these groups of rows corresponds uniquely
to the value of rowlength(i) for i = l. This correspondence establishes that

∑
j with jl≡h,jl+1≡0

length(j) ≡
∑

i with ji≡0,ji+1≡h

−h · rowlength(i),

where we again iterate over columns instead of rows in the second expression.
In summary, we have demonstrated that

∑
j

length(j) ≡ 0 +
∑

i with ji≡0,ji+1≡h

h · rowlength(i) +
∑

i with ji≡0,ji+1≡h

−h · rowlength(i)

= h ·

 ∑
i with ji≡0,ji+1≡h

rowlength(i)−
∑

j with ji≡h,ji+1≡0

rowlength(i)

 .

Recall that the expression that we wish to be nonzero is

∑
j

length(j)

(
a0

(
j

n

)
+ a1

(
j

n+ 1

)
+ ...+ an

(
j

2n

))

= c ·

 ∑
i with ji≡0,ji+1≡h

rowlength(i)−
∑

j with ji≡h,ji+1≡0

rowlength(i)

 .

If c is 0, then the expressions for both Vh and V evaluate to 0, and hence V2n+1 is not present in the
summands of Vh ⊗ V ∗

h or V ⊗ V ∗.
If c 6= 0, V2n+1 is summand in Vh ⊗ V ∗

h . Furthermore, since c is nonzero, it follows that the desired
expression for V is nonzero if and only if

∑
i with ji≡0,ji+1≡h

rowlength(i)−
∑

j with ji≡h,ji+1≡0

rowlength(i)

is nonzero. But since h 6= 0, this expression is nonzero if and only if
∑

j length(j), or the number of cells in
the grid, is nonzero. The latter is always true: thus V2n+1 is also a summand of V ⊗ V ∗ if c is nonzero.

Since we have checked for all possible values of c, we have shown that V2n+1 is a summand in Vh ⊗ V ∗
h if

it is a summand in V ⊗ V ∗, and we are done with the proof.
□

5. Examples in characteristic 3

Providing a complete characterization of all p′-invertible representations remains an extremely difficult
question. In this section, we explore a few examples of p′-representations that are not p′-invertible for p = 3.
Using Theorem 4.1, we can quickly produce many infinite classes of representations that satisfy this criterion.

Let M5 denote the cyclic α(1, 0) representation corresponding to [5]. It can be verified that M5 ⊗M∗
5
∼=

k ⊕ M3 ⊕ M5 ⊕ M7 ⊕ M9, where M3,M5,M7,M9 denote subrepresentations of dimension 3, 5, 7, 9 which
correspond to the monomial diagrams shown below.
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k M3 M5 M7 M9

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

For instance, to show that M5 is a summand of M5 ⊗ M∗
5 , we can examine the system of equivalences

produced by Corollary 3.2. We get that

2a0 + a1 + a2 ≡ 0,

a0 + 2a1 + 2a2 ≡ 0,

which implies that (a0, a1, a2) must be of the form (x, 0, x). (b0, b1, b2) must be of this form as well, but the
only value of our concern is that there exists such a tuple for which b2 = x 6= 0, which there is.

All that is left to check is that there exists some solution (a0, a1, a2) = (x, 0, x) for which

4∑
j=0

length(j)

(
a0

(
j

2

)
+ a1

(
j

3

)
+ a2

(
j

5

))
6= 0.

Substituting in the form of (a0, a1, a2), we get that the expression simplifies to x·
∑4

j=0 length(j)·
((

j
2

)
+
(
j
4

))
.

Since length(j) = 1 for j = 0, 1, 2, 3, 4, we get that this expression is equal to x · (
(
5
3

)
+
(
5
5

)
) = 2x, and thus

setting x equal to any nonzero value produces the desired nonzero composition of maps, showing that M5 is
a summand of M5 ⊗M∗

5 .
Corollary 5.1. Let V be a cyclic representation of α3(r, s) generated in degree (0, 0) with dimension coprime
to 3 corresponding to a graded diagram with heights of a1, a2, . . . , an such that ai ≡ 0, 5 (mod 9) for i =
1, 2, . . . , n. For all such V, M5 ⊗M∗

5 is in the decomposition of V ⊗ V ∗, and thus, specifically M5 and M7

are in the decomposition of V ⊗ V ∗.
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